424

[ERFE TRANSACTIONS ON COMPLTERS, VOL. 3. NO. 3. MARCH 1985

Fast Parallel Algorithms for Binary Multiplication
and Their Implementation on
Systolic Architectures

BHABAMI P. SIMHA, mrivner, 15EE, asD PRADIP K. SRIMANI, MeMRBER, TERE

Absfract—Two algorithms for paralld msltiplication of two #-
bit binary aumbers have been presended in this paper. The [irst
algorithm computes the prodoct in (7 + [logan () unils of
addition time of a single-bit full adder and is easily implement-
ahle on the 1 » n systolic SIMD architecture. The sccond
algorithm Is sill fasier and requires approximately 3] logyn | units
of time of a single-bit foll adder. Both the algacithms reguire
almost regular intercomnection between only iwo types of cells
and hence are very suituhle for V1L.51 implementation. Both of
ithem can also be easily modifled 10 handke iwo’s complement
nambers with constanl difference in time.

Index Terms—Binary mulliplication, columno compraession,
precarry addition, regular interconnection, ¥YLSI chip design,

. ISTRODUCTION

ULTIPLICATION of two n-bit numbers plays a very
important role in many applications and with the advent
of YLSI technology, parallel algorithms for multiplication
have become increasingly important. The ordinary straightioe-
ward multiplication scheme {17 can multiply two s-bil
numbers in 2a units of time (3 wnit of time is defined as the
time of a single-bit full adder). This execution time for parallcl
nmltiplication has been decreased substantially by using the
techpique of pardal product matrix reduction or column
compression [2]-[4]. This technigue of eolumn compression
leads to less execution time than itertive armay algorithms but
i requires 4 large number of irregolar interconnections
between different types of cells. The pipelined architecure of
[5] for muldplication using carry save adders has also been
wsed in some commercially available systems 1ike CD{C Star
10} 16] to achicve substantial speed in multiplicadon. Re-
cently, two algorithms for iterative array mulliplication have
heea reported in [7] both of which reguire anly 7 uaits of lime
for multiplication of 1wo #-bit numbers and involve almost
regular interconnection situcturcs of the muitiplise array cell
clements which are ideal for VLSI implementadon. Authors in
[11} have also reported an OQ(log;) multiplication scheme
using redundant binary trees.
In this paper, we proposc two new parallel algorithms for
multiphication of two r-bit numbers both of which wse the
techmique of column compression to increase the speed of

Manuscrpt received September 15, iW86; revised Tuly 15, 1987,

The authors are witk the Departmer ol Compuer Scienc, Suuthem
Olincds University. Carbondale, 1. 62901,

[EEE Log Mumber HH25674,

execution, The first algorithm, M1, reguires (7 + [loga])
units of time and s rcalizable om an 71 = a syswolic SIMD
architecture with G{n') AT? value [3]. The next algorithm,
M2, which is an improved version of M1, exploits further
parallelism present in the operations resulting in an execution
time of approximately 3 logs 7 units and O{a{log.n) 2y AT?
value. A systolic architecture to multiply two 64-bit numbers
using Algorithm M2 has been shown as an implementation
example and the corresponding data flow in various stages has
been shown. Both the dlporithms reguire almost regular
interoonncction between two types of cellss simgle-bit Tull
adhbers and precarmy gencrators (8 two-level circuit of seven
gates} and hence are very suitable for single-chip VIS8T
implementation,

O. PreLIMINARIES
Lat U and V¥ be the two numbers 10 be multiplicd whose
binary representations are a5 follows;

U=ty (peoz * - Wi
V:'l.'_“ 1l 277 Iy

where 1, and v, are the least significant bits. Let B = LUV,

where W can he expressed as W = wa, o Wapo 2 70 W WL
Hence, we can write
Fo B m2 e
W= 2 Y u i+ 20 % w_ay (1)

=l =0 i=m i=i—m+l

where the first leorn accounts [or the least significant e bits wy

© Wy uml the second term for the most significant a2 bits
Wy e owy, oy of W, Thus, any w; can be obtzined by
computing the appropriate summation and adding carry bits
thet arc propagated from the less significant bit positions.
Denoting &;:1; by ay, we rewrite (1) as

n-1 i an-2 z=1
w-S23e,4 52 3 au

I=1 A=l J=q f=l-a1

(2)

Addition of Twe n-8Bit Numbers in [log;n] Time

As we will see Tater, the final steps in both of our proposed
algorithms, M1 and M2, are to add two binacy numbers of
equal length and this we plan to do in [logan] units of time
wsing the concept of precarry introduced first in [9]. We

SINHA AND SRIMANE PARALLEL ALGORITHMS FR #1%ARY MULTIPLIC ATION 425

Fig. 1. Carry generalion LToo precary vestor for @ - 16,

describe the method briclly for the sake of compleleness and
then proposc a simple hardware adder to implement the
precarry concept. We also siuly the complexity of the module
thal computes the sum of two numbers in [Tog,n | time wnits,

Consider two binary numbers 4 = g,_, --- gy and B =
By v Iy which are o be added w produce the sum § -
Sy 0 v &g, Define a precarry veclar P o= pga_y 0 g
where pp = Dand tori = 0

o, Wa =k =0
m=11, fa.,=h =1

2, orherwise.

Dx:fine a binary operator % us

0, if x=10
riy=11, it x=1
» k=2

where the operands ¥ or ¥ can assung values O 1, and 2. Tt is
1w he noted thar the operator $is associative bul not
comrpntative, Mow consider the carry bils generaled n
successive bil positions while wdding the 1wo numbers A and
H. This carey vector €7 — o, ¢ o0 ¢ an be defined as

. fo i f=0

e i, Ib.' ['ﬂ.- |'C,' 1 ’l.h,_p'.". 1 iFt::uI]
and the sum 5 can be defined as
O=i=n

&=EXOR{a, &, i), [assuming @, = h,=0].

Tt can b readily seen Lhat the carmy voctor can be gencrated
Trom the precarty vector us

O=i=n- 1.

c=p b p S ip: (e))

Evidently these § operators can be exccouted in parallel andd
hence il we have 4 sufficient number of hardware modules thar
execuly b operation on two given operands. then the carry
veclor can be generated from the precarry vector in [log. A
unitg of time. Two bits are needed to represent each glerment of
the precurry vector. Uf by and by, are the bals W represent py,
then we may assign fyp = b = O0forp = 0 by = b = 1
for p, = 1 aml by = By, for 5, = 2. The following two
cguations apecily the logic medule that cxecutes the operation
oy =pFispp

i;'-':'.='i:"lI'bl'l"'{'r.-":n & hi] ' '-‘:'_nl
faa=haha+ i & ba) e By

The number A{a) of such modples (precarrs generaturs)
required o compute the precarry vector O, for m = 2% i3
given by the recureence

N(ZF)=2N(@F)42

whose solution is given by A2%) = £-2%-7, An cuample of
imrerconnecting all ihese modules w penerate the carry vector
is shewn in Fig. 1 for # = 16, The logic modules have been
shown by black dots. Evidently the precarcy logic mnodules can
be dosipned as two-level ann-or circuits just like single-bit
full adders and hence the above logic operylions regquire the
same amount of lime as that of 2 single-bit full adder. We cun
say thal lwo -bil numbers can be added in [log.r] + 1 time
uahiks using this precarry technique amd henceforth we call it an
n-bit precarry adder, It should be neted that the precarey adder
requires a maximum of [/27 broadeasting communications.

IM. The Passarier ArcomtHes A1

We deseribe hore Algorithen M that compules B from the
above cquation assuming that all lhe &'s are known in

426

negin
init : Tor t =0 49 (9m-2) g ip parallel
AL 1 < n shen
Ll
"‘Lli "-_a:,EI P e
2nd
ﬁ'ﬁg
beglh
‘11-.““ = Hn,—'l..:i.-n-f' e
end;
i=1 P
3'&..1‘_ o
locgt ¢ Lor 1= 1 tp (2n-20 o in Tarellal
g be li akd If'l_Li
Lot : Lok k=1, Long do
gl
=1 b=l :
e Pl e,
; k-1 =1 "
Gt el e By 1l
eod
qubput] : for i = 0 tw (n-1) du
i
"1":_‘51 i
cn"’r 0;
Precarry : for i =0 Lo (20-2) do Zn parsllel
begln
CROE S Gl it L) |
cubputs for 1 = r ko (2n-1) o i parallel

w o 3P, g e

Fig. 2. Algorithm 1.
advance. The main idea is thal we pass on the carry to the next
higher bit position as soon as it is generated,, and afier {n — 1}
cycles of additions (and subsequent carry propapations) we are
left witha (24 — 1) bit sum vector § = &, 5+ - 5 and an #-
bt carry vector O = 03,7 ° * + ;. The product B will then be
obtained by a paralle]l addition of C with the most significant
(n— 1}bits &5, o8, -+ 5, of 5 This parallel addition can
be done in {logas] steps using a&n r-bit precarry adder.

The complete Algorithm M1 has been given in Fig. 2, To
describe the algorithm first we define two integers [and »; as

follows;
o 1, fori<n
“ti-n+1, otherwise
s i, for i<H
T lael, otherwise,

The variables S* and C% in Algorithm M1 indicate the s
and carry bits, respectively, generated at the fth bit position of
W oafter & — f; + 1 iterations of the loop “loopd " The
symbots 5 and € dencte the sum and carry functicns,
respectively, in & single-bit binary fuli adder. The function SP
over the two bit vectors §-187-) -+« 821 and Co-Looe]
N 53 ! gives the carry bit ¢, for the (i + Dith position (by
the already described precarry lechnigue) o be used in
generating the sum of these two veolors,

Sinee Algorithm M1 is the direct implementation of (2}, the
proof of its correctmess is obvicus. Execution of loop2 requires
(# — 1) steps for i = 7 — 1. Also the precarry function SP

IFFE TRAMSACTIONS 0N COMPUTERS, WOL, 38, 850, 3, MARCH 1989

_£

_L

|
] 4 BT ERECARRY AITCR
_1-"

)

Svstalic umray forn = 4,

Fig. 3.

over two bit vectors of length 1 each requires Tlogan steps.
Consequently we get the following theorem,

Theorem 1: The time complexity of Algorithm M1 s (r +
[loga

Implementation of Algorithm M1 on g Systolic Array

Algorithm M| can be casily implemented on a systolic r = 1
processor array where each processor clement of the array is a
single-bit full adder. Fig. 3 shows such a systolic array for
= 4. Initially all the a,’s are stored on the processor clements
Pyos 0= i f=n— 1, a8 shown in the Agure. We note that
in loap2 of Algorithm Afl the sum of the indexes of a;'s
required to cempute S¥ and O, | for a given value of § is
always equal to f for afl values of k. This indicates that there
should be a diagonal flow (from botlom o top) of the sum bils
5?15 and 4 herizontal flow (from left to right) of the carry hits
¥ "5 for the operation with the next higher value of &. The
aperations on cach diagonal are so synchronized that at the kth
step, | = Ak =n — 1,allthcprocessors Py's, 0= i=n — 1
only at the kih column perform the addition operation. After
(" — 1} eyches of sum and carry propagation and subscgquent
additions, the processor elements Py, Py -+, Py, store
the bits wy,, w, «++, w,_; of W, The processor clements
Prg o1 Pyttt Pooq o now contain the most significant
parts of the sum vector and the carry veelor to be finally added
in | logan'] steps to generate the # most significant bits of the
final s W using an #-bit precarmy adder.

IV. ALGORITHM M2

Let x be a positive integer, X 2= 1, and X be another integer
defined as

X, if x=3p
X=1xt+l, it x=3p+2 (3)
£+2, ifx=3p+1

where p is any iteger. Let T be a function defined on a set of
xbits B = {#&, I, ---, B} in the following way whers we
assume fr,,y, = o0 = 0.

T: {blr bﬂs =X br}_'{'g{bjr bh h:‘}! E{b_.'s in:r bn'}1

FiB- {8 e, BP1=). K Isx’, jek&l) (4)

RTNHA AND SEIMANE PARALLEL ALGORITHMS FOR BIMARY MULTIPLICATION

oegin
“211-1%{];
Toogl ¢ Zor 1 =% to (2n-2) g0 io varallal
(Byqabygaeaby, P&l Y. B IR TRRLL
el yli—r-:cl.f"_ih
=et t Lo Lhe snallest integer SJoh Erat shien = 7
laond far k = 1 1o iteE) de
EogLn : \
Tyt “-.,1""1.r,){'1':""11"“12""'1;:,]'
i "
T qelyze woely v} 4.“'*"‘12”"&*-5'1'
LRI TELIL TS I
Mgy ¥ Ty * Czpoa, b
. m;l{— ¥+ ¥y gt vy % il
LR T
Teapd c o 1= 1 ko &7 gledn parallel
r.-“.l—5P(ibi.lb1_1_1..b1._f|,~h.‘,h:_,_|3...:-.2]];

Lop 1= 1 2a 2m=& ge 2o parelicl
g Ly by my 1
Maret & a1 ! finad

Fig. 4. Alzorithm ML

where S(8:, b, by) and G{k;, by, Iy) are, respectively, the
sum and carry bils in a single-hit binary foll adder with inputs

8, By, and b;. The function T operates on & number of bits to
generate | 2x/3 | bits as output., Let m be an integer definesd as

i\ if i< n
e [n—1, i iz)
and x, be another integer defined as
I+1, if r=m)
i {_En—:’—l, if iz, @l

It follows from (2} that wy can be obtained by adding x; bits
Dorioate g 1g w1 " "0 i g Dogether with the final carry
bit propagated from the {f — 1)th bit position. This addition
joh at each bit position § to generate the final sum bit has to be
done by repeated application of the T operator; after each T
operation, the generated hits & are to he retained in this bic
position, the gencrated € bits are to be transmitted to the next
higher bit position, and the genersted € bits gencrated at the
preceding bit position arc to be collected at this position to be
ready for the next T operation, The central ides of owr
peoposed Algoritdhum M2 s as follows.

For each i, the T operation is dong oo all bits (o be added to
get w, and the generated carry bits ©(h,, By, M) are
propagated to the next higher order bit positdon (7 + 1L
However, it b = iy = O, G(h,, 0, 0) = O and this carry hit
15 not propagated. At the subsequent step, the T operation is
performed at cach bit position on the sum bits S(5;, &y, &)
generated at this bit position and the propagated carry bits
Gy, by, #y) from the lower order bit position. This process
continues until we get emly twe bits, one sum bit and one carry
bit, at cach bit posidon. All these operations arc done in
parallel for all i At this peint, the resuling sum vector
cre g8 and the Carry veolor coa_ 1 Caez ' O
arg added together by using a 2 R-bit procarty adder as before.

Saw-pFru-a

427

The complete pseudocode of the algorithm appears in Fig, 4,
The function f{#) used in the algorithm is defined as

Finy=| 2n/7].

If ¢ is the minimum integer such thal f{n) = 2, then aftcr
exccuting fhe T operation ¢ times we get (wo sum bits and two
carry hits, And hence we nced two mote T operations to
reduce them to onc sum bit und one carry bit. This cxplains (£
+ 2) times exccution of loop2. Hence, this integer £ for any
given n will evaluate the complexity of the algorithm.

To estimate the time complexity of Algorithm M2 we need
the following lemimna.

Lewmma 1: Given that fir) = [2n/37, the smallest integer {
such thyl () = 2 satisfies the inequality

t=[1.71 loga -1,

Progf: Let us form a tree of all natural numbers greater
than or egual to 2, with 2 as the root of the tree in such a way
that every number N ix the parent of some number(s) '
whenever ¥ = [2N'/37. The first few levels of the tree will
look as in Fig. 5. The levels of the nodes increase downward,
with that of the root node equal to zero. We sce that fron level
3 onwards, there will be more than onc node at a given level.
Also, sinee [(2/3)3p — 13V = [(2/D3p)] = 2p and [(27
3Ip + 1) — 2p + 1, it follows that 41l the even iniegers in
the tree will have two chiidren while the odd imegers will have
only one, I the number of nodes at a level 1 (=3) is g, the
numnbet of nodes at level (L + 1) ds then equal | 3727 or

[3g/2 | Let us now consider the series

S=d+a6+9+13+21+3+47+T0+ 1084+ -+ -,

where the rih torm ¢, of 5 denotes the total number of nodes a1
alevel L = r + 4,
Lat us also consider the following G.P. series.

-4+ 6+9+13.5+ 2025+ 30375+ 45,5625+ - - -,

If ¢ ' s the #h term of the series 57, the series s defincd by the
relation ¢, , = (3/2)¢;. Hence, if ¢, > £ + 1, we get

Loz (F2H T+ 1= (3720 |+ 1
=352

=1

Weseethat £> = ¢ + land hencer, = ¢ for all rexeepl r =
4 when &y < . Hence, the sum of the first r teems (r > 4) of
5 iy always greater than or equal oo the sutm of the first # ferms
ol 57, which is cqual to 8[{3/2)7~! — 1. This implies that the
wal number of nodes in - consecutive levels (v = 4) starting
frem level L = 5 is greater than or equal to B(3/237'" - 1]
Howevet, since 4y — £, < 1 and the nodes numbered up 0 9
are included inthe levels from L = o £ = 4, we can easily
check that the level of a given integer & is the minimuim value
of £ satistving the inequalily

N—S=<H[{3/2)* -]

428

Fiz. 5

or
L—d=log, [(N—1)/8]
a1
L2=1.7095% log, (N - 11— 11285,

S0 the value of ¢ is equal to the level of the integer & in the
above lree and heoce

E51.71 log, H]-— 1. Q.ED.

e now huve the Tollowing theorem,
Thegram 2: The lime complexily T0a) of Algorithm A2 iy
given by

T{ny=|2.71 log, n|+3.

Froaf: Loop? of Alporithm M2 reguires (r + 2) steps
and loopd requires [log:(2a)] = [loma + | steps of
additions in 2 single-bit full adder. Henee,

Timy={+[log; #]+3
=[1.71 logy #|+[log; k|+2

=271 log, n +3. Q.ED.

An hmplememiation Example

We now discuss the processor architecture and the associ-
ated data flow among the processors implementing a 64 =< 64
bit multiplication vsing Algorithm M2, We first divide the
total number of processors inte 127 bit plunes, euch lor one bio
positicn of the product #, excepting the mos) significant hit.
The hit planes are numbcred from O to 126, the ith bit plane
corresponds to Wy and has x; processors. For the most
significant bil, we need o have a lawch which is initially zero
and 15 sel whenever a carry | s propagated from the
immediately preceding bit position. To describe the overall
architacture, let us first concentrate on the 63rd bit plane

{EER TRANSACTIINSG O COMPUTERS. WOIL. 3, N0 3, MARCH 1%

lewvel O

19

25 - - Jevel 7

Fip, & Prucessor interconpection for 63nd bit phime. (The incoming armmows
are from the corresponding positions of 62rd bit plane and the ouigoing
arrows ase towands the correspaading positions of 64th bic plane.}

containing 64 processors Py's, | = f, & < §, arranged inan 8
® 8 array. The necessary interconnections for this bit planc
gre shown in Fig. 6.

MNow consider two processors £y . and Py, so that Py 4
takes part upto gth parallel step of Algorithm A2 (either as o
source of input data or as a generator of output dats or both)
and £ > takas part up to the g,th parallel step. We define an
ordering between Py g and Pigezas “Pasr = P’ i gy
= gy Clearly = " will be a total ordering on the set of all 64
proccssors. As we go to other bit plancs on either side of the
63rd bit plane, the number of processars will be gradualiy
redueed and we remove the processors from those positions in
a given bit plane which correspond to the tail cnd of the above
ordering

Pon=Poga= =l

Finally, each processor in the ith plane is connected o the
processors at the corresponding positions of the (§ — 1)th and
(i + 1yh planes, when they exisl. This connection is
nocossary for carmy propagatiom after each T operaton from
ong bit plane to another,

Assuming that Py's initially store all the relevant e’s lor

STMEA AN SRTMAMI]: PARALLEL ALGORITHMS FOR BINARY MITLTIFLICATIGN

A Pl foms (3, 350
2oy Cme g 2y for all 1, 15144
7o < g Tgp!
) Sl U LY
Shep 2 s Pig tmme 80 50 cﬂm} For all f, 15154
Pig e (30, g Oy
P S (Zpr Cagr S5
P-;k K ':"—'Ju* '"EI:' c:b.‘] tor k=2, T
e LT }
Stepd
Pap & B By B
Py = (g Tagr Sy
By <— (Cyn Smer Tmye? forw =3, 6
Py T Uy e Bt
P Gomm (o Sg Uy
Pag == Moz Tape Pag!
Pig &—- g Capr Co
Pe, i U, } for ik » 2, T
Fa. “— [J".F.\k" S ::,I,‘,_]
SRk Py tm— Uy Cape 55
By &— Ui g Ty for ka3, 8
Foy = Ug Co Sg
Py — hqa G Gyt
Pape T g Sge g fork =2, T
s Pz S— (g Lyy) P €= (Syey Cyg?
Teg = Pz Bga Boq) Fag < Iy Cop S5

Fig. 7.

the corresponding bil positions, the data flow can be described
av in Fig. 7, where the symbol '8 40 = (B, Bk
Bjspsy " means that the processor £, 4, performs the addidon
of bits bpea, Bagr, Piags that are specified within the
parentheses, The hits 8's represent the sum bits generated at
the { f, & Yth posilion of the same bit plane while €5 represcnt
the carry bits generated at the (J, £)th position of the previous
bit plane and subsequently propagated 1o the current plane. In
this data flow diagram, we deviate a lintle from Algorithm M2,
changing only the first parallel step which adds only pairs of
hits instead of triplels of bits. This change accouns for one
more parallel siep than that in Algorithm A2.

The processor positions where additions are performed are
marked by dols, while the rest have been denoted by circles in
Fig. 6. By proper initialization of the processors at the dod
positions, it is pussible o do away with the processors at the
circled positions, thus saving a lot of hardware cost amdl
complexity. For large #, the number of processors (single-bit
full adders) will he asymptotically cqual to

MNelm)=2 2[1 42434 +{g- Nl+7g

429

Py == 5y -.':333 Pag €= [.33£|r E]b:'

i C — L
Pey, -353. Caae "-'-_131" P‘.ub G (Sgpe CE-S’ -

= 13y o for ke 3, 6

P Wieee By Ly o
Foy === [8gqs Ogye gyl

Py o= [Bges Cree Lot

1 far ko= 4y &

PuL e ':Slli' ;ll:-'.' H'”l:l Fll‘.' L ':E‘ur:-' Cllh, S%}

Poy o A2y Byge Tay! Pag S Pges Fese Byt
step d 2
Pay tmm (30 B Sy
g5 < (950 Cggr Tyl
i, G (s Gyg)

Puy T gy Ly Sy
Py i—- Uiggr Coea €y2)

Fay == Cyye By Sugd

Fug G (0,5

g T Vg Spye gl

[kt MNowe diagram.

[with m=2g]

=n{n+ 132,

The AT? value of such a realization comes et to be
n*{log; A% Similar {althowgh net identical) processor archi-
tecturc and data flow diagram can be obtained for other vaiues
of n. It can be shown that even when 1 = 256, the ninning
time s well below the bound of Theorem 2 and trom VL3T
chip design poing of view one may not be interested in values
of 1 beyond 256. When 71 is even larger, for the implementa-
tion to achieve the (3{log.n} speed of Theorom 2. we fay
peed a fow communication links between some nonadjacent
PIOCCssurs.

V. Twors ComrLeManT Mulnrica non

Both Alporithms Af1 and M2 can be readily modificd 1o
perform the multiplicalion of two signed integers in two's
complement form with @ constant difference of time. Follow-
ing the results in [10], we note that when L7 and Vare given in
two's complement torm, their product W in two's complement

430

|FFE, TRANSACTIONS ON COMIFLTERS, WOL. 38, MO, 5, MARCH 1982

I - BIT FRECARRY AEER
!

TS o, Tow a "
=R 2 it o
7” 7 7z
Wi e, Hg¥y [vk vy A

Fip. § Twa's complement maliplication by M

form can be writlen as

H"r="§_:1 2! EI: ur_;uj+
i=n

[

n—4

% 2

I=& 1

n-1-4
; [2 Bp g a2l m j-nT U RURPPRE . 7Py L l.]
=0

g

H
+21'1_3[H.7_1I'JE r fpo | +27 J E 28,

-
where
By=tiy_ ® B
b=, v,
By 1 =hy=l, - OR -

and all other b3 are zero,

To perform two's complement multiplications, the follow-
g changes ate to be done in Algorithin A1

1} a;'s are 10 be redehned as follows:

b, lor0=i<n—1,0=j=n—1
a4y = H_.|.|l-?_r'|. for i=n- 1,ﬂ'=j{ﬂ 1
FivtUeo1s fori=n, —1=j<n-12

and @,_ | qo| = Gew 2 = Qgp 1 = U
2% We need to redefine [, as follows:

'{r': [l.’
i—H,

3 The following initislizations are to be donc hefore
“loop]"’ in place of the present steps in Fig. 2.

for f<n-1
otherwise,

fori =
hegin
ifi = n — 1then
hegin
SF bl X1 C? = ”;
end

0 to {2rn — 2} do in paraliel

elsc
begin
S:'_"_j = bl‘—ﬂ+|.: Cj ke '];
end
end
compuie & and H:

4) The upper limit of the index in che **for”’ statement at
“loopl"” showld be (Zn — 1)

The corresponding changes in the implementation scheme
of Algorithm Af1 have been shown in Fig. 8 fora = 4. Here
we have used one addidonal row of processor clements for the
additiona] terms in (7). The initial values at cach processor
clement have alse been shown in the figure. After the
initializarion of the inpus, ihe product in owo's complemeat
form can be obtained in (7 + 2 + [logyn 1) units of time.

Algorithm M2 can also be rooditied in a similar manner by
properly #) redefining x, and the a's as above, and b)
initializing the b5 and wy,_ ;. Changes in implementation of
Algorithm M2 are also reflected in appropriately initializing
the inputs o different processor elements in different bil
planes, Due to the additionsl bits wn (r — 1ith, ath, 2a -
2uh, and {27 — 1jth bit positions the number of paralle]l steps
negded to parform the two's complement multiplication may
be at most one more than that for onsigned multiplication,
Morcover, W pensrate wy,—| we need 10 have a2 processor
(single-bit full adder) instead of a latch as in the case of
unsigned multiplication. ’

W1, ConcLusion

We have proposcd two parallel algorithms for multiplication
of two n-bit numbers; one requires (7 + [logyea |) while the
other approximately 3[logan] onits of time. The first onc is
implementable on an SIMI} systolic architecture, while the
sccond can be implemented on an MIMD architecturs, The
AT 18] measurcs of the two implementations are G{r?) and
O(nilog:)2, respectively, where A is measured in terms of
the number of single-bit full adder umits and precarry logic
modules. Both the alporithms have basically wtilized the
concepl of column compression to reduce execution lime,
Sinee both the algorithms involve almost regular interconnec-

SINELA AMDY SRIMANI PARALLEL ALCGORITHMS FOR 818 ARY BMULTIRLICATHN

tions between only two wypes of cells, they are very suitable
for single-chip VLS implemcntation,

ACENOWIFDGMENT

The uuthors are grateful for the valnable comments from the
referees which greatly improved the prescntation of the paper.

RrerRENCES

111 D, B Kneth, The A of Compeier Progriomumng,
Bemting, MA: Addison-Wesley, 1969,

12] C. % Wallsce, A suggestion for a fast muluplier,™ FEEE frams,
Efectron. Compil., vol. EC-13, pp. 114-117, Fch, 1964,

[3] T.. Draskda, “"Cn parallel digital multipliess,”" Afte Freguenza, vol. 45,
pp. ST4-580, 1976,

14] WL Senmel, WL Kubitz, amd G, H. Choviz, A compact igh speed
parallel multiplivation schene,” TEER Frans. Comypmr,owol. 230,
pp. S48-957, Do 1907,

[58]). P. Bayes, Cowprier Architeciure and Organizenion
beGraw-Hill, 1978,

[6] R. G. Hintz and [+ F. Tate, "Control datz STAR-100 proccssor
design,’’ in Proc. Sth Asnw, FEEE Comput, Soc, fae. Confl
FEQMPOON T2, CA, Sepr. 1972, pp. 1-4,

171 5. Maksmura, ~"Alporithms fur ireraiive wreay multiplicadon,”” SERE
Trars, Compnt,, vol, C-35, pp. 713-714, Aup. 1986,

|3| [b} T'!l-.:ﬂrlp\.'nn._ A n:xw::]:lh.'xlr}' II|-::||r_'.r For WIS Bh 1 alesserta-
tiom, Dhep. Compel, Sci CMLL, Aog 1

[49] T. Hermun, " Linewr wlaorituns that ace effickencly pucallelized o time

(lieg ny, ™" Toeh, Rep. TR-§5-17, Dept. Compur. Sei., Univ. Texas ar

Austing Sepr. 1985,

C. B, Baugh and B. A, Wooley, "A two's coanplerment parallel oy

multiplicason algoristhm, ' FTERE Fragy, Compul., vol, 21 pp.

T5- 1054, Dec, 1973

ol 2

Mew York:

il

431

[LLF . Tagaki. H. Yassura, and 5, Yajima, “"High speed ¥ L8] inultipiica
tion algorithe with 3 ceduodant binary addition tree,”” SEEE Frams,
Comypraee., wol. 0-33, pp. TRY-796, Sept, 1985,

Ehghant P. Sinha (M'34) rcceived the B.5c
degree in physics, the B. Tech. and M. Tech.
degrees In rallmph_'f-.in_'\. amil electronics, and she
Ph.D. degrze from the Univeraly of Caloulls,
India, in 1970, 1973, 1975, und 19749 respactively.
He =5 pureently wisiting the Depunment of Com-
puler Scieece, Sowthern Hliis University, Car-
bomdale, 1., as an Assocuare Professor. He is on
leawe rpan Tnelign Stagistical Instibuce. Calewma,
where he wis a0 Awcociate Poofessur. His recent
research imterests ioclude parallel alporithne and
cumaicr networks. Tharing 1979-1981 he visited the [oformatik Kolleg,
CinATY, Bonn, Wea Creemany, as an Alexander von Humbaoldt Feblow.

Frudip K. Srimawi (M'ET) was born in Cielewna,
India, in 1951, He recervee the B Tech , M Tech,.
and PRUIL degrees n 1973, 1975, and 1978 from
the: Instibde of Radiophysics and Elecironics, Uni-
versity of Calvuta, India.

He hae worked with Tedize Swatiaical Inssilne,
Caleuta, Gesselschaft fuer Matheuntik wid Duten
veratheitung, Boon, Woa Germgny and Indian
Insdirew of Mamigement, Calvotts. Since 1984 he
his Be2en a1 the Sewthern Dlinois Univeesicy, Car-
boodule, L. where he is presencly a Professon in the
Mepattment of Compuier Scieoce. His curseno research jnerests jncline
paritlle] algernthms, fault-tolerant computing, and applicainn of graph theory .

	424.jpg
	425.jpg
	426.jpg
	427.jpg
	428.jpg
	429.jpg
	430.jpg
	431.jpg

