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A Critical Appreciation on Algehraic
[muge Restoration
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Abstract —The authors recoltivate the aspect of wonsirsinel slgeleaic
resteration of geay level imase, degrwded dow o defecasing, additive noise,
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ete., with additional nonnegative constratt on the individoal pixel of
pray-level image. The negative valucs in the gray Jevel introduce idsorndity
in rhe entive representation. But this aspect has wor been explicitly
considered in the existing literatures. In the present work, the authoers
demonsrate (hat umder certaln coauditoars the constrained and wneon-
strained solutions for the restored imape are same, L is absy demonst e
that using Wolle's algorithin the nmoanegative constraint of the gray-tevel
image can be handled very efficiently. The necessary and sulfivient condi.
tions of the oplimal constrained resforution are fested very explicitly. In
e existing lireratures on opdimal Tivage vestoration these sort of explicit
tests on the necessary and sufficlent conditions are absent.

1 INTRODUCTION

Alpebraic restoration of aray-level image, degraded by defocus-
g, addisive noise ete., % alneady a well established method. Bue
the lacuna of the existiog methods [1]. [2] is that it docs not take
care of the non-negative constraint [2, p. 189] of the gray level
image §. The negative values in § unply an absuedity of negative
intensities of radiant energy in the original object distribution |2].
Moreover, in the existing methods of alpebraic resioration (in an
optimal sensc) [1, p, 1%7-1949] the necessary and sufficient condi-
tions of optimal restoration of the depraded image are noc
explicitly stated. The alm of this present note is to consider all
these existing drawhacks of the algehraie restoration and reculu-
vale the aspecl of oplimal sestofation i a more meaningful
sense, ‘W osseotiallv conmsider the uncopstraincd restoration
problern as given an [1, po 197, [2]. The advantage of this
unconstrained restoration technigue is that we do not mecd any
speeifie information about additive noize (1], In this given wncon-
strained  restoration tochmigue we introdoce the non-negative
constraint =0 and thus convert it to a constrained restoration
problem. Some works in this direction have alse boen reported in
[10], [11]. We demonstrate that under certain condition the opti-
mal solulion of constrained resloralion is same as anocnsirained
rostoration, that is, same as least square cstimation, We also
indicate that the optimal selunon of the unconstrained prol:lem
[1} bocomes meaningless if at least onc of the clements of the
restored image §ois negative. T we arbitrarily sel the nepative
element of the resterad image f to zero the solution, we obuain, is
o more optimal, Henee o achicve apiimal redtoranon of ke
degraded imape in a systematic fashion we consider the non-
nogativity constraint f = 0. Finally we consider the Wolle™s al-
gorithm [3), [6], which handles the constrained restoration prob-
lem and propose some other fast computational tools [11]-[14]
for the solutiom of the somstrained resteration problerm.

1. FORMULATION Ok THE CONSTEAINEL PROHBLEM AND
AMNALYSIS OF THE RESULT
Let us assume the [ollowing model of the dearadalion process.

g=Mf-n (L}

where g 15 given [« 1) image veclor f 3 the original (@ 1)
image vector that is to be rostored in anm opiimal scnse, M 16
(m xn) matnix formed by the comoeept of point spread Mune-
tion (P'SF) [2], 4] Assume lhal ff is nonnepative. Le, A, =0
[2, p. ©8]. i ix the additive moise. Specific knowledge about g 1%
abzent.

FProblem 2.1
min J{ ) =g~ Hf||*

={a (R +hafi+s =R, 011
g by fi—haft 4 'rf:-.f-..'}z
+ -

g (B f F b R AT

_l.-__.r':‘ll'_'_i_".hﬂ-, J=1. v m
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The eguivalent Lapramgian function of Problem 2.1 i

b A=ty X K (2)

t=1

where &, is the Lagranpian multiplier and " is the surphus
varable.

Taking the partial derivatives of L{f, ¥, A
¥oand A, we oblain,

) with respect to f,

aL(f pA) dfY 2 \ af

= iy 3a

af i, E:] LA &
ALLFonh) -

S fitpi=torf =0 (30}

dLif v, Bt (3c)

¢

Equation ¢3a) can be rewnilen as

HL{.I:."H';"';} = ;

g ORI =2 gy~ (A= b+ -+ Ry )]
X{_—h“:j"' e { B {hml.lrl-'-hm f:‘
+"'_hm1|.ﬁ1:}}{_hm1}_hl=u

AL, ¥, A

— a1 =Yg —{hfithufit - +hd0}

Ta
x{_hl!}-!-"'+1{Hu|_f"’all..lrl+hln2.r)
+"'_hmu.ﬁ.l:]}|:_hm2.}_hl=u

EIA )

T T Mg (hafithafit- =R A0

if,
“U ) M g i Rk
+o b L H R A =0 {4

Thus the matrix vector form of expression {a) of {3) is as
follonacy;

I A,
TSN G ey (5)
3?‘
where b= (&, A3 and r-indicates transpose,

The Kuhn-Tucker conditions, necessary for  and A to be the
stutionary points for the minimization Problem 2.1, can be sum-
marized as {ollows [6], [T].

Condigon-f Af—0
Condigan-ff  ~2H(g—Hf}—h=0
Condician-fff - A, 20 (&)

Condiion-13° £ =10

From above we obtain,

o) | L. |
f=(H 0 —EEH’H} b

7
AE=0 Vi (0

LSS, .

Belore we procesd any [urther we stipulate the following
resulls.

Lemwraa 2 The quadratic form X7 4X, where 4 iz symmetnie,
i3

&) positive definite if and only if every cigeovalue of A s
positive; and ;

b} positive sermidelinite if and only if every cigenvalue of A is
nonnegative and at least one eigenvalue is zero.

The expression of our origipal objective fancton (refer o
Problem 2.1) can b represented axs follows:

Hiv=lg- HMF

Ehf

fiis
ﬁl':l '3 I'131.!’.
Lim1
. i
+ g —Zg‘_-ﬁ: L ohyf, :'f 'Hl Lokt :"
bi=1 ; il ;

"'*Em_zgmll}_-hm.lr +': thlh’.lr

il

=g'p 2g"Hf+ fTHTIHf

=g-t 0 ff (%)

where § is scadae, £=2p"H and D= H'H.

Mow, to find owt the global minimum of Problem 21 the
chjective function J{ ' has to be strictly conves, e the matrx
D, which is symmetric. of (8) has 1o be positive definite, In casc
£ iy positive semidelinile then the following condition should be
salisfied

7= #({ D} which means there exisis a vocter g osuch that
&= Dp [6]. The symbol & indicates the column space.

MNow we state the following resule

Femma 2.2 The objective function Ji{ ), suhjected to the
consiraints £ = 0, ¥, has a global minimum at £ = (77707 0Ty
provided all the components of the vector (F7H) "H'g arc
T'Iﬂn-nl:gﬂrl".-l."

Proaf: Tromn {7) we gel the stationary peint for exleemiin,
which satisfies the Kuhn-Tucker necessary conditions. as fol-

lomes;
For h, =4, i=1,---,m f = (13~ 07g But the constraints
f =0, ¥, become inactive for A, =0, ¥/, Henmee, 1he

Kuho-Tucker necessary conditions for exlremum {scc}( T can be
achievcd when all the components of the vector (FAH)” o
ArE TOn-negative. QED,

tMwervation 200 If all the components of the vector
{HTHY 'Hg are non-negative, the solution of the unconstraimed
problem [1, Page 198] is same as the solutivn of the constrained
problem (refer to Problem 2.1).



In case the component/components of the vactor
(FTH Y\ T s fare n:b,uhvt 'm. have to provesd as follows

al For A =0, & =0, b=l j=le o ox =0
f,=10 and ‘r'l,;';,-- ST .‘ij,_{,”.- o, [ ean I::u: uhta.i.ncd by
sobving the following linear equations

o —(h
R

wht

1;1.?1

o B ) H = f0)
+e 1{3«‘('&..;1.-"]"' R . PP

-hrrr.ll'l-lll_-l%-'l-" -+h|'\r!k.lll:r':l}l:--hm]j

=1

'2[.?'. (A fit ot fu; o,

Lri i

i ,i,l_.”F

din

Frek "'7'-"-"‘--‘”I [ - "".-.l}

+2’{ Ew — h-u Lt 'h'n_n: Lf:= I

+ho o fat 'hwn.l’-.”{_"‘!.-_-..-]
—A. =0

¥

o O+ Thof

it _"5‘1«.-'1.:'}(" L3

+"""1{£.w_{&ml.r.|_ +'F’.w.-—u':—|
Boiifoor Voo 4 b LM = 8,,)
-0
by foe &, #0, 7=t - =0 Tor all 4.

Therefore from these resulls we see that for the optimal solu-
lion of the Problem 21 we have w solve {preserving the
Kuhn Tucker necessary conditions stated in the (7)) woal a-
J'ILl!TIh-Er of cquatjc:-ns for w-number of unknowns (£, - -,
S Ay fane o ) But, 6 the dimension of n is large UH.TSL n
is 1.'|I11Lf: l:'xp;,c!;,d in image processing problem), then 10 solve
simultanesus p-equakions for a-usnknowns, preserving the condi-
tion' &, f =0 where A, f > 0, becomes cumbersome. Hence, in
the next sectich we propise an alternative approach for the enlire
comstrained problem (refer Problem 2.3).

III.  APPLICATION OF WOLFE'S ALGORITIIH FOR SOLYING

THE RESTORATION PRORBLEM
In this secliom we essenbially solve Problem 21 in a more
cfficicnt way using Wolte's algorithm [¢]. We visualize Problem
2.1 in the following guadratic programming Toom.

“The condition A, — i whers A, ond {, are non-regacive, implies thal il
A=y w0 and vice versa,
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dq7d

We consider (B) as the [nal expressiom of the abjective func

tiom of Problem 2.1, Hence, we wrire
min J{f}=¢ & - f'0f (%)
subjoet to,
f=0

The function [7Df defines 2 quadeatic form where £} Qs
symrmetric, Now for global minimum & has 1o be positive
definite. In case D is positive semidefinite we have to pmt
restriction on &7 {refer Lemma 2.1 and the related discussion). Tn
(his case comstraints are linear which puarantees a convex solu-
tion space. The solution to this problom is sceured by dimect
application of the Kuhn-Tucker noeossary conditioms. Now Lthe
entire prohlem mmay be written as,

min J(f}=F-& - fDf
subject to,
Glil={-I)f=d (110}
Let A—(h, A5 -, ALY be the Lagrangian multiplicrs corre-
sponding e — § = . Application of the Kuhn-Tucher conditions
irmnediately yvields
Az,
vH ) - NwGf) =0
A =0, J=1,.n
—-f=0

(1L}

Mow
TH 1= Er2fT0
TGi=—1.
Thus the somditions stated above reduce o
LA R U
Nif =0, ¥
Mf=0

{12)

(13}

Since D7 = B, the transpose of the firsl expression of {13) vields,

-0 +h=-¢"
ar

h=§

Hence the necessary condivions slated above may be combined as

1Df -

b I.r.u LT
LHPJ%AJ [
AL =0

A =D

4 (14)

Except for the condition A f =10, the remaining equations are
linear Tunctiom in f wnd M. The peoblew is thms equivalent to
solving a sct of lincar equations, while satisfying the sdditional
conditions A f; =0, Ta sobve (14} we use the efficienl algorithm
proposed by Wolle [3], [6] Wolles algorithm is esscntially a
medified simplex for quadratic programming problem, The For-
tran-TV soltware of Wolfes algorlhm; which we use for the
solution of {14), iz piven in 1Y, pp. 106-11Y]. Before we comclude
wi state the follwing resole

Lemea 340 TF, in the final jteration of Wolle's algorithm. adl
(he basic variables, in the resticive sensc (restriction due
A f, =1, arc /; then the solution for f — (7F'H =1y,

Provf: 1f the f are hasic varabbes, then the cormesponding
A, 'sin (14) are nonbasic, Henge in the Fnal solution of {14), the
-'-"-,- dre et 10 zerc. These 2ero values of A, alung with positive
values of £, also satisfy the condition A7, =0, for all - There-
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(bt
(u) Thepraded imape with senal-to-ooise rate 10 dB. () Restoned

imnge.

Fig 1.

fore from (14% we obiain
1D =8=121"
therelore;
F=D T
={HTHYy 'ig

CMerpation 300 Solution of Problem 21 wsing Wolle™s al-
gorithm 15 same as the solution of the unconstraircd problem
(i.e, mitimice JCFY=|g— HFFy 30 all the components af the
vector { HTH ) 'H'g are non-negative. But if any § is negative.
then nsing Wolles algorithen we can ohiain, very cllicienlly, the
optimal non-negative solution of §

Olsernarion 320 Unconstrained Jeast squate solubion of §isa
specin] vase of constrained (the non-pegativity constraint f = 0)
Icast aquare solution.

IV, ConcLuaioN

Tor tesl the elffectiveness of the Wolle's algorithm fer imape
restoration under the non-aeaative constraint of £, we consider
the degraded gray-level images as shown in Figs. 1(a) and 2ap.
For degradatiom of the grav-level images we imitially Torm the
depradation matrix ff using the convepl of point spread function
(P&E] |2, (4. Then throuagh lexicopraphic ordering we form the
column vector f of the onginal image matrix and cotopate the
degraded column vector HY. Finally we generate the nose vecior
1 throwgh random number generation software and add the nose

QED.

Fip. 2. |a) Degraded image with signad-to-neoes cale LE JB (bt Besemed
image. {2 Bestored imoge using conveniinnol gnconstranoed loast squane
estimgre (ie wirhoul oonsidering the nor-negativicy consteaiil f, 0,

vector m with JIf to form the degraded image vector g, OF course
from the degraded image vector g owe can further penerate the
image malrix, a5 shown in Figs. 1{a) and 2ta). through the reverse
process of the lexicographic ordering, Dhunng the addigon of the
noise veetor we maintain ibe signal-t-noise ratio (SMR) withip
10 te 20 AB. To select the stapiing basic variables of anr ileration,
wi introduce artificial vanables &, j=1L,---.n o he first set of
{150, IF the sel of (15 has a feasible solution, then at dthe end of
first phase of iteration [7] the sum of all arlificial varialbles will be
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wero ITadl f°5 are positive then they will be the basic variablics of
the last table of cor iteration. Olherwise a particular §,, which is
negative will be replaced from the list of basic varables yielding
place to the corrcspouding A, Thus wo obtain the restored
resulls as shown in Figs. Wh) and %(k). The results we obtain
using Wolfe's alporithon is guite satisfaclory i nadure. The ad-
vantage of the present technique of Image restoration over the
comventivnal uneemstrained least square solution is that the pre-
sent technigue can very efficiently handle e non-negalivity
comstraint £ 3= 0. Whergay in the conventional beast square solhi-
ton f={HTH! 'H' i any of the compoments of the vector
¥/) TH}I"H’E is negative then in ultimate representation of the
gray icvels of the restored imaze we have to arbitraely set thal
negative component o zerg, Thus the solution of the problem is
shifted from 115 optimam level. This type of phenomenon may be
visualized as an additien of the random neise o the westored
image. Hence the cestored image as shown in Figo o) s de-
praded. The CPU-time {in BC 1033 computer) roquired for
restoration of the degraded images (Fig. 1iay and Fig, 2a))
{restoration usipg the efficient simplex method for guadratic
programring [3], [9]) arc .53 min and 9,35 min respectively. The
CIMU-time required for the solution of the unconstrained problem
{=odution is shown in Fig, 2ch is 3.28 min, Therefore it iz obvious
that with the addition of the non-negativily constraints which
foree the entire problem in the quadtatic proctamming doomain
the commpulatiomal time required for the restoration af the de-
praded images increases substantially, Tlence to reduoce the com-
putational burden associated with the guadralic propramokng
solulion we may look for lincar complcmentarny progranuming
approach which  rns oot o be computatiomally  superioer
[1Y p. 117 than the approach proposed in [31 [9] for convex
quadratic programming, The conjugate gradient method [14], [15]
For the quadratic programming problem may ba thought of as an
alternative computational tool, Of course in this direciion a
definite approach has heen reported in [11]. The computatinnal
times required For the eestoration of the Figs. 1(a) and 3{a) using
lhe methusl proposed in [11] are 4.45 min and 7775 min respec-
tively, %o depending vpon the complexity sice of the image
malrix and the SNE ete)) of the problem, for the of(-ling simusla-
ton of 8 restoration problem we may suitably choose ome of the
methods [11], [12], {14] menvoned above. Faven in the mosi-time

critical situation that iz cempletely beyond the soope of the
present discussion and which may anse duning on-line implemen-
tatiom of the proposed algonthm the guadeatic programming
computation way also be tackled very efficiontly provided we
adopt the disidbutive computation of the constrained oplimiza-
tion problems by melwerk of locally interconnected simple
processors as soggested in [13),
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