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Holomorphic quantum mechanics are studied from the point of view of stochastic quantization
in Minkowski space which invoives the introduction of two stochastic fields, ooe in the
external apace and the other in the internal space. The equilibrium condition is given by Z,
symmetry between the external and internal figlds. In the nonequilibrium case, ¥ = 2 Wess—
Zumino quantum fields are arrived at giving rise to supersymmetry. This helps to define the
supercharge operator  when the Hamiltonian is given by H = Q* and an index theorem is
derived for an interacting case when the superpotential is given by F($) = A¢", ¢ being
complex with 7 = 2. Tt is found that the vacouwm is degenerate and is in conformity with the
vesult obtained by Jaffe, Lesndewski, and Lewenstein [Ann. Phys. 178, 313 (1937 ] in the two-
dimensional ¥ = 2 Wess—Zumine quantm field model.

L. INTRODAUCTION

Recently Jaffe, Lasniewski, and Lewenstein' have con-
sidered the ground state strucinre of the two-dimensional
N=1and ¥ = 2 Wess—Zumino quantum field models and
have pointed out that the N = 2 quantum mechanics has
degenerate vacua. The space of vacuum states is found to be
bosonic and its dimension is determined by the topological
properties of the superpotential. The physical interpretation
of N = 2 Wess—Zumino quanium mechanics has been dis-
cussed and the feasibility of realizing holomorphic quantum
mechanics has been pointed out with special reference to a
spin & patticle in an external SU(2) gauge field and in the
study of nuclear matter interacting with a pion condensate.
Hete we shall show that holomaorphic quantvm mechanics is
realized in stochastic field theory also when stochastic quan-
tization is achieved in Minkowski space, introducing a doub-
let of fields corresponding to the fields in the external and
internal space. This can also be generalized to finite tempera-
ture when the formalism of thermofield dynamics is utilized
identifying the internal field with the fictitous tilde ficld in-
troduced by Takahashi and Umezaws.? We shall study here
the supersymmetric propecties of such fields when the equi-
librium condition of Z; symmetry between the external and
internal field is destroved and shall show that we can unicoe-
ly define a supercharge for such a system. The index theorem
for such a system representing holomarphic quantum me-
chanics is then discussed and it is found that the space of
vacum states has its dimension determined by the topologi-
cal properties of the superpotential in conformity with the
results obtained by Jaffe, Leaniewski, and Eewenstein' in the
two-dimensional Wess-Zumino quantum feld modal.

In arecent paper,” it has been pointed out that stochastic
quantization in Minkowski space as well as its peneralization
at finite temperaturs leading to the formalism of thermofield
dynamics necessitates the introduction of a doublet of sto-
chastic fields. This dry ™™~ “~ inrerpreted a8 comprising
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two flelds, one corresponding to the field in the external
space and the other corresponding to the field in the internal
space. This intemal figld is also necessary to have a relativis-
tic generalizztion of Nelson™s formalism of stochastic quan-
tization and the quantization of 2 Fermi field.* The aquilibri-
wm condition for such a doublet of stochastic felds is given
by the Z, symmetry corresponding ta the time reversal sym-
metry of the two fields. The nonequilibeinm condition gives
rise t¢ supsrsymmetric quantum mechanics.

Here we ghall point out that the deublet of stochastic
fields may be taken to give rise to holmorphic quantum me-
chanics in four dimensions and the break down of Z, symme-
try gives rise to the ¥ =2 Wess-Zumine guantum fleld
model. Moreover it is found that the two-dimensional result
of Jaffe ef ai. regarding the degeneracy of the ground state
except when the superpotential is guadratic is alan valid here
and the index £{ {2, ) ia found to be identical with the degree of
dF, where ¥V is a polynomial of degree n2.

In Sec. I we shall recapitulate the main features of sto-
chastic quantization in Minkowski space and its generaliza-
tion to finite temperature utilizing the formalism of thermo-
fieid dynamics. In Sec. ITT we shall formulate holomgrphic
quantum mechanics from stochastic field theory and shall
derive supercharge for such a system, In Sec. 1¥ we shall
discuse the index theorem.

Il. STOCHASTIC QUANTIZATION IN MINKOWSKI
SPACE

Nelson's stochastic quantization procedure is based on
the assumption that the configuration variable g{¢} is pro-
moted to a Markov process g{£).° The process ¢(¢) is dater-
mined by two conditions; the first is the hypothesis of univer-
sal Brownian motion and the secomnd is the validity of the
Euler—Lagrange equation. In a recent paper,* it has heen
shown that in Nelson's formalism, the relativistic general-
ization as well as the quantization of a Fermi field is achieved
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when an anisotropy in the internal space of a particle is intro-
duced and it is taken inte account that there are universal
Brownian motions both in the sxternal and internal space. In
this formalism, the configuration variables are danoted as
Q(4,£,}, where & is the fourth component (real) of the in-
ternal four-vector £, which is considered to be the attached
vector to the space-time point x, . We assume that Q(#.£,) is
a separable function and can be denoted as

Qi) = g(t)gldal. (1)
The process Q(i,£,} i assumed to satisfy the stochastic dif-
ferential equations,

aQ, (1.£s) = &,(Q(5 1481 + din (2, (2}

dQ;(t.80) = B QUL 08050 + Ao (5], (3}

where b {Q(454),450) and b {Q(2.5,),64;) correspond 1o
certain velocity fields und &w, are independent Brownian
motions. It is assomed that dw; (2} {dw {£,)) does not de-
pend on Qss') for st (8 <£,) and the expectations have
the following values at T'= Qand T 2£0:

‘hfw.'“}}r:u ={, . (4}
(e (e, (8 ) p oo = (A/m)EB (¢ — ¥ )de gt (5}
{ffw.{gn”'r_a =10, {6}
{d; (£o)die, (£ 0 ) b rog = (B/")8,8(8, — £5)d5p dE 5,
{7
{dwr{ﬂ}'l",ﬁn =0 {E‘]
{dw, (r1dw (t ) o = ;_::: _fe"““‘”drdt 1 (93
{dw;{gu)}r;en =1 {10}
8 T e
{dw, () (£ r 20 =§—:ﬂ MR dilge del (11

with w, = 2an/ Gk

It is easily seen that in the limit #—c Eqs. (9) and {11)
give Eqs. (53 and (7}, respectively. The form of Egs. (9) and
(11) isdictated by the KMS condition. To make the descrip-
tion time symmetrical in both “external™ and “internal”
time we alas write

A0 (1,6,) = b HQ1Lo) HEoME + dut (2),

dQ, (1,503 = b HOUE) 08 0E, + Ut (5e),
where du* has the same properties as dw except that
duw* (£¥{dw?(£,)) are independent of Q(s5') with s3>
(5285

From the stochastic differential equations considersd
here, the following moments can be derived.

{Ql €A n}}'i"—n — {Ql Urfn”-_:.'r-.m =0,

(LR E0 ) ron
¥i #

(12)
(13)

{14}

B wli—1 ]E—W{F —=-.a}
Emw 27% Y
(=t fo=&oh {13)
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(Q (5 (" E0 1 o
_ 5‘1 = eﬂ'l.e,,[t—r']
‘E:;l_.__a ur

] n{g _FI}]

Z Twthg

with 1, = zvn,-’ﬁﬁ.
This follows from the fact that 0, (#,£,) can be writien in

aseparable way g; (14, 5,) and we can utilize the results for
the moments of ¢, () as derived by Moore®

(16)

{Qi“”r=u ={?i“”r;ﬂ: =0, (17}
r ﬁ _ [ [
{00 Vo= ZYm bye S (1), (18)

g heit—

)
CAGTAY ”T,m'-ﬂm nzﬂm. (19)

These vesults can be extended to the variable g,(£,) in an
apalogous way:

(g (50 ron = {Q'J'[fn”'r,m =0, {20}
{Q‘:{fn}ﬂ;[fﬁ}r-n=ﬁ5ﬁ¢?_w§"_ﬁ'(§n}§a}, ]
(21}
5. = uir—rd
(4 (80)q, (€50 rpo = £ (22)

i
By° “Z. a4 u?
Let {e;(x)} denote the complete orthonormal set of eigen-
functions of the three-dimensional Laplacian — &:
Ae (x) = —kle (x). {23)
Also we denote {¢,(£) } as the set of complets orthonormal

set of eigenfunctions of the three-dimensional Laplacian
— A" in terms of the variables £,

az 31 33
A= + + )
( i @i i
50 that
Al (E) = — me (&), (24}

MNow we can construct a stochastic field ¢ which can be
expressed as an orthonormal expansion in terms of
(e {x}, q_;{g[u}r E;EE] and write

di{xtL} = Z‘I;EIJE; [X)Q_,(gu}f_rfg}
LY

Mow from the moments of g, (£).g; (£,) wecan determine the’
moments of ${x.1,8),

(23)

{fjﬂxsfsg”r_n bl {ﬂ(-rrtrg}}'r_ﬂ EEG' {2&]
{P(x,t.8)(x",t 5 "))
_ 1 3 kix — x') T
= {zw}f‘jd ke elr— 1"y
| 3 g —E" _p
Ty fd we™E—Eg(g —£5), (27

where g(f— t') and g{£; — £/ ) are given by Eqgs. {13.} and
(21} for T'= Dand by Egs. {19) and (22) for T 0. Substi-
tuting these relations, we find
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{¢(x,f,§}¢{x’r,f rsgij}f‘—ﬂ
1 J’d‘"xe‘{*"[‘ 1t

Tamt) (kk)+m?
1 g A etmis— £ (28)
{2a7)? (m) + ="

Here (A4,8) derotes a Fuclidean product and the units
havebeenchosentobe f = mi = 7" = 1. Inthecase of T 0,
we find

{ff’(-x:fsf}'ﬂxrsf r,ﬁ'lj}'hm

] fd3kem[x 7 i e"-‘:u{r_rr}
(2"?} ﬁm N oo w1+ LUi
[ ; : a f.’"”"l:gu _g,&]
by LTy e &5 5 26000l
eroty =] A M s

(29)

Now for a particular maode # = 1, wefind that the exprea-
sion becomes

1 gm0 €070 ok
{211'}3 ﬁm k% + HJE n 1 0
1 1 ; :
o Vo d?- g - £
x 2y’ ﬁﬂﬂ j we
XM 5{"70_“’1:"?770

wh + W'
dF etz — 30
o 10 2 k., —
B :zwn‘j s - Wity
1 1 fd‘*ne““-f &9
Ed
B=" (27)? (7)) + 7

2B, — ),
(307

where 7" corresponds to the quantity in the internal space
analazous to the mass of the system.

Now from the celations (217 and (27) we note that for
£o = £} = 0and integrating over the internal space variable
£ the correiation function just reduces to thal of the acalar
field in Euclidean space,

(Pl tddix e Vo
4 HEefx .- x1)
o J' d ke - (31)
(2m* (k) +m
In a similas way for T =0, we find feom (22) and (27) con-
sidering one particular mode n.= 1,
CIENIT TE SIS b FUPN
1 d M gt r—

rr TR e
normalizing f = 7" =m = L.
}
kT 4m 0 0
fimet 0 KT 4 m 0
0 0 0
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This is the Euclidean Markov field resnlt which has
been obtained from MNelson’s real time formalism of Brow-
mian motion and in this sense gives rise to the equivalence of
these two formalisms as advocated by Guerra and Ruggiro.”

Now if we introduce an anigsotropic featore of the inter-
nal space-time corresponding to the variable £, , we can ob-
tain the fermionic propagator in Evclidean space-time. To
this end, we introduce the anisotropy by having two opposite
orientations of the internal variable £, (and hence of
7, = 8/8L, ) and take into account that each orientation
denotes a separate field and the two opposite orientations
depict two separate Aelds having two internal helicities cor-
responding to particle and antiparticle configurations. From
Eq. (28], we note that it is efectively a correlation function
in eight-dimensional space-time, four dirnensional in the ex-
ternal space-time variable and four dimensional in the inter-
nal space-time variable. To make it an effective four-dimen-
sional expression in the external space-time variable we may
take into account that &{x) is an implcit function of r(£).
For simplicity and dimensignal reasons we tuke the form
El=(k'm), m*=m's", where (k',m) iz the Fuclidean
product and cach component of i is given by &, = ..h,'k . 8O
from the new field variable #{x,%.&) where this mapping is
taken into account, we find from Bq. (31} the cortelation
function for =10,

{@(a 51 E V) roy
J-erlf-uk =i — &g

d"'.l?
(k') 4+ m el

S AE

J‘ Erwk (L)
(&) + N w) = K m) + )
xd Wi, (33)

Now taking into account that &7 and — &7 corre-
spond to two different internal helicity states and denote two
separate felds and particle and antiparticle states, for a sin-
gle particle state with a specific internal helicity, we should
take — A7 f(oriym) as a vanishing term. Taking

— if7 = 0, we see that the expression {33} reduces to the
form

(Bt BN E N = d %k, (34)

] J’ en’le X1
(21’!’)4 j#’F-'—m

where we have chosen the unit s = 7" = 1.
Now we can choose 2 matrix ¥, &k, + m =k + m with

two depenerate eigenvalues + ik~ + m, which can be Ji-
agonalized by a unitary matrix I/

L (=D

— kT 4 m
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Thus we just get the fermionic propagator in Euclidean
Epace-time
(B LEIPX L E N ra

1 fd"ke‘{k{x x‘}
(2’ E+m
This shows that when a direction vector giving rise to an
internal halicity in an anisotropic microlocal space-time is
taken into account, we can have the gquantized fermiomic
field from a Brownian motion process. This result will be
valid for T =£ 0 alao. Indeed, in a similar way wefind from Eq.

(32) for a patticular mode n = 1,

{ﬁix.hﬂa{f,fﬂﬁ’]}r_n

4 LAE X |
& (2:1-]"_[-3. k;im 278 (ky — ) (37

(16}

normalizing S =1"=m=1.

From this analysis, it is noted that the statistics of the
particle depend on the internal space-time variable £, . That
in, when £, appears as a direction vector with a fixed orienta-
tion in the structore of the particle so that it gives rise to two
opposite internal helicities which correspond to particle and
antiparticle states, we get 8 Fermi field. Indeed, the fermion
numbert is associated with this internal helicity, Again when
there is no anisotropy in the internal space so that there is no
manifsstation of £, in the external space we get a boson.
Now the effect of temperature should definitely affect the
internal motion and as such it may happen that &t high tem-
perature the anisatropic feature of the internal space will be
destroyed and the fermion will be transformed into 8 bosos.
This i8, a massive extended body depicting a fermion can
have such a phase transition. However, this does not mean
that fermion number conservation will be violated as Lor-
entz invatiance and the equilibrium condition will net allow
such a process to ogcur. The only effect of such a phase tran-
sition will be that a thermal pair of opposite statistics will
enere as 2610 energy modes at the critical temperature pos-
sibly leading to a nonequilibrinm state corresponding to a
supersymmetric phase.® Indeed the stochastic nonlocal field
#(x, &, } which is assumed to satisfy the condition of sep-
arability @f'(x#,f,,,] = ${x, )¢{£, ) can be written as a ther-
mal dovblet (M ) } as the thermal effect on £, may be such
that it may alter the statistics of the particle. However,
though x and £ represent two different spaces, yet as the
external motion may be thought to be & manifestation of the
internal motion, a mappiog of x and £ is pessible, In that case
x may be represented in the functional form x (£) and the
simplest form of the mappiog can be taken to be x = cf,
where ¢ is a suitable constant. En view of this, there should be
a mapping of ¢i{x) and #{£) also. We can assume that
di5 = Ad'(xy = @' (x), where 4 is a suitable parameter.
Thus the thermal doublet {43} ) can be written as {5 ).
This helps us to consider that there exists a conjugate Hilbert
space H associated with the Hilbert space H such that & is
the set & with the scalar multiplication A,£ 1§, where AcC
and £ and with scalar product {£,9) = ( £,5) with £,pcH
and (£.5) = ({7} i5 the scelar produet of . In effect H is
the Hilbert space associated with the external space and His
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the conmjugate Hilbert space associated with the internal
space.

Now we write the bogonic Gefd function in terms of the
thermal doublets

()42

X[@{ Eii)‘*“’“ CT_'_ oy o
*"’m=(§?ﬁ§i)=(§$ii)

{2 S

(e (er P o

In the case of fermions, we bave to introduce the amiso-
tropic feature in the internal space sothat it can generate two
internal helicities, corresponding to particle and antiparti-
cle, and in view of this we can obtain the Dirac propagator
when the external space-time variable x,, is considered to be
a funetion of the internal space-time variable £,. But it may
be remarked that we may do the opposite alag, i.e., the inter-
nal space-time vartable £, may be taken to be a function of
the external space-time variable x,, and we may obtain the
Dirac propagator in the internal variable £, and conjugate
7, when an anizotropy is introduced in its attached vector
x,. That is, we can Wl'lll.‘: Drirac functions ##{x) and ${£} in
Hl]bert spaces H and H, respectively, in a symmetric way. It
may be noted that when at high temperature the anisotropy
of the internal £ space is destroyed, the spinorial characteria-
tic of the field ¥/(x,, ) which is acquired through the anisotro-
py of the attached vector £, will be changed to a bosonic one,
but the spinorial characteristic of the conjugate field ¥(£, )
which 18 acquired through the anisotropy of the attached
vector x, will not be altered and as such we will have 3
thermal doubiet of opposite siatistics. This indicates that at
that critical temperature, we will have s nonequilibrium
state corresponding to & supersymmetric phase and as such
fermion nember conservation will not be violated due to
such a phase transition.” This is similar to the features of Z,
symmetry which arises in the finite temperature formalism
of quantum field theory in Minkowski space as proposed by
Niemi and Semencdf.? Indeed, the ficld function in the inter-
nal space here corresponds to the ghost Beld introduced by
these authors and the corresponding Z, symmeatry is manm-
fested in the anisotropic feature of the internal space leading
to the generation of two opposite internal helicities. As ar-
gued by Niemi and Semenoff, the broken Z, symmetry leads
to a nonelquilibrium state. Qur present formalism also leads
to.a similar situation when at the critical temperature, the
internal helicity is destroyed leading to a nonequilibrium
state. Now introducing the mapping #(£) = Ad'(x)

= ff"(x) we can write the Fernn field #(x) in terms of the
thermal doublets as follows.
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_ (¥ )_ A%, . [( - {M}) i (b'_(p,i})

¥ix) (Hﬁ*(x} Tl Y | PR L B il L

2o ¥ D)= 2% 5, " [( b_(p.A) )_ ik (bL(M} )~ ]

59 =( o) = [ Gy oot mr 3 (TP (T30 Jroerd
i

This doubling of field may be suitably represemted
through the complexification of space-time variables. In-
deed, if we write the doublet as

BN _ ey i
(f_ﬂfl)_é{ HE 10 (42]

it implies that the space-time coordinate is given by
z=ux + i£, As we have constructed the stochastic fields
from the stochastic variables ¢(f) and g( £,) we can write for
the configuration variable in complexifled space-time

glzo) = ql8) + igig,). (43
From this we have the correlations at T =10
{glzy)} = {g(0)} + Hg(£)y =0 (44)

{glt+ i€ gt +:§¢}}
= {g{Dglt")y — {alEa)qlED))

+ i[{g(q(E o) + Ll g} ]
(45)

Mow introducing the mapping Ag(¢) = g{§;,}, we find

{glz,)g(z)) =

{glzdgtz)) ={gitigt N1 —4° + 24 ] (46}
Moting that

{g(£)g(#')} = (Fd2muw)e M7 (47)
we finally have

{gize)qizh }y = (A/2mwde "~ [1 4+ 47— 20k ].

(48]

Now we can choose

(1 —A%3je """ = cog il — 1), (49)

e~ "= sin iz — 1,

which implies that A is a snitable function of the dimension-
less variable ur(t — ¢”) with the constraint

[ S b 1 £330
S0 we can writa
{q{zp)9(2)} = (7 2mu)e™ — ", (51)

As we have conatructed the stochastic Gelds from the
confipuration variables through the relations

de{x) , .- ~
<(¢; fxm)”’ﬂ (x), (x n) =

{dalxkdg (')}
{‘FSJ(I]ﬂE'n{x']}

i d'4kg|k[x '] [ ]
Teor) Kk _wrmlo -1l

218 J. Math. Phys., Vol. 31, No. 1, Jaruary 1590

dix) = Ze,{x}q;{r],
: (52)
'ﬁ'(g} = Zer { EJG; (ﬁ':;.L
where ,(x)[e,(E}] are the set of orthenormal eigenfune-
tions of the Laplacian
— Ae,(x} = kie; (x),
— &' (5) = e, (§).
We can now derive the two-peint correlation using the map-

ping x = ¢f, k= (1/c}w, and Ag{e} = 4{&,} for the com-
plex feld

#{z) = d{x) + I$(5Y = F{x) + ild™(x)

=gg(x}+ i (%),
Indeed, we find
(PL2)8(2)) = {{dp (x) + i (I (X'} + I, (5" }N
= (g (X} (')} — {d,(x)b(x"))

+ [ {dp (X2 (X)) + {; (xX)e ()} ].
{54)
= Ad"(x), we find from Eq. (54)

(@2)B12)) = (SN [1 - A2+ 241, (55)
At T=0, {¢{x3¢" (')} is given by

CIEITUESY
|
B [2-1‘?}3

{33}

Now using relation ¢, (x)

d ke~ g (gl )y

3 iz —x R T
{2fr}3' ok ?u:e W=l
{56)

MNow utilizing the relations (49) and (51), we can finally
write from Eq. (55}

{B{2)$(2)}
B
{2mry? 2
. Th{x — x
ax & J‘d*k-—ﬂ1 i (57)
(2m)* A —u'+ie
When we write $(z} = g (x) + i, (x} as the doublet, we

find from Eqs. (54) and (57)

(g (x)h (x'))
{drlx)edy (')

J‘d3||; Aix xl[cug Wit — ')/ 2w
(21‘1’]3 sin wie— ¢/ 2w

sin it — 1"/ 2w ]
—comwlf— ")/ 7w

{58}
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Thua we get siochastic quantization in Minkowski space at T = 0. This is identical with the result obtained in the path integral
formulation at T'=0 excepting the mateix [ _,"]. The matrix corresponds to reflection invariance representing Z,
symmetry, which is the criterion for equilibrium condition. When this Z., symmetry is destroyed, we have nonequilibrium
statistical mechanics and it ¢orresponds to supersymmetric quantwm mechanics.® This is in conformity with the idea that the
current valocity in the internal space is related to the cemotic valocity in the axternal space which helps vs o interpret the
Heisenberg uncertainty relation from the inherent stochastic nature of the internal space-time variable. '

This analysis can be generalized to the fermionic case also. Indeed writing

#(2) = ${x) + MWL) = (X)) + L T{x) = (x) + ity (x)
and taking the doublel

_{#x) =(¢R{x})
¥4 (qm:g}) g (0)
we will have correlations at =10

wanin- (3

These results can now be generalized to finite temperature using the formalism of thermofield dynamics when we identify
PUE) = (x) = $'(x) and P(£) =y (x) = 4" (x).

From these we can write

i 1 1 0
a- W—“——[ ] 59
e R L sy PR a

){% {x').af, (2 L‘I)

(T = mfml?"(f:: ;){Nm,;’-mllﬂ(ﬁ:}
4%,y (lf(pz— mt 4+ ) 0 ) ;
I F - T A T iy VB (60)
1 O 1 0
{8lx, — yo) [$La)8' N ]) = ( )Eﬂ(x“ —PIAx =) = ~ f(ﬂ 1)‘:"” {x -, (61)
(THx)P(p)) = {G(ﬁl[ (-ifi ; Fr), —r‘i!rmm]lﬂtm} =fj{—2—%;e W=D (p8)
1/(p — m+ i0) 0 J :
("7 /(g — m— iy} B (5
= 1 0 0
{80 — " g (x), 00 ] = (n l)ﬁnrp + myfxt —yAx —p = — ({1} I)I'Sm {x— . {61}
The matrices ¥y and V- are the coefficients of Bogolivkov transformations given by
eosh E{}ph /A sin 8 |p|”5'] l;"\H —p B o~ Belph2y [T = Belnd
vedlol & = - o . (64)
sinh &(|p|, 5 cosh &{|p|, 5 g fRpiy [T o= 1T — g P
cosv(|p|), Bt  —e( pMsin v(lpl.ﬂ})
i
P B = poysin vilpl, B) cos v{|p}, A
_( WA F e B _E{pu}e—ﬁftrrfszl_i_TW) 5)
T \e( pretemep T e F® T e ™
-
€p) =P +m7, € po) =8 py) — B — py). = W(i72)7, 3, — MW — W — /22y, 3, — m¥p
(06) ;
- I H
This suggests that in the case of free charged scalar fizld and =¥ (E Yu Oy — m)qﬁ : (68)
free Dirac spinor field o, the total Lagrangians are given by It is noted that the vacuum is now temperature depen-
L,=a,~&, dent and satisfies the relation
—3,4%3, ¢ —m$Td—38,873,8 + mEF (H— B0 5) =0 (69)
_ 1 0 _— (1 D) and tl]e total Hamiltonian is given by
_‘g“"“(u _1)5“‘7"'_’"“{' 0 1P & H=H-H. {70
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Il STOCHASTIC FIELD THEORY, HOLOMORPHIC
QUANTUM MECHANICS, AND SUPERSYMMETRY

From our ahove analysis, we note that we can consiruet
holemorphic quantom mechanics when for the configura-
tion variable we take the complexified space-time z, = x,,
+ #,,. In fact, we can now depict the flelds ¢ * (z) = $(x)
+ i¢{£) and can consider that $7 is halemorphic in 2. Now
defining the operators '

sel(Li2) 3ol(L.2)

2 \ax 8t 2\ | A
we can write for a frez field, the Hamiltonian
H= —295 + m¢ ¢ {71)

Identifying ¢(£) as ¢* (x) as discussed in the previous sec-
tion, we note that the Hamiltenian A corresponds to the
system of free fields where the Lagrangian is given by L, in
Eq. (67). Now if we identify ¢ (z) = T /2 3V we can
construct two operators ), and ) such that

Qz(arf i )

id —(@N+
_{tevy i )

Q““_( B —av 72
and the Hamiltonian & given by Eq. (71) can be expressed
as

H=Trg, Q0 (m=1j, (73
where

— s f1 O
Q.Q =(—dd +1|2F)) a 1} (74

Since {J, (2_ is the sum of two positive operators, it has no
zera mixle. Besides, we note that this maintains the equilitri-
um condition of the Z, symmetry between the external and
internal fields as the expression is invariant under the trans-
formations, $ix)— —${ L), x— — £,

However, from expression (72}, we note that we can
consiruct another operator @ . {2, which is given by

0 - H3¥)

Q—Q+ . Q+Q— + (ﬂ&ZV}* i) )'
This expression for J_ @, contuins nordiaponal elements
and the presence of the term & * 3 breaks the reflection invar-
iance ¢ix)— — $(E), x— — &. Thus the system describes
the nomequilibrium condition and corresponds 1o supersym-
metric quantum mechanics. Indsed, we can now defing an
operator £ such that

{75}

(02
o-(, 2 76)
and we can construct the Hamiltonian 8¢ given by
o_g 0
H. = 2:( x ) T
s =0 0 0,0 {

Evidently, the system given by the Hamiltonian H, breaks
down the Z, symmmetry of refection invariance of the exter-
nal and internal hields. In fact, due to the presence of the
operator _ {3 in Hg, it possesses zero modes as has been
explicitly shown by Jaffe ef #l.! Thus we can define the super-
charge O such that the Hamiltonian is given by H, = 0°
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when the stochastic field theory involving external and inter-
nal fields is described in terms of holomorphic quantum me-
chanics.

Moreaver, follewing the procedure of Jaffe e al.,’ we
can show that this formalism of holomorphic quantum roe-
chanics for stochastic field theory gives rise to N =2 Wesg—
Zumino quantum mechanics. In fact, we can also choase for
the Hamiltonian & the following expression:

He=0%= — 33 + |9V

— B9, 3V — oty (37, (78)
where
H =103 — i), =10y +ir),
=403 — ), =iy +ip), (79)
with

—(21) _(u i"f) =123 (80
Yo = of T —Iﬂ;ﬂ'J_”' (80)

These fermionic degrees of freedom satisfy the following an-
ticommutation relations at equat time:
{E"n"}""z} = {E"zle!']} =5 1-
{#!'.%Ej-} — {III!'.JE'J«} =0
We can now define two conserved chargss Fiven by
Q= @'15 = fﬁ&{ﬂh*,
0, = ifd + i, O,
so that the supercharge @ is given by

=+ (83)
The Lagrangian for such a system can be taken 1o be!
L= + iy + ) + 80, 27V
+ $utal @*¥)* — |GV, (84)
where ¥'= Fiz) iz a polynomial of degree n. The action

JL dtia invariant under the following infinitesimal transfor-
mations:

fz = ¢|f: fz= ﬂ}!’z- 61’-’5 = — [(dF )%,

&, = e, S, + ize, &P, = (FP)e

Thus we find that we can derive ¥ = 2 Wess-Zumino
quantum mechanics from stochastic fields in a complexified
space-time. The supersymmetric quantum mechanics arises
through the introduction of nondiagonal elsments which
breaks down the reflection invariance between the external
and internal fields which it necessary for equilibrium condi-
tion. Also we note that through this formalism of holomor-
phic quantum mechanics we can derive a supercharge @
such that the supersymmetric Hamiltonien is given by
A, = *. This links up the inherent supersymmeric feature
in the stochastic quantization procedure as we first pointed
aut by Parisi and Sourlas! with the conventional formalism
of supersymmetric quantum mechanics.

(81}

(52)

(83)

IV. STOCHASTIC FIELD THEORY AND INDEX
THEOQOREM

Jaffe o¢ o/ have shown that the N = 2 Wess—Zuming
quantum mechanics has degenerate vacua, The space of
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vacuum states in bosonic and iis dimension is determined by
the topological properties of the superpotential. The same
result can be derived from the stochastic field theoretical
formalism using the formalism of thermofield dynamics.

The index theorem for a free fisld theory has been de-
rived from the stochastic field theory using the formalism of
thermofield dynamics in a recent paper.? Here we shall gen-
eralize this result in the presence of a superpotential. In the
free field case, we can define two Klein operatons

g=(-1"8=(—1) (86)
where & = J&J, Jbeing an involution operator with the prop-

erty JZ = 1. As discussed in Sec. I1, the tilde function is asso-
ciated with the internal field and the rotal Hamiltonian of the

system is given by
H=H-H,
where
H=JHJ. (87)

In this formalism, the vacuim is temperature dependent and
we have the relations

Ho@) =0

{4) = {0(8)|4 |0(B). (88)
Maw it is noted that for the Klein operators @ and & we have

010(A)) = B10(8)) £ 0(M),

&10(8)}) = 68 [0(A)) = |D(AY). {89}
We can defiue an index for the ground state given by
Q) =Tr( — 1)fe—5|, _, (90)

where F= F+ F, H= H — H. This can also written as

HQ. ) = (0302 |B}) s, (913

As we have mentioned in Sec. II, the thermodynamic
equilibrium is maintained as long as Z, symmetry (time re-
versal aymmetry ) is operative in nontilde and tilde ohjects
corresponding to the external and internal space. That is, the
orientationin the external space chould be opposite to that in
the internal space. However, this formalism of stochastic
field theory suggests that there may exist a critical tempera-
ture T, when the orientation of the internal space i1z changed
leading to a nonequilibrium state. Indeed for the thermal
doublet of a bosonic field ¢(x) = (375 ) = {5};’] 1 it may so
happen that the isctropic feature of the bosonic feld
@£} = ¢" (x) ix lost at this eritical temperture and an inter-
nal helicity is generated for this field giving rise to an aniso-
tropic feature Teading to the generation of a fermion. Thus
bevond this temperature T, we have the supersymmetric fea-
ture due to the breakdown of the Z, symmetry which will
then give rise to thermal doublets of different statistics which
will appear as zera energy modes as supgested by Matsu-
moto ef al."*

Now to find out the index theorem in the supersymme-
tric phase we note that the equilibrium condition demands

(U668 |0(8)) = 1 =jﬁfF+ Fiar

In the nonsupersymmetric case, for a bosonic thermal doub-
let F=F~= 0. However, for a supersymmetric phase, we

(92)
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may have F= 4 1depending on the orientation of the inter-
nal helicity developed leading to an anisotropy in the intet-
nal space. Thus we will bave the index

HQ.) = {0D|F 0B 5

= J-.:S(F:t gk =1, (93)
However, in an interacting case with a superpotential given

by
Vid)me + S aé
=3

with complex ¢, &, #0 n=3 as we have identified
L = T T IV, we note that we will have (# — 1) images
of such thermal doublets. S0 for an interacting case, with
superpotential Fig) = 44" we will have

QL) = (n— 1){0(B) |68 008 )50
={n— ]}I&[Fi 11dF =n — 1 =deg dV.

this 15 identical with the result obtained by Jaffe er af.' in the
two-dimensional ¥ = 2 Wess—Zomino field mode] and we
can conclude that the holomorphic quantum mechanics
constructred from the stochastic fleld theory will alsolead to
& degenerate vacua in the interacing case when the superpo-
tential is given by ¥(#) = A¢" n> 2.

V. DISCUSSION

We have shown here that the relativistic peneralization
of Nelson's stochastic mechanics as well as stochastic quan-
tization in Minkowski space helps us to construct bolomeor-
phic quantum mechanics when in the nonequilibrium condi-
tiom we can realize ¥N=2 Wess—Zumino quantum
mechanica and supersymmetry. In the equilibtium condi-
tion, we get stochastic quantization in Minkowski space and
we have 7, symmeiry between the externat and internal
fields which form a doublet. When this reflection invariance
is broken, we get supersymmetric quantum mechanics
which imply that supersymmetry gets broken in a multiply
connected space.

The inherent supersymmeric feature in stochastic quan-
tization leading to Eoclidean quantum field theory from a
Langevin equation incorporating a fictitious time was first
pointed out by Parisi and Sourlas."' However, it was not
clear whether this supersymmeric feature which involves in-
vattance of the action under certain supersymmetric trans-
formations is equivalent to the conventional supersymme-
toe quantum mechanics which defines a supercharge @ such
that the Hamilionian is piven by B = 02, Indeed in that case
the action involves fermionic variables only through the de-
terminant which aries in the averaging procedure and henee
the invariaonce of the action under supersymmetric transfor-
mation in this case does not imply the existence of the super-
charge {} as well as the existence of the grading operator ¥
suchthat & = @ *and y@ + {y = 0. However, here we have
painted oot that stochastic quantization in Minkowski space
mtroduces two stochastie felds, one in the external space
and the other in the internal space; in the nonequilibrium
case we can construct holomorphic quantumn mechanics ont
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of these two fields, which becomes equivalent 1o ¥ =12
Wess—Znmine quantum mechanics and gives rise to the au-
percharpe operator.

Finally, it may be peanted out that this formalism helps
us to stady finite temperainre feld theory as well as finite
temperature supersymmetry through the methodology of
thermofield dynamics when we ideatify the tilde field with
the stochastic field in the internal space. Indeed in a recent
paper,” we have pointed out that there exists a critical tem-
perature T, below in which supersymmetry is broken and
the zero energy mode is given by a thermal doublet of oppo-
site statistics and in the case of a free field theory the index
@, )=n,—nr_,wheren , =dimkemnel @ isfound to
be 1. It may take the value | also when the zerg energy mode
i$ given by a thermal doublet of the same fermionic statis-
tics.* Here we have pointad out that in the interacting case
when the potential is given by F{#) = Ad" 2 being a com-
plex scalar Betd, and 7> 2, the vacuum is degenerate and the

2op J.Math. Phys., Yal. 31, No. 1, January 1985

index takes the value 2 — 1 = deg #¥. This is identical with
the result obtained by Jaffe et 4l. in the two-dimensional
Wess—Zumino quanturn figld model.
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