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It is here shown that the chiral anomaly is related to the topological properties of a fermion.
The quantization procedurs of a relativistic particle requires that the particle be an extended
ome, and (o quantize a Fermd field, it is necessary to mireduce an anisetropic feature in the
internal space of the particle so that it gives rise t0 two internal helicilies corresponding to a
particle and an antiparticle. This speeific quantum geometry of a Dirac particte gives rise o the
solitomic feature as envisaged by Skyrme and the Skyrme term appears as an effect of
guantization. When in the Lagrangian formulation the effect of this lopological property is
taken inte account, it 1 found that the angmaly vanishes,

L INTRQDUCTION

In recent tites, the old idea of the topological ongin of
the baryvon number proposed by Skyrme' and Finkelstein
and Rubinstein® has been revived. These authors put for-
ward the ides that conserved quantum numbers arse as a
gongegquence of the topolapgical propoerties and that purticles
that carry conserved quantum oumbers are built up from
classical Aelds of nomitrivial topology. In this picture baryons
appear as solitons, commonly known as skyemions. In 2 re-
cent paper® it has been shown that the Skyrme term, which is
necessary for the stability of a soliton, may appear 85 & conse-
quence of the anisotropic feature of the internal space-time,
where we have assurned that there is a fixed auis correspond.-
ing 1o a “direction vector” and this property of internal
space-time helps us to have a consistent quantization of a
Fermi field. Tn thix scheme all fermions appear as solitons
and the Skyrme term may be considered as an effect of quan-
tization.

It may be added that Sternberg® has studied in detail the
operation of charge conjugation and has argued that geoniet-
rically charged conjogation is induced by the Hodge star
operator acting on A twistor space. It has been pointed out
elsewhere” that the geometrical formulation of conformal
mversion, which is induced by a chacpe conjugation acting
on a spinor, in effect, corresponds to the inversion of the
internal heticity for a spinor. This interpal helicity may be
taken to correspand to a fixed direction vectar in the internal
space of a massive spinor or a direction vector (vortex line)
attached to the space-time point of 3 massless or massive
splnor in a composite system of hadrons. The Hodge star
operation in twistor space eventually inverts the orientation
of the direction vector. In view of this, the internal heliciiy
may be taken to represent the fermion number and can be
taken to be of topological ongin.

Jackiw® first pointed out the significance of topclogical
cffects in paupe Aeld theories and s relationghip with anom-
alies in quantum field theory. Tn a very elegant way he has
shown how anomalics arise due 1o quanium mechanical
symmetry breaking, Alvarez-Gaume and Ginsparg’ studied
non-Abslian anomalies from topological considerations. In
this paper we shall show that the opolopical sspect of the
stochastic quantization procedure of a Fermi field, where a
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direction vector is attached to a space-time point corre-
sponding to the anisotropic feature of the internal space giv-
ing rise to the fermion oumber, helps vs to find out the origin
of the chiral anomaly in guantwm field thegry. This anomaly
is avoided when we take into account this quantum geome-
try to stody interactions involving gauge fields.

I. CONFORMAL GEOMETRY, TWISTOR SPACE, AND
TOPOLOGICAL ASPECTS OF A FERMION

It is well known that the wave function of the form
WX, .Y, ), where ¥ is an attached vector that extends the
Lorentz group 50{ 3,1} to the de Sitter group 304,11, Now
in the stochastic quantization procedurs for a fermion, it has
been shown that a massive fermion is characterized by a
fixed direction vector in the internal space that helps os to
derive the fermionic propagator in Minkowski space from
the two-point correlation  of the stochastic  felds
glf, ) =¢(X, )+ iplY, ), where the coordinate Is given
by Z, =X, + ¥, in a complex manifold.® This indicates
that the internal space of a massive fermion 1% disconnected
it nature. This disconnectedness of the internal space gives
rise to &n internal helicity of the particle that corresponds to
the fermion nunber, This follows from the fact that since the
group siructure is now given by 30(4,13, the wrreducible
representations of SO (4}, the maximal compact subgroup of
S0 (4,11, are characterized by two numbers {&.n), where &
is an integer or half-inteper and # is a natural number. These
two numbers are related to the eigenvalues of the Casimir
operaters by

LSS =k k| + ) — L,

L PS8 = k(TR + ),
where 8, @8 = 1,2,3,4, are the generators of the group.
Barut and Behm® have shown that the representations of
SC(d,1) givenby § = Land & = + Leanbe fully extended to
two Inequivalent representations of the conformal group
S004.2). In fact these values actoally correspond to the
eigenvalues of the operator K = 1(a @ — & ' b} in the oscil-
lator representation of the 3003, = 80(3), basis of 54},
The value of k ax well as ifs signatore jsan 504,21 invariani.
The representation {5 = (), & = 0} in the conformal interpre-
tation of S0 4,2) describes a massless spin-0 particle. The
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representation s = 1, & = 4 ! describes the helicity stateofa
massless spinor, Now for a massive particle, the conformal
invariance breaks down and £ = <+ | cannot be represented
as helicity states in the conventional sense, but represents an
“internal helicity™ or orientation so that the mutually oppo-
site orientations are eguivalent 1o particle and antiparticle
slates. :

Since these representations can be fully extended to the
comformal group S0O04.2 3, we can now deal with cight-com-
ponent conformal spinors. The simplest conformally covar-
iant spinor field equation postulated as an O4.2) covariant
equation in a preudo-Eoclidean manifold AF %2 is of the form

(rﬂ o m)g::‘w} =0, a=0,1,2.356 {23
M. :
where the glements of the Cliford algebra [, are the basis
unil veclors of MY, m s a constant matnix, and £{7) is an
eight-component spinor field. Cartan™' has shown that in the
fundamental representation where the unit vectors are rep-
tescrnted by 838 matrices of the lorm

o =
r-|® 3| ;
=g o (3]
the conformal spinors £ are of the [orm
|y |
=l 4
£="- b (4)

where ¢, and &, are Cartan semispinors, The characteristic
property of chese spinors is that for any reflection ¢, and ¢,
interchange. In this basis, Eq. (2) becomes equivalent to the
crapled equations in the Minkowski space

53@1 = miy,
fﬂqﬁ'; = mah).

However it 15 also possible (o obtain from Eq. {2) a pair of
standard Dirac equations in Minkowskl space, To this end,
we have to work with a unitury transformation € given hy

(3]

L K
TS A (5
where L = 41 + ), B = W1 — #4) with
o ‘l ]
¥e= o —1l
With this, we have
ity
j— e
Ce=g7=|, 7
and
A {}
e Yu
Chy ‘T#C,=]"ﬂ”= 0 ?1.||I

This sugpests that Eq. {2) is cquivalent in Minkowslki space
to the pair of standard Dirac equations
(i | m)p, =0,
(i + my =0,
It is to be noted that space or time reflection interchanges ¢,
and @, and transforms i, and ¥, into themselves; conformal

reflection interchanges both @ «»g. and ¢r=sgh. It should
be added that #f, and ¥, may represcnt physical free massive

(&)
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fermions whereas @, and @» do not unless they are massless
since they obey coupled equations. However, in the case
w70, if we define ) and @, such that they represent two
differcnt “internal helicity” states given by &= +1 and
--L e, ¢y =tk =14} and g, = ik = —{), Egs. (5}
can be redoced to a single equation with two internal degrees
of freedom when the linear combination of Wk = + 1) and
@k = — 1) represents an cigenstate. Now, o retain the
four-component natore of the spinor in Minkowski space,
these two interbal degrees of froedom shoold be associated
with particle-antiparticle states. Evidently this property of
g, and ¢ satisfies the criteria that space, tume, or conformal
reflection transforms one into the ather. This follows from
the facts that (a} the parily operator changes the sign of k;
{b) the time reversal operator T changes the orientation of
the internal helicity and hence changes the sign of &; {c) as
@, and @, are related here to particle—antiparticle states, con-
formal reflection chanpges one into the other. Thus cach
member of the doublet of massive spinors having the internal
helicity £ = + }and — L, corresponding to particle and an-
tiparticle states, represents a Carlan semispinor,

To have a geometrical interpretation of the doublet of
Cariun semispinors il may be noled that it is possible to re-
gard the compeonents of the semispinor ax the homogeneous
coordinates of a point in three-dimensional prajective space
whereas those of another semispinor ace regarded as the ho-
mogeneous coordinates of aplane in 22 { Ref. 113, Moreover,
4 point-plane correspondence exists in F7 that reilects the
conjugation relation of semispinors, Cn the other hand, ac-
cording 1o the analysis of Penrose,'? there also exists 2 1-1
correspondence between twistors of valenee (4 (Y} and a
point planc in P°. Thus the semispinors inta which an eight-
component spinor splits in the Cartan basis are identical to
Penrase twistars. This reflects the analysis of Sternberg® that
charge comugation comesponds to Hodgestar operation in
twistor space.

This analysis along with the fact that the anticommuta-
tion relation of the eight-component conformal spinors gives
risc to supersymiinetry algebra'® suggests that we can intro-
duce a spinot structure at each space-time point so that we
have additional degrees of freedom 10 our space-time mani-
fold E parametrized by {x,.0,0), where @ = (5.) is a two-
crmponent spinor, This effectively corresponds (o a super-
space. Indeed, the additional degrees of freedom &, Pin the
space-time siructure may be relared here with the internal
helicity given by the values £ = + land — lin the represen-
Lation space of S {4) = 5O(3), £ 8O3}, To this end, we
choose the chiral coordinates in the superspace as

Z¥ =+ (FNALET (a=12), (%)
where we identify the coordinate in the complex manifold
Z =X,+iF, with F*=14408° W now rcplace the
claral eoordinates by the matrices

ZA =" 4 (i) AM e (107
where 25 (@ =123c51.{2.c). With these relaitons the
twistor equation is now moditied as

Z,Z' | AT, =0, (113

where T, (7, ] 14 the spinorial variable corresponding to the
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four-momentum variabla g, the conjogate of X, and is giv-
en by in the matrix representation

gt =7t {123
and

Zo=(o'm, ) Z, = (5,8, (13)
with

et =X + (A M N, (14
Equation ( 11) now involves the helicity aperatar

S= _i%gop g, (15)

Tt may be noted that in the complex manifold, we have taken
the matrix representation of F,, the conjugate of X, in the
complex coordinate Z, = X, +iF,,, aspt?’ = 77! imply-
ing P, = 0 and so the particle will attain ite mass due to the
nonvanishing characteristic of the quantity }"ﬁ. In the nulf
plane where ¥} = 0, we can write the chiral coordinates as
follows:

ZA e XU ()840 (16)
where the coordinate ¥'* is replaced by ¥4 =186 In
this case, the helicity operalor iz given by

5= —2F" 7,0, = — 88 F,7, =%, (17
with e =i¢*'r,., E= — i#7%,. In this case, following
Shirafuji'® we can apply the canonical quantization proce-
dure where Z, and { € are canonically conjugate to £ "and £,
respectively, and we can postulate the canonical commuta-
titm atd anticommutation relations given by

[Z"2Z,] = 5, (1%)
{£2 =5, (19)

Symmetrizing Z, and Z ° and antisymmetrizing £ and € we
require that the state vectars should satisfy

({Z,.z°} + [el}|¥} =0. (20)
From this we find

(5+ 48— )] =0, {21)
where

S=HZ. 2% (22)
Now defining the operators

S§°=%¢2Z° S§.=Z.¢ (23)
we have the commutation relations

L5l == 5% (24)

[5.5:] =450,
which indicates that S and S are the helicity raising and
lowering opetalors, raspectively. The state with the internal
helicity + 4 is the vacuum srate of the fermion operator

dS=+1=0. (25)

Similarly, the state with the internal helicity — 41s the vacu-
um state of the fermion operator

eS= —1) =0 (26)

In case of a massive spinor, we can define a negative
definite plane 2 whete for the coordinate £ =X + ¥, ¥
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belongs to the interior of the forward light cone ([ ¥3 0} and
as such represents the upper half-plane with the condition
det ¥=0 and 4 Tr Y= 0. The positive definite plane D * is
given by the set of all coordinates Z with ¥in the interior of
the backward light cone (¥ €0} The map £—Z * sends a
negative defloite plane to & positive definite plane. The space
M of null space (det ¥ == 0} is the Shilov boundary sothat &
function holomorphic in B~ (D ") iz determined by its
boundary values. Thus if we consider that any functiom
gl £y = (X)) + i5{Y) is holomorphic in the whole do-
mairn, we note that the helicity + § { — 1) given by the oper-
ator i %, [ — 877, in the null plane may be taken to be
the limiting value of the “internal helicity™ in the wpper
{lower) balf-plans. This indicates that in the massive spinot
cage, we can consider that the helicity given by

S= =487 7, {27)
represents the internal helicity + } where we have Y30,
Since the map £— Z * transforms a negative definite plane to
a positive definite plane, we will have an opposite intermal
helicity — | with the coordinate £# = X, — 7Y, replaced
by the matrices Z =X - (/24 ¥ 8z having
1Tt ¥«0. In the null plane we will have the conditicn
Yidda— | 86" 50 that we can have the simultaneouy exis-
tence oftwo helicities 4 jand — § cotresponding to the spin
projections on the z axis for a massless spinor. In this way, we
can relate the spinorial variables & and # in the superspace
given by the coardinate (X, ,6,8) with the internal helicity of
& massive gpinor. Evidently, this corresponds to the values
k= +1 and —! in the representation space of
80{4) =580(3), & 30{ 3), in the de Sitter space.

MNow we want to point out that when the extension of a
particle is given by the coordinate (X, 8.8, we can have a
gauge field theoretic description of this exiension when the
corresponding  paoge fields have the group structure
S5L{}c). Indeed, the metric tensor gjf'(X,Ef,ﬁ]
=g, {x)7"#* can be taken to be described by the SL{2,¢)
gauge fields in Minkowski space-time with the gauge field
strength tensor given by

£, = 3_‘,5}, = I[il}'ﬂl.u + [Ep"av]’ (28}

where B, s the matrix-valued potential and betongs to
SLi2,c) (Ref 3). The asympiotic zero curvaiire condilion
then implies 7, =1} so that we can wtite the non-Abelian
gauge field as

B, =U"'3,U, where UsSL(2.).

With the substitution, we note that the corresponding La-
grangian is given by
L=MTrid, U8,y + Tr|d, U3 UU! 1%
[29)
where M i asuitable comstant having the dimension of mass.
Thus we find that the quantization of a Fermi field con-
sidering an anisotropy in the internal space leading to an
internal helicity description corresponds to the realization of
a nomlinear sigma model—where the Skyrme term in the
Lagrangian (Lo = Tr[4, L0 *,3, U 7 ]%) automati-
cally arises for stabilizing the soliton. Thus in this picture,
fermions appear as solitons and the fermion number is found
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to have a topotogical prigin. Indeed, for the Henmitian repre-
sentation, we can take the group manifold as SU{2} and chis
leads to a mapping from the space three-sphere S5 to the
group space S [SU(2} = 5] and the corresponding wind-
ing number is prven by

1 % k; . 2
=52 ) €T UT,UY 1 5,00 " 3,V
{30)

Evidently g is a topological index and representa the fermion
number.

g

lil. TOPOLOGICAL ASPECTS OF A FERMICN AND THE
CONSERYED CURRENT

The above analysis can be used to link up the topalogical
origin of fermion number with the inlermal helicity. Then the
wave function for a particle and an antiparricle is implicitly
represented as ¥{x,8} and 1#{.1’.@]. &8 indicating the inter-
nal helicity -+ §and - L, respectively, and the metric tensor
is given by g,... {X,2.8). That is, spinor structures are intro-
duced to each space-time point and we have a superspace.
This geometry effectively prves rise (o the S3L{2,r} gaupe
fields (as the spinor-affine connection) having the feld
strength

F.,=d,B —4 8 +[8,.18,],

ov
where B, is the mairis-valocd potential. In superspace a
gIven covariant tensor £, dogs not have contravariant com-
ponents F4*, Therefore, following Carmeli and Malin'® we
choose the simplest Lagrangian density which is invariant
under 8L{2,¢) tranaformations

a= — | Tr(e¥F F ) (313

where £ is the completely antisymmetric tensar density
in four dimensions with €”'** = 1. Applying the usual proce-
dure of variational caleulus, we get the field equations

Fs (€T F 2} — [ B F 5] =00 (32)
Taking the infiniiesimal generators of the group S5L{2,c) as

_[{} D] _[I ﬂ] _[@ ] 33
gl_l ol gj—ﬂ 1l g‘ﬂ—ﬂ ﬂr[ )
WE fan write

B =b“£“=b+'gn

w u " (34)

Fo=FlL=1f & (ad=123).

Evidently in this space, these SL({2,c) gauge fields will ap-
pear 15 background fieids.

Thus to describc a maiter field in this geometry, the
Lagrangian will be modified by the introduction of this
SL{21,¢) invariant Lagrangian density (313, Hence for a
massless spinor field we write for the Lagrangian

L= gD ¢ —;Tre*™F F,, (35)
where D, is the SL(2,c) gauge covariant derivatives defined
by

D, =38, -k,
where 2 is sotne coupling strength. Ttis to be observed that by
the introduction of the SL{2,c) gauge field Lagrangian in
[35), we aré effectively taking into account the effect of the
extension of the fermionic particle giving rise to the internal
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helicity in terms of the pavge fields.'® That is, writing the
space-time coordinale and the four-mementum variables as

Qm = Q.u + EQ;;:-

Lo =p, + i,
where ¢, (p, ) corresponds to the mean position (momen-
tum) relating to the external space-time and @, (P, ) corre-
sponds to the internal stochastic extension, we can write,
following Brooke and Progovecki,'” the following represen-
tation of £, /ar and £, /o0, o = #/dime (Fbeing a londumen-
tal length ) acting on fonctions defined in phase space:
Qe 1( J

— = i+, ]
£ dp,, ")

_.P‘L = E(_ﬂ._. + .I-'ﬁlp)!

(3 ¢

where 4, and 4, arematrix-valued functions, Thus identify-
ing 4, with the SL(2,¢) gauge field 8,, we note that this
spatial extension will give rise to a Lagrangian density given
by (31) in addition to the point-particle spinorial Lagran-
gian density ¥y, 3, ¥ Besides we can conceive of a coupling
with this backgroundfield with the spinor and this leads to
Eq. (35) for the effective Lagrangian of the spinorial matier
field.

From this, we can now construct a conserved current
corresponding to this Lagrangian and we get (neglecting the
coupling with the gauge feld)

(36)

(37)

3 = gy — €%, Kb =§ + j (38}

Indeed from the properties of SL{2.c} generators we find
from §32) that

e My — b, 2 f ) =100
Thiz suggests that

F R i B e T (39)
Then using the antivymmetric property of the Levi-Clivita
tensor density &% we get

d i = e, g, 1, =10 (40
Now noting that for apinor field, the vector corrent density is
eomserved, we finally have

AJ=d. K +¥#Hr=0 (41}
Howevet, in the Lagrangian (35), if we split the Dirac mass-
less spinor in chiral forms and identify the intarnal helicity
¢+ 43 { — 1) with lefi {cight} chirality corresponding to &
and 2, we can write
@V#Euw = 1;3‘}"”5“@{’ Ig;h’wﬂzgﬂt‘&

= .'.'_{'I}"’.u"'il.h'.'.'ﬁl - Efgfz}{arﬂ F_.'.LB::- #‘R T E‘R ?’#'B:r;'!rﬂ
+ v Bl + iy Bl ) (42)

Then the three SL{2,c) gavge field equations give rise to the
following three conservations laws,

3, [M—igdprada) L7} =0,

A4 —igd yaile +igdey e ) + 2] =0, (4%
&M — g y.v ) +1] =0
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These three equations represent 4 consistent set of equations
if we choose

f= —falh B=4
which evidently guarantess the veclor current comservalion.
Then we can write

A ey e + 51 =0,

ap [a.{,?’p 1'!5';, _ji-} =}
Fronn these, we finnd

A, By, v =34 = — 20,7, (453
Thus the anomaly s cxpressed here o terms of the second
SL{2,c) component of the pauge field corrent ;Q However,
singe in this formalism the ehiral currents are modified by
the introduction of Jr; » We note from Eq. (44 that the anom-
aly yanishes.

From thesc tqualions, twi separalely comserved charges
emerge, viz.,

QL=J-¢LI #ﬁzdjx—'fjﬁdjxf

(4]

5 {40}
Ge= [ wide v+ [Rax

The charge corcesponding to the gauge field part is

g= Ijﬁ dx = [ e da, K3 (Rik=123).  (47)
= surface

Visualizing F7, to be the magnetic ficldlike components for
the vector potential B, we see that {/ = 1,2,3) is actually
associated with the magnetic pole strength for the corre-
spunding Reld distribution.

Theterm e Tr F . inthe Lagrangian can be actu-
ally expressed as a (our-divergence of the form &, (3*, where

O = — (1/1652)° Tx[| B, F,, — 3 8,B,8,)]-
(48)

We recognize that the gauge ficld Lagrangian is related to
the Pontryagin density

P — (165" Tr*F, Fr =40 (49}

and § is the corresponding Chemn-Simans secondary char-
acteristic class, The Pontryagin mdes

q=J-Pd“x (509

is then a topological myariant. If we consider Enclidean
four-dimensional space-tinte, then the above integral may be
reduced to a three-surface integral where the three-surface is
topologically equivalent 1o 57, Now it iz noted that we must
have F,; =0 at all spatial and temporal imfinity points so
that the actiom 5 = L o “x gives rise to a finite encrgy gauge
field configuratiom. Then the pauge potentials tend to a pure
gauge at large distances in all four directions, i.e., we have

B, - U~'a, U (s1)

Thia then helps us to write
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1
s ke
XTe(U '3 o', uvu'eul. (52}
We observe that this is nothing but the fermion number as
discussed in the previous section. bn four-dinmeensional space-
time, if we assume B, to go faster than 1/, B, being zero at

negative infinity of the time coordinate but tends to a pure
gauge at positive infinity of the time goordinate, we can write

q=jdr§l“

From this, it appears that the axial vecror corrent is now
modified as

e 0 (54}

and though @, /£ #0, we have d,i> = 0. That means, when
the topological properties of a fermion related to the onigin of
fermion number is taken into account, we are not confronied
with the chiral ancmaly. The origin of the chiral anomaly is
thus found ta be due to the naive form of the point particle
cortent wilhout any topological structure, which Lutns out
ta be essential for the quantization of a Fermi field.

IV. FERMIONS AND THE INTERACTION WITH AN
EXTERNAL ABELIAN GAUGE FIELD

The chiral deseription of the matter field in terms of the
spinorial variables #,8 in the metric tensor g (x,8,0) giving
tise to the SL(2.c} gauge feld currents necessitates the in-
troduction of a disconnected gauge group for the extemal
Abelian field interacting with the matter field in a chiral
symmoetric way, In the case where the eaternal Abelian
gange field is the eleciromagnetic field, the Lagrangian den-
sity is given by

L= —dy, D, v— ) Te(e™F, F

g MEGE Y TeC A0 ) {55

Here D, is the SL{2,c) gauge covaniant derivative and, con-
sidering the order of ¢ — B, coupling to be negligible com-
pared to the matter current electromagnetic feld coupling,
we can replace it by o,

Fop=d B, — 3.8, +[8, 5.1,

ds, e

(53}

P

B, e81.(20)

and F =d,4 -84, A, being the electromagnetic

gauge potential and §, is the matter current mateix given by
g, 2 I:E’R?}gﬁ'n +J'Ii a (563
4 a if&LY.l: .!.JIL _Jr; ;

where j}. is the secand component of the SL{2,c} gauge field
current as discuesed in the previons section. It is evident that
this matrix structure of /, exhibiting the chiral form suggests
that for 4, we shonld take the disconnected gavge group
£, % Uy = Ux{1,d} where d is the ofientation roversing
operation. Evidently in such an interpetion the field strength
and current are not gaege invardant but only gauge covar-
iant, each changing sign ander 4. This is similar to the non-
Abehan theories where field strengths and corrents are only
gauge covariznt even under gauge transformations connect-
ed to the identity, The internal symmetry group here is Of 2 )
which is given by the relation

A Agy gnd P, Bandyopadbyay 2370



0{2) = SO < {14} = U, x{1,4}, {57

where & iz the otientation reversing operator. Indeed, we can

take
4, 0
I [ o 4 _ ] (58)

Kiskis'® has studied the interactions having disconnect-
ed gauge group. Following Kiskis, we can think of a large
system of observers sach respomsible for a small open region
U, of the conmected space-time manifold M. Let us consider
thac all the frames in &7, have the same orientation. Physical-
I¥ this means that the space is simply connected and the
chserver can give an unambiguons definition of posibive
charge everywhere. This suggests that we can introduce the
coonection (gauge field) in the Lagrangian

L'=L" 4+l {593
where § identifies quantities associated with the region
U, £ 4 is the matter field Lagrangian, and L [ is the kinetic
energy term for the connection. The gauge symmetry of the
L " iz given by

A—g™'(d+ Az, (60}
with g o smooth map
g=LU 002 {61}

which may lie in either component of O(2 ). A transforma-
tion that reverses the otientation at each point can be written
as

& = dgy,
g, = U, -80(2), {62}
l o
a=(; %)
o -1
Thas gives
A—n-g,:,_1{ﬂ—..‘{)gn. (63}

We see that it is a combination of charge conjugation aned
orientation preserving gauge rotation. Evidently in this for-
malism the chiral currents interact with the gauge fieldin a
disconnected form. Indeed, writing

A 0
A, ="
=% ]

we find Lhe interaction term is given by
[ (i,_l.!’_[ TI# !JIL _j:: }Ap + G
a {;bky;.al."&ﬂ +j:¢ -}A,r.r
Evidently there is no term like 4, | A, in the Lagrangian.
As Kiskis't hag discussed, in the overlap region

U, = U,n,

(64)

there are two observers studying the same physical eystem
where each observer has set up his own basis in the internal
symmetry space over &/, The relation between these bascs is
a gauoge transformation

g U =002,
where the map lies in either component of G{2), That is,

observers ¢ and § may have oppasite charge convention. [f
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they have apposite convention about charge, they will have
opposite convention about field. In fact, if we designate o
priori what is a particle and what is an antiparticle, the left
and right directions can be determined by any parity violat-
ing interaction. On the other hand, if we designate what is
left and what is right the pariicle—antiparticle designation
remnains fixed. Thus any parallel transport from a region L
to I, of the manifold will be such that gither the orientation
remains the same and the observer will see the same charge
or the orientation is opposite when by reversing the orjenta-
tiom of &, the observer will see the same charge. Thus any
path from any region ', to U, will be such that either this
will give the same orientation for I/, or it is opposite when
reversing Lthe otientation, the observer will identify a lefi-
handed or a right-handed particle.

V. DISCUSSION

We have shown above that the chiral anomaly is con-
nected with the topological properties of a fermion. Indeed,
the topological property of a fermlion gives rise to the fer-
mion number which is always conserved and helps us to reat
fermions as solitons. The Skyrme term here arises just as an
effect of quantization of a fermion® and iz related io the
quantum geometry of a relativistic particle. The relativistic
peneralization of a quantum particle necessitates the particle
1o be an eatended one and 1o attain the fermionic property,
we need to introduce an anisotropic feature in the internal
space of the particle so that it gives rise to two internal helici-
lies corresponding to a particle and an antiparticle. This spe-
cific gquantum geometry of a Dirac particle gives rise to the
solitonic feature as envisaged by Skyrme' as well as by Fin-
kelstein and Rubinstein.” When in the Lagrangian formula-
tion the effect of this topological property 15 laken into ac-
count. we find that the anomaly vanishes,

This analysis suggests that the crigin of anamaly liss 1o
the luct that farmions arc conventionally treated ax localized
point particles devoid of any specific geometrical and topo-
logical feature. But whan this topology is taken into account
anomaly vamishes implying that when we study guanturn
mechanical symmetry breaking, we must take inte account
the geometrical features involved in the quantization proce-
dure. That 15, quantum mechanical effects have their origin
in quantum geometry and need to be studied in this perspec-
tive.
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