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Abstract

In thie paper, we present & new approach to the classical
pingla row roxting problem. The approach 1 based on a
graph theoretic representation, in which an instance of the
single row routing problem is represented by three graphs,
a circle graph, a permutation graph and an interval graph.
Three schemes for decomposition of the problem are pro-
gented. The decomposition process is applied recomively
until either each gub-problem is nen-decomposable or jt
belongs to one of the apecial classes of single row routing
problam. For some apeclal elasses we show that routing
can be done optimally, while sohation it other ¢ases can be
approvimated ueing henristic algorithms. These solutions
of atib-problams are then combined to obtain the salution
of the given proklem.

1 Introduction

The clasgical 2ingle tow rouking problem (SRRFP) is one of
the important probleme in the layout design of multilayer
cireuit boards [8]. It hag received considerable attention
over past ten years |4,5,6,7,10,11,12]. The problem can be
defined az follows. Given a set of two-terminal neta defined
on a aet of evenly spaced terminals on a real line, called the
node axin. Without logs of generality it can beo assumed
that node axis is & horizontal ine. The interconnection for
the nets are realized by means of non-crossing paths, Fach
path consists of horizontal and vertical line segmenta on a
gingle layer, such that no two paths cross each other. More-
over, no path s allowed to intersect a vertical line more
then once, ie. backward moves of nete are not allowed,
Yor an exampls consider khe net list Ly = (N, N3, ..., No}
where Ny = {1,6}, Ny = {28}, Ny = {4,14}, N, = {3,7},
Ny = {B,11}, No = {8,15}, Ny = {10,12}, Ma = {13,16}.
A gingle row realization of L, 18 shown in Fig. 1.

The area above the node axis ig called the vpper strest
while the area betow the node axis i called the lower atreat.
The number of the horizontal tracks in the upper atreet i
called the upper atreet congeation [} and the number
of horizontal tracke in the lower street is called the lower
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strest congestion [(7,]. For the realization shown in Fig.
2, Ch=2CL.=1.

The ohjective function comsidered moat often is to min-
imize the maximum of upper and lower atrest congestions,
ie. minimize §p, where @y = max{Cu, Cu}-

Necessary and sufficient conditions for the optimal re-
alization of single row routing problern are developed in
[10]. An interval diagram representation of the problem is
presented by Kuh et of. [5{. Raghavan and Sahni [6] give
an algorithm for deternmination of the routahility of n set of
nets when the number of tracks available on each gtreet in
known in advance. The tice complexity of their algorithm
in agaln expemential in maximum number of tracks avail
ahle on upper or lower streets. Since the general problem is
ghown to be NP-Complete [T}, aeveral heuristic algorithms
have also been proposed |7,11]. Problem of finding a lay-
out with minimum bends (doglegs] is aleo NP-Complete
[7].

In this paper, we present a new approach to the clas-
gical single row routing problem. The approach is based
on & graph theoretic representation, in which an instance
of the single row routing problem is represented by three
graphs, & circle graph, a permutation graph and an inter-
val graph. We propose three schemes for decomposition of
SRRF. The firet decomposition method breaks the SRREP
into several sub-problems each of which is represented by
& connected component in the circle graph. The other
two decomposition methads are besed on the connectivity
properties of the interval and circle graph representations.
For some spacial classes of the single row routing problem
we show that routing can be done optimelly, while aolu-

tion i other casas can bo approximated using heuristic
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Figure 1. Basic terminology and a single row realization
of the net liet -




algorithms, These solutions of sub-problams can then be
combined to ebtain the solution to the given problem,

Furthermore, for aome special classes of single row rout~
ing problem, uging the structure of the graphs representing
an instance, we drive exact values for @ in lerms of the
gizge of maximum cllques in interval graphs. To our knowl
edpe exact value of & has not been reported for any class
of single row routing problems.

2 Preliminaries

In this saction we present a graph formulation of the single
row routing problem. Moet of the graph terminology used
in this paper follows from Golombic, Harary [2,3].

Let i be a set of evenly spaced terminals on the node
axisa. A met N i defined to be a sobaet of nodes in B
ie. Ne R |N=2 N iscalled a simple net if | ¥ |= 2,
otherwise it is called & multi-net, In this paper we only deal
with simple neta and in the remainder of the paper a net
would always mean a simple net. Let L = {N:, Mz, ... N.}
he a set of nets defined on R. Each net M can be uniquely
apecified by two distinet terminals I; and r; called the left
touch point and the right touch point, respectively, of N; .
Abatractly, & net can be copaidered as an interval bounded
by left and right touch points. Thus for a given set of
nets, an interval diagram depicting each net as an interval
can be easily constructed. For example, Figure 2{a) shows
an example of interval diagram corresponding to a set of
nets. (Glven an interval diagram corresponding to a set of
nets, twa graphs models representing the single row routing
problem can be defined as follows.

Deflne an cverlsp graph Go = ¥, ED},

V = {% | v; represents interval J; corresponding to N

Eo = {{m.v) | L <k <re<n}
Similarly, define o conteinment graph o = [V, Eg),
where the vertex zet ¥ Is the same as defined above and
Er n eet of directed edges defined below:

Er{; = {{'[.'.,-, 'l:','} | i = fj,r.- = r,-}

Bince we will be dealing with both directed and undi-
rected version of these graphs therefore the errow head
on top will be omitéed to indicate the undirected graph.

For example by o we mean the graph &g ignoring the
directions on the edges i.e; Gg = [V, Eg).

We also define an interval graph Gy = (V, E;) where
the vertex et V ia the same 2s above, and two vertices
are joined by an edge if and only if their corresponding
intervals have a non-empty interseciion. Fig., 2 shows an
example of the evotlap graph, the containment geaph and
the interval graph for & set of nats.

It i= well known that the clase of overlap graphs is
equivalent to the class of efrele graphe and the class of
contaimment graphs is equivalent to the class of permuta-
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Figure 2: Interval diagram and Graph representation for
& set of nats.
tion graphs |2]. Both interval graphs and permutation are
well known claszes of perfect graphs and hes been atudied
extensively [2[. Polynomial time algorithms are known for
recognition, maximum clique, macimum indepandent set
problems among others.

Let Dy denote the minimum number of doglags required
in optimal realization of & set of nets L eg., for the illus-
tration in Fig. 1 Dy = 2. Tt is impertant to note that
layorts with minimum doglags may not have minimum Go.
Therefore we consider Dy only for for those layouts with
minimum .

The cut number of a tarminal is number of nets in-
tersecting & varticzl line through this terminal excluding
the net for which this terminal ia a touch point. The cut

rutber g of 3 net ; is defined as the maximum of the
cut numbers of ita left and right touch points. Farther-

more, let guin and g be respectively the minimum and
taximum cut numbers among cut numbers of all nets.
It has heen shown in [5 that for each feasible realization
O 2 mex{Qmin, [t/ 2]}- However, our model immedi-
ately leads to = tighter lower bound. Tt follows from the
definitions of 7, ¢ and ¢ that for every clique & £ G
there exlsts a clique C' € G such that Vi 2 Voo If O,
¢ and ) denote the maximum eliques in Go, Gp and Gi
respactively then it is cbvious that |01} = max(1C], |Cx()
and it follows that guu = |C1|— 1. Therefore a lower bound
tighter than that given in [5] can be obtained as follows.

Lemma 1 For cach feasible regiization

Qo > max{ guis, [|C1l/21}

3 Summary of Results

3.1 Problem Decomposition

In this section, j , »mt three achemes for decomposi-
tion of SREP. We investigate conditions under which these
schemes are applicable.



Decomposition based on the conpected compo-
nents of 5o This decomposition I8 baged on the con-
nected components of the circle and the interval graphs,
Coneider the interval graph &7 of a glven instance of 2
single Tow routing problem. It is easy to sea that each
contiected cotnponent can be routed independently of oth-
era. Therefore, In the rest of the paper we congider cmly
those instances of the problem for which graph &y has only
one connected component.

Now consider the over]ap graph &g of the given single
row roiiting problem. & may have roore than one con-
nected compeonents although net lists represented by these
components are physically overlapping. Let iy, Hy, ... H,
be the connected components then we define & directed
graph T = (VP E*). where V* = {of o, .. 0%} such
that v} corresponds to the connected component H;, The
edge set £ is defined as follows

EP = (o}, v})[Fu € i, Tv € Hy, (uy0) € Ee)

In other words, a directed edge iz drawn from of to
v} if and only if the composite interval corresponding to
H; in completely contalned in the composite interval of
H;. By composite interval we mean the interval defined
by (ming ly, maxy ry) for all k, N, € H;. It is easy fo see
that 7 is & permutation graph. Let T} = (V% E}) be the
transitively reduced graph corresponding to 7. Fig. 3
shows T and T; for the example in Bgure 2. We have the
following theorem.

Theorem 1 f‘; i3 a rooted dirccted tree.

Far a given aptimal routing of an instance define Gy =
mind ). An optimal routing is celled super-optimal
if it also minimizes G,

Thearem 1 forms the basis of an efficient algorithm for
super-optimal touting of o if super-optimal routing is
known for each of its connected componenta.

Theorem 2 [f super-optimal roviing s known for X1 <
i< rH £ Qo then Algorithm A produces super-optimal

rouling for Go .
1
] 4 H
1 12
-

o T Ta
e (v} )

Figure 3: Examples of T, T for the example in Fig. 2.
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Decomposition based on Clique intersections This
scheme iz based on decompesition of a net list with re-
spect to clique intersection in the corresponding . Let
O, C2y. .., COn be a linear ordering of cliques in Gy, The
clique intersection, J; of two cliques €y and Oy, is defined
ag follows

Ii IC;I'-'IC{+1, 1 E'I-‘\‘-': "

By decomposing a net list we mean that certain nets
can be ‘physically’ cut by creating dummy terminals equal
ta twice the number of nets that are cut, The two sub net
ligts can now be routed independently and two routinge
can be put together later and ‘rewired’ so that dummy
terminals are eliminated.

Theorem 3 ff 34, 1 < 7 < n such that | &) har o cligue
indgrsection [; = 2 and if optimal routing 15 moun for the
two components that are formed by decompoaing Gy at this
ehique intersection then Gg can be optimally routed.

Decomposgition bared on Connectivity of Gg This
gcheme iz hased on the connectivity of the cirele graph of
& single row routing instahce. Given a connested graph
& =(V,E),an edge ¢ € E s called a cut edge If removal
of ¢ from 7 disconnects . The decomposition scheme
proceeds by finding & cut edge e in Go and decomposes
Fg into two graphs ) and &y defined as follows. Let
v,%; be the two vertices comnected by ¢ and &' and G"
are the two componenta formed by removal of & such that
vy € G and v; & @, Then &, and &, are defined as the
subgraphs induced by &'+ vy and G 1, respectively. We
atudy thie decompoaition under the restriction that either
the compesite intervals of &' — 1 and Y — v are disjoint
of if composite interval of & — v, contains the composite
intarval of G then after rernoval of v, G sheuld not have
meore than two connected componenta.

Theorem 4 Assume that a decomposition by eut edge of
o piven SERP exigte. Then an super-ophimal routing of
ERRP can be obtained from the super-optimal routing of
the tuw eomponents formed by the decomposition process,

3.2 Routing of apecial classes of SREP

In this section we investigate routing of some special classes
of gingle row routing problem. We show that exect values
for (o can be derived if g 8 a path, evcle, clique or
& complete bipartlte graph. We also present a sufficient
and necessery condition for feesibility of routing without
doglegs.

A contiected acyclic graph with no vettex having de-
gree greater than 2 is called a path. For a large clags of
romting problems Fp can be a path. Note that for a path
of length n, n > 1, [€a] = 2, |G| < n. Bince for paths
gui < [|C1]/2] therefore Qo  [|C1]/2]. A simple romting
algorithm for paths gives us the following lemma,



Lemma 3 [f Go o5 ieomorphic to o path of lengthn n > 1
then Oy = HG’.L."E].

By gpeneralization of paths to cycles of length n, n = 3,
wa note that the routing specifications for which &y is
& cycle hecomes quite restricted as etated in the lemma
below. In fact for cycles |Cf) = 3.

Lernma 3 If G iz ¢ eycle of length n, n = 3 then Qy =
[1€1]/2] and
1 i nfe odd

o { 0 otherwie

This lemitna leads to characterization of SERF for which
realization ia poesible without doglegs.

Theorem & Given an insfanee of single row roufing, a
realization withou! dopleps exists of and only € its corre-
spording (3o ts o biparlite grapk.

Follewing Theorem 5, we define routing of & given SRRP
without doglegs se natural bipartition routing. Mareover,
natural bipartition routing when unigue if G is connectad.
It may be noted that Theorem 5 presents a aimple charac-
terization of natural bipartition routing problems ag com-
pared to one prescnied by Raghavan of al. [7]. One must
note thet natural bipertition routing may not be optimal
i,y may not be minimom. In these cases doglegs are
required to obtain the optimal vahe of 5. Thiz Theorem
leads to a lower bound on the number of doglegs for a given
instance of SRED.

Corollary 1 Given an inatanece of single row routing, then
Dy 2l V| = | Wi | where &y = (W, By} #5 & mazimum
Biparitte subgraph of Go corresponding to the instance.

The exact vaiue of Gy and I3, for the clagses of SRRP
for which g is a complete bipartite graph or a cligue can
be derived as given below. Both classes can be routed
easily.

Lemma 4 [f Go 5 o complete bipartile praph Ko o, m =
f then Qo = [|C1]/2] and

D&={2n—1

1]
Lemma 5 If 7o s a complete graph K, then @ = [[1]/2]

fm>n+l
otherunae

4 Conclusions

In thie paper, we have introdyced u graph theoretic ap-
proach to the ¢lassical eingle row routing problem. An
inatance of the single row rouling problera is represented
by three graphs, a circle graph, a pertmutation graph and
an interval graph. We propose three schemes for decom-
pogition of SRRP. Furthermore, for some special claseas
of single row routing problem, using the structure of the
graphs represeniing an instance, we drive exacl values for
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o In terms of the gize of maximum cliqgpes in intecval
graphe, The approach also leads to many interesting the-
oretical insights into the gingle row reuting problem.
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