

Essays on Individual and Collective
Decision Making

Thesis submitted to The Indian Statistical Institute for partial
fulfillment of the requirements for the degree of Doctor of

Philosophy

Saptarshi Mukherjee

February 2011

Indian Statistical Institute

Essays on Individual and Collective
Decision Making

Thesis submitted to the Indian Statistical Institute in
partial fulfillment of the requirements for the degree

of Doctor of Philosophy

Saptarshi Mukherjee

February 2011

Essays on Individual and Collective
Decision Making

Saptarshi Mukherjee

February 2011

Thesis Supervisor: Prof. Arunava Sen

Thesis submitted to the Indian Statistical Institute in
partial fulfillment of the requirements for the degree

of Doctor of Philosophy

Acknowledgements

This thesis is the output of research over a long period at Indian Statistical Institute, New

Delhi. At this point of time I strongly feel the urge to express my gratitude towards some

people without whose (direct or indirect) involvement, this thesis would not have been pos-

sibly written.

First, I am wholeheartedly grateful to my supervisor, Prof. Arunava Sen. It is him, who

on the earth is fully responsible for developing my interest towards the area of social choice,

mechanism design and implementation theory. On one hand, I have been simply amazed

to feel his impeccable knowledge in the subject and on the other side I have been deeply

influenced by the way he motivates a research problem. Similarly, I have noticed his careful

attention to any mistake that I have made, in writing or in approaching a problem. Often I

have been embarrassed to see his diligent effort to correct these mistakes and I have simply

wished that I had not done them! I must also admit that, not only regarding other academic

issues, I have got scope to interact with Prof. Sen frequently on other issues. In times, I have

taken advice from him regarding different matters and have been benefitted. This helped

me to refresh my mind and concentrate in my work. Once again, I feel very much indebted

to him for all his efforts and patience.

There have been several other senior researchers who have been kind enough to extend

their helping hands to me in the pursuit of this piece of research. I gratefully acknowledge
i

inputs from Prof. Salvador Barberà, Prof. Dinko Dimitrov, Prof. Matthew O. Jackson,

Prof. Francois Maniquet, Prof. Ariel Rubinstein, Prof. Hamid Sabourian, Prof. William

Thomson. They have patiently listened to me and given many invaluable comments, advice

and have showed paths for future research. I am really thankful to all them. I am deeply

grateful to all the faculty members of ISI Delhi for their continual help and encouragement.

In particular, I remember Prof. Chetan Ghate and Prof. Prabal Roy Chowdhury giving

me great academic support at different points of time. I have desperately approached Prof.

Debasis Mishra without any hesitation for help, particularly for LaTeX and he has always

indulged me with smiling face. I am indebted to all them.

I have been lucky to get a great group of friends at ISI Delhi and outside, particularly

Prof. Anirban Kar, Prof. Dipjyoti Majumdar, Prof. Meeta K. Mehra, Prof. Jaideep Roy

and Prof. Abhijit Sengupta. I have continually received help, inputs and encouragement

from them. I would also like to acknowledge specially the support I have obtained from Ms.

Monica Dutta. Not only she is I could simultaneously discuss my research and goof off with,

but also she did stand by me in times of troubles. Thanks for this!

My research has been benefitted from comments and feedbacks I received from various

seminars and conference presentations. I wish to thank participants of Indian Statistical

Institute, New Delhi, Jawaharlal Nehru University, New Delhi, Delhi School of Economics,

South and South East Asia Econometric Society Meeting (2006) at Chennai, The Arne

Ryde Symposium at Sweden (2008), European Symposium for Study in Economic Theory

(CEPR) at Switzerland (2009), Social Choice and Welfare Meeting at Moscow (2010). I also

gratefully acknowledge a Research Fellowship offered by Indian Statistical Institute and Ford

Fellowship offered by Jawaharlal Nehru University, New Delhi.

Last, but definitely not the least, I am thankful to my parents, Mr. Sujit Kumar Mukher-

jee and Mrs. Mita Mukherjee for their immeasurable love, affection and for giving their all

ii

for endowing me with the best possible education opportunities for ever! This work is a

token of my respect for you!

iii

Contents

1 Introduction 1

1.1 Motivation: Chapter 1 . 1

1.2 Summary: Chapter 1 . 3

1.3 Motivation: Chapter 2 . 4

1.4 Summary: Chapter 2 . 7

2 Choice in ordered-tree based decision making problems 10

2.1 Introduction . 10

2.2 The Model . 14

2.3 Axioms . 19

2.4 Choice from Binary trees . 24

2.5 Choice from Ternary and Higher order trees 28

2.6 Choice in general trees . 33

iv

2.7 Conclusion . 35

3 Implementation in undominated strategies 36

3.1 Introduction . 36

3.2 The Model and Preliminaries . 41

3.3 The single agent and three alternatives environment 47

3.4 Covered and uncovered mechanisms . 51

3.4.1 An Application . 59

3.5 Enforcing Compromises . 64

3.6 Conclusion . 76

4 Appendices 78

4.1 Appendix I . 78

4.2 Appendix II . 96

v

List of Figures

2.1 Tree showing the choice problem for online TV shopping 11

2.2 Tree showing choice problem in Amendment Agendas 12

2.3 An elementary Binary Tree . 14

2.4 A Mixed Tree . 15

2.5 A Symmetric Tree . 15

vi

List of Tables

3.1 Mechanism Γ implementing S . 44

3.2 Description of undominated strategies in Γ implementing S 45

3.3 The first block from Step 1 . 50

3.4 The second block from Step 2 . 50

3.5 The third block from Step 3 . 51

3.6 The mechanism implementing S . 51

3.7 Pareto Correspondence for the n = 2, m = 3 case 60

3.8 Mechanism Γ̂ . 62

3.9 Mechanism Γ̄ . 63

3.10 The SCC S∗ . 75

3.11 The mechanism implementing S∗ . 75

vii

Chapter 1

Introduction

1.1 Motivation: Chapter 1

Standard choice models generally assume that a decision maker (henceforth DM) chooses

an alternative from a set of alternatives. It is often the case that a DM encounters the

alternatives in a particular structure. For instance, a shopper has to choose from a set of

items displayed on a shelf or a judge has to choose an winner from the contestants who

appear one after another in a row. In both these cases, the alternatives appear sequentially

to the DM, i.e. the set of alternatives appears in the form of a list. The structure of the

set can be more complicated as illustrated in the following example: suppose the DM is

purchasing a product online. For every feature of the product the DM gets to choose from

a variety of options that appear as hyper-links in the webpage. After choosing an option,

a new webpage opens up and provides options for another feature or attribute. Thus the

DM has to choose sequentially and the whole set of alternatives appears in the form of a

tree in which alternatives labeled at the terminal nodes are ordered, i.e. in the form of an

ordered-tree. Some elections may also follow a sequential process which can be modeled as

1

choosing from an ordered tree.

A natural question that arises here is the following: does the structure of the set of

alternatives affect the choice or in other words, does it matter how the alternatives are

presented to the DM? We can identify several effects which suggest that the choice depends

on the structure. We give some examples. When the DM chooses from a list, the first few

alternatives may grab attention and become favorite. On the other hand, the DM may be

more likely to remember the alternatives that come in the tail of the list. There can be other

cases also. For instance, the DM may pay more attention to the alternative which is more

distinct than the alternatives that surround it in the list. Similarly, while choosing from

an ordered-tree, the DM can be naive, i.e. chooses a particular branch (say, the left-most

branch) at each decision node. The DM may also choose a path that is shortest from the

initial decision node, because it saves time.

A number of experimental and empirical findings indicate that the structure of set of

alternatives affects decision. Rubinstein et al. (1996) consider a two-person game where one

player hides a treasure in one of four places located in a row and the other player seeks

it. They find that both players prefer middle positions to end-points. Attali and Bar-Hillel

(2003) find that in an examination with multiple-choice questions, question-setters have

tendency to keep the right answer in middle positions and students have tendency to seek

it in middle positions. Christenfeld (1995) finds that while purchasing items from a shelf

of grocery shop, buyers are naive towards middle positions. Online purchases of items like

books, apparel and household items are very common nowadays. We often find that if we

browse the same shopping site more than once, the order or the sequence in which items

appear changes in every search. This suggests that online sellers take “order effects” into

account. These examples suggest that presentation and the structure of the set of alternatives

have an important effect on choice. It is therefore interesting to study choice rules in the

2

presence of presentation effects.

Rubinstein and Salant (2006) axiomatically analyze choice functions from lists. Their

paper proposes an independence axiom and characterizes choice functions that satisfy it.

They show that the chosen alternative is maximal according to an ordering. If the maximal

set is not a singleton then the choice is made using a tie-breaking rule which depends on the

list. In Chapter 1 of this thesis we consider models where the DM faces a decision problem

which is an ordered-tree. We conduct an axiomatic analysis of these problems in the same

spirit as Rubinstein and Salant (2006). We summarize the main results of the chapter below.

1.2 Summary: Chapter 1

We consider choice functions that satisfy two reasonable axioms - Backward Consistency

(BC) and Repetition Indifference (RI). The BC axiom requires the following: if we partition

a tree t into a set of sub-trees so that t is a concatenation of these sub-trees, then the DM

chooses the same alternative in t whether he chooses from t as a whole, or considers the

sub-trees of t, chooses from each sub-tree and then again chooses from the reduced form

tree. The axiom is defined recursively. Informally, one can start from the “end” of a tree

choosing subsequently from the sub-trees which are concatenated backward to form the tree.

The axiom is similar in spirit to the backward induction algorithm in game theory.

The RI axiom requires that the choice from a tree should remain the same when a non-

chosen alternative is replaced by any other alternative from its“partner set”. Two alternatives

belong to the same partner set in a tree if every sub-tree of the tree which contains one of

the alternatives also contains the other. The axiom is in the same spirit as the various

Independence of Irrelevant Alternatives (IIA) axioms used in social choice theory, e.g. Sen’s

Property (Sen (1993)).

3

We first characterize choice in binary trees. We show that the chosen alternative is

maximal according to a weak ordering over the set of alternatives. If the maximal set contains

more than one alternative, there exists a tie-breaking rule. The rule chooses the left-most

(or the right-most, depending on the set of alternatives appearing in the tree) alternative

from the maximal set. Thus it depends on the structure of the tree. Next we investigate

choice in ternary and higher order trees. We show that there exists a weak ordering where

indifference is allowed only for bottom-ranked alternatives. The choice function chooses the

maximal alternative according to this ordering. If there is indifference, the choice function

uses a tie–breaking rule. The tie-breaking rule also depends on the cardinality of the set

of alternatives that are indifferent (and are bottom-ranked). We note that the weak order

characterization of choice rules in binary trees is similar to the weak order characterizing

choice from lists shown in Rubinstein and Salant (2006). However the result for the binary

trees is qualitatively different from that in the ternary trees or higher order trees. In the

latter, the ordering is more restrictive and the tie-breaking rules are different and more

complicated. We also extend the analysis to the general class of trees.

1.3 Motivation: Chapter 2

Implementation theory deals with group decision-making processes under various information

structures. The objective of the theory is to structure the strategic interactions of the agents

in a group so that their actions lead to a socially desirable outcome in each ”state of the

world”. The group’s collective objectives are specified by a social choice correspondence

(SCC) that selects a set of alternatives from the available set in every state of the world. A

classic example is the one of building a public good or project by a public authority. The

authority needs to compare its cost to its social benefit . For this the authority needs to know

agents’ valuations for the project. But these valuations are private information of the agents

4

and unknown to the authority. Implementation theory attempts to design a game-form such

that in every state equilibrium actions of agents according to a pre-specified equilibrium

notion leads to a socially desirable outcome in that state i.e. they belong to the image-set

of the SCC in that state. Clearly, information available to the agents but unknown to the

planner will affect the socially desirable outcome. The formulation of the problem must use

game-theoretic solution concepts that are appropriate for agent behavior and consistent with

informational assumptions.

The literature on implementation considers various equilibrium notions. In the“complete

information model”, it is assumed that all agents know the state while the mechanism designer

does not. A natural notion of equilibrium in this context is Nash equilibrium (Maskin (1999)).

Other notions that are consistent with this information setting and have been studied include

the iterated eliminated of weakly undominated strategies (Moulin (1979)), sub-game perfect

Nash equilibrium and various other Nash equilibrium refinements.1

In a private information setting each agent has private information about her type and

a state of the world is a collection of types for all agents. Suppose an agent’s type is

her preference ordering over a finite set of alternatives. Thus each agent knows her own

preferences but is not aware of the preferences of others. The mechanism designer does not

have information regarding the state. Equilibrium notions such as the iterated elimination

of dominated strategies or Nash equilibria are inappropriate in this information structure.

For instance, iterated eliminations of dominant strategies is inappropriate because an agent

will be unable to predict the strategies that will be eliminated by other agents because that

will depend on the types of the other agents which are unobservable.

Some natural notions of equilibria in such an information setting are dominant strategies

and Bayes-Nash equilibrium. If the dominant strategy notion is used there exists a message in

1See Corchòn (2009), Jackson (2001) and Serrano (2004) for surveys of this literature.

5

each state that (weakly)-dominates all other messages. On the other hand, a strategy-tuple

is a Bayes-Nash equilibrium if unilateral deviations are not profitable in terms of expected

pay-offs where these expectations are computed from prior beliefs of the other agents’ types.

A significant advantage of using dominant strategies is that the mechanism designed does

not depend on the prior beliefs of the agents. However dominant strategy implementation is

a strong requirement. The most important result in this area is the Gibbard-Satterthwaite

(Gibbard (1973), Satterthwaite (1975)) Theorem. According to the Theorem, the only social

choice functions (SCFs) that can be implemented in a complete domain of preferences are

dictatorial provided the SCF has a range of at least three alternatives.

Another prior-free notion of equilibrium that is consistent with the private informa-

tion setting is the single round elimination of weakly dominated strategies. We will refer

to implementation in this solution concept as implementation in undominated strategies.

Implementation in undominated strategies has many of the strengths of dominant strat-

egy implementation. However as we shall see it is not as restrictive as dominant strategy

implementation provided we consider SCCs rather SCFs.

Implementation in undominated strategies was first introduced and studied in an im-

portant paper by Jackson (1992). The paper proved a surprising and powerful result: all

SCCs can be implemented in undominated strategies. The mechanism constructed involves

infinite strings of strategies each of which dominates the earlier one. The paper interpreted

this as a weakness in the solution concept and proposed the following restriction on admis-

sible mechanisms: for each state each weakly dominated strategy must be dominated by an

undominated strategy. The paper refers to such mechanisms as bounded mechanisms.

A fundamental question is the following: what is the class of social choice correspon-

dences that can be implemented in undominated strategies by bounded mechanisms? This

appears to be an exceedingly difficult question. The only available general result is in Jackson

6

(1992) and shows that a social choice function is implementable over a complete domain of

preferences if and only if it is dictatorial. In Chapter 2 we investigate some special aspects

of the implementation of SCCs in undominated strategies. Throughout the chapter we will

consider the mechanisms in which message spaces are finite. Note that such mechanisms are

bounded.

1.4 Summary: Chapter 2

We first consider the case where there is a single agent and three alternatives. We provide

a complete characterization of all implementable SCCs in this environment. We provide a

necessary and sufficient condition called the “Neighborhood Flip (NF) condition” for imple-

mentation. This condition can be thought of as a generalization of the standard monotonicity

condition that is necessary for implementation in dominant strategies. We also highlight the

differences with implementation in dominant strategies by showing that a wider class of SCCs

can be implemented.

Next, we investigate implementation (for an arbitrary number of players and alternatives)

in a more restricted class of mechanisms which we call “covered mechanisms”. These are

mechanisms where every message of an agent is undominated for at least at one preference

ordering of the agent. In general a mechanism that implements a SCC may contain a message

for an agent that is always dominated. We show that if a SCC is implementable, then

there exists a covered mechanism that weakly implements the SCC i.e. implements a sub-

correspondence of the SCC. We identify a condition which we call “General Monotonicity

(GM)” that is necessary for implementation by covered mechanisms. The GM condition

builds on the NF condition and also implies the strategy-resistance condition that Jackson

(1992) shows is necessary for implementation. We show that the Pareto correspondence for

7

two agents and three alternatives does not satisfy the GM condition and hence cannot be

implemented by a covered mechanism. But we design a complicated uncovered mechanism

that implements it in the two agent three alternatives case.

It is well-known that SCCs which pick unions of top-ranked alternatives of agents at ev-

ery preference profile, are implementable.2 A drawback of these SCCs is that they overlook

“compromise” alternatives. Consider a case where there are two agents and a hundred alter-

natives. Alternative a is ranked first by agent 1 but hundredth by agent 2. Alternative b is

ranked first by agent 2 but hundredth by agent 1. On the other hand, alternative c is ranked

second by both agents. It seems very natural for a SCC to pick c at this profile while the

union of top-ranked alternatives SCC will pick the set {a, b}. Borgers (1991) investigates the

implementability of SCCs that pick compromise alternatives. In particular an alternative is

a compromise at a profile if is not first-ranked by an agent but is (Pareto) efficient and a

SCC satisfies the Compromise Axiom if there exists a preference profile where the SCC picks

only compromises. The paper proves that if there are either two agents or three alternatives,

then there doest not exist an efficient, implementable SCC satisfying the compromise axiom.

We extend and refine the Borgers’ result (Borgers (1991)) in a number of ways by proving

a number of possibility as well as impossibility results. In particular we show the following:

• There does not exist an efficient, implementable SCC for any number of agents and

alternatives satisfying the compromise axiom at preference profile that are “near unan-

imous”, i.e. preference profiles where all but one agents agree on the top-most alterna-

tive.

• There does not exist a neutral, implementable SCC for two agents and an arbitrary

2“Integer game” mechanisms of the type used in complete information implementation theory (Maskin

(1999)) can be used for the purpose.

8

number of alternatives satisfying the compromise axiom.

• There does not exist a unanimous, implementable SCC for two agents and an arbitrary

number of alternatives satisfying the compromise axiom and the additional axiom of

minimality. Each alternative in the image set of a minimal SCC at a profile is the

maximal element in that set for some agent at that profile.

• There exists a unanimous, implementable SCC for two agents and three alternatives

satisfying the compromise axiom.

• There exists an efficient, implementable SCC satisfying the compromise axiom for an

arbitrary number of agents and alternatives in the special case where a single agent

has only one preference ordering (i.e. is of a single “type”).

9

Chapter 2

Choice in ordered-tree based decision

making problems

2.1 Introduction

Our model deals with situations where a decision maker (henceforth DM) faces a decision

problem which has a sequential structure. It is often the case that the DM encounters

the alternatives in a particular structure, for instance in the form of a list or in the form

of an ordered-tree (henceforth by tree we mean ordered tree only). Casual observations

indicate that choice in these situations depends on the structure in which the alternatives

are presented to the DM. While purchasing a product online, the alternatives are listed from

left to right or top to bottom. In this case, the choice depends on the list the DM faces while

browsing the internet. The order in which alternatives are listed might influence her choice.

Similarly alternatives can appear in the form of a tree-where decisions are taken sequentially.

We give some examples.

10

1. The DM is planning to purchase a product (e.g. television) online. Suppose she visits

one of the online shopping websites. She is first asked to choose the type of television (by

clicking on the hyperlink provided on the webpage) whether it is a Flat (F) or an LCD (L)

or an Ordinary (O) television. Suppose she chooses an F type. She then has to choose a

screen size, for instance between a 14′′, 22′′ or 29′′ model. If she chooses an L or O type, she

has to make a similar decision about screen size. We represent this problem in the following

figure.

Figure 2.1: Tree showing the choice problem for online TV shopping

2. Amendment Agendas (Ordeshook and Schwartz (1987)). Such agendas work as fol-

lows: a sequence of alternatives is given, and a vote is taken between the first two, after which

the winner fights with the third alternative. Then the winner faces the fourth alternative.

For instance consider the motions on the floor of a senate regarding a bill. The issues are

: a bill, an amendment to the bill, and an amendment to the amendment. Then there are

four possible outcomes: (i) the status quo, (ii) the unchanged bill, (iii) the bill amended and

(iv) the bill changed by the amended amendment. The procedure requires sequential voting

where the first vote is between (iii) and (iv), i.e. whether to amend the amendment. Next

vote is taken between the winner and (ii), i.e. decision regarding whether to amend the bill.
11

Finally the vote is taken between the winner and (i). Thus the last decision is whether to

pass the final form of the bill. We note that in this example the DM is the legislature.

We can represent this agenda by the tree in following figure:

Figure 2.2: Tree showing choice problem in Amendment Agendas

Here

q: the status quo

b: unchanged bill

a: bill changed by original amendment

c: the bill changed by the amended amendment

Here the decision making process takes place sequentially when the set of alternatives

appear in the structure of a tree.

We address the question of choosing in such situations such as those described above, in
12

the spirit of the analysis in Rubinstein and Salant (2006). In particular, we consider choice

functions which satisfy certain plausible axioms. First we consider choice in binary trees.

We show that the chosen alternative is maximal according to a weak ordering over the set

of alternatives. If the maximal set is not singleton, there exists a tie-breaking rule. The rule

chooses the left-most (or the right-most, depending on the set of alternatives appearing in the

tree) alternative from the maximal set. Thus it depends on the structure of the tree. Next

we consider choice in ternary trees or trees of higher order. We show that there exists a weak

ordering with indifference allowed only for alternatives which are bottom-ranked. The choice

function chooses the maximal alternative from a tree according to this ordering. If there is

indifference, the choice function uses a tie–breaking rule. It is important to appreciate that

the result for the binary trees is qualitatively different from that in the ternary trees or

higher order trees- in the latter, the ordering is more restrictive and the tie-breaking rules

are different.

Our chapter is closely related to and strongly influenced by Rubinstein and Salant (2006).

They characterize choice functions from lists using an independence axiom. They show that

the chosen alternative is maximal according to an ordering. If the maximal set is not a

singleton then the choice is made using a tie-breaking rule which depends on the list. Our

result in the binary tree case is similar to Rubinstein and Salant (2006) result, but the

ternary trees or higher order cases are different. We discuss the exact relationship between

our axioms and results in the body of the chapter.

In Section 2 we discuss axioms with some examples. In Section 3 we characterize choice

functions from binary trees. In section 4 we consider the ternary and higher-order case. In

Section 5 we consider the most general case, i.e. choices from all possible trees, including

mixed trees. In section 6, we conclude.

13

2.2 The Model

We consider a finite set of alternatives X with |X| = n. A tree is a graph with no cycles (for

a formal definition of tree see Harary (1969)) and an ordered-tree is a tree where alternatives

labeled at the terminal nodes are ordered. Henceforth by “tree”we mean“ordered-tree” only.

Throughout this chapter we consider finite trees, i.e. trees with a number of terminal nodes.

The initial node is called “origin” and the terminal nodes are labeled with alternatives from

X. The length of a path from any terminal node to the origin is the number of nodes that

appear in that path. The elementary tree of order k is the tree with a single vertex and k

offsprings. Each offspring ends in a terminal node which is labeled with an alternative of X.

A tree with equal number of choices, say k (k = 2, 3, ...) at each node is called a k-ary tree.

Trees with k = 2 and k = 3 are called binary and ternary trees respectively. In general we

say that k is the order of a k-ary tree. Trees which allow different number of offsprings at

different nodes are called mixed trees or (MT).

In next two figures we present an elementary binary and an MT.

Figure 2.3: An elementary Binary Tree

A tree is symmetric if the length of the path from the origin to any terminal node is the

same. We give an example in figure 2.5.

Let Γk denote the set of all k-ary trees. Thus Γ2 is the set of all binary trees. Also

let the set of all possible trees be denoted by Γ, so that ∪k≥2Γ
k ⊂ Γ. For any t ∈ Γ, let

14

Figure 2.4: A Mixed Tree

Figure 2.5: A Symmetric Tree

X(t) ⊂ X be the set of alternatives which appear as terminal nodes in t. Suppose Γk(B)

denotes the set of all k-ary trees formed with all alternatives from the set B, B ⊂ X. Thus

15

Γk(B) = {t ∈ Γk : X(t) = B}. Similarly Γk
e(B) denotes the set of all elementary k-ary trees

formed with all alternatives from the set B, i.e. Γk
e(B) = {t ∈ Γk, t elementary : X(t) = B}.

Here B ⊂ X. For any tree t ∈ Γk(B), X(t) = B.

A tree can be represented as an ordered sequence t ≡ (X1, X2, . . . , XM) where each

Xj ∈ X ×X × . . .×X︸ ︷︷ ︸
rj

, j = 1, 2, . . . ,M . Thus each Xj is a collection of rj alternatives of

X. Note that Xj may contain repetitions. The interpretation here is that X1 ∪X2 . . .∪XM

constitutes the set of terminal nodes in t. All nodes represented in Xj, j = 1, . . . ,M are

successors of the same non-terminal node. For example consider the tree t in figure 2.4. Here

t can be equivalently represented as t ≡ (X1, X2, X3), where X1 = {a, b}, X2 = {a} and

X3 = {c, d, e}.

Note that the sets X1, . . . , XM are ordered. Thus we refer to Xj as the j-th set from

the left. Similarly if Xj ≡ {xj1, . . . x
j
k, . . . x

j
r}, then x

j
k is the k-th alternative from the left in

Xj. In general we can also say without ambiguity that xkj is to the left of xk
′

j′ if j < j′ or

j = j′ and k < k′. It follows from this discussion that any tree t ≡ (X1, X2, . . . , XM) can

be written as t ≡ ({x11, x12, . . . , x1r1}, . . . , {xM1 , xM2 , . . . , xMrM}) where Xi = {xi1, xi2, . . . , xiri}.

Let x(r; t) denotes the alternative in set X(t) that can be reached in the tree t by picking

the r-th branch from the left at every non-terminal node, starting from the initial node.

For any k-ary tree, 1 ≤ r ≤ k. For any mixed tree, x(r; t) is the alternative chosen in the

following way: pick the r-th branch from the left at every non-terminal node, starting from

initial node; if at some node, the right-most branch available is them-th branch, m < r, then

the m-th branch at that node is picked. For instance, for the tree in figure 2.5, x(3; t) = e.

Here e is obtained by picking the second branch (because there is no third branch at these

nodes) at the first two nodes (starting from the initial node) and picking the third branch

in the next node. Thus for any tree t in Γ, x(r; t) is the alternative that can be reached

in the tree t, by always picking Min (m, r)-th branch from the left at every non-terminal
16

node starting from the initial node where m is the number of offsprings available at that

non-terminal node.

Definition 1 A choice function C is a map C : Γ → X, such that C(t) ∈ X(t), for all t ∈ Γ.

We have already made the assumption about representing non-symmetric trees as sym-

metric trees. This extension of non-symmetric trees to symmetric trees is consistent with

the structure of our problem and our goal in this chapter. Repetitions at the terminal nodes

make no change in the choice problem. Thus it is trivial that our domain contains only sym-

metric trees. Choice functions for k-ary and elementary trees are defined in a natural way. A

choice function C from k-ary trees is a map C : Γk → X, such that C(t) ∈ X(t), ∀t ∈ Γk. A

Choice Function from elementary trees is a choice function that chooses an alternative from

X(t) for every elementary tree t.

We give examples of some salient choice functions below.

Example 1 A choice function C : Γ′ → X, Γ′ ⊂ Γ, is Preference Based or PREF, if there

exists a strict ordering ≻1 over X such that for all trees t ∈ Γ′, C(t) = (M(X(t),≻))

[Given a set of alternatives X, and any ordering R over X, we define the maximal set, as

M(X,R) = {x|xRy for all y ∈ X}]. Let X = {a, b, c, d, e} and let ≻ be a strict ordering

over X such that a ≻ b ≻ c ≻ d ≻ e. Let C be PREF which chooses M(X(t),≻) for any

t ∈ Γ. Let t ≡ ({c, b, b}, {b, c, d}, {d, d, b}). Here M(X(t),≻) = b and C(t) = b. This choice

function is similar to the Rational Choice Function defined in Rubinstein and Salant (2006).

Example 2 A choice function C : Γ′ → X, Γ′ ⊂ Γ, is Procedural or PROC, if there exists

a positive integer r such that for all t ∈ Γ′, C(t) = x(r; t). Recall that x(r; t) denotes the

1 A binary relation ≻ is called strict ordering if it satisfies complete, antisymmetric and transitive.

17

alternative in set X(t) that can be reached in the tree t by picking the r-th branch from the

left at every non-terminal node, starting from the initial node. For instance, we could have

C(t) = x(2; t) for any t ∈ Γ3. Let t ≡ ({c, b, b}, {b, c, d}, {d, d, b}). Here C(t) = c.

The choice function defined above is called “Procedural” because whenever a DM faces a

choice, she uses a rule-of-thumb based on the structure of the tree: for instance in a binary

tree, she always chooses left when faced with a choice; in a ternary tree, she always chooses

middle and so on.

A more general version of the PROC is the following: the DM chooses kth1 branch 2 at

first decision node, the kth2 branch at the second node reached and kthi branch at the ith node

reached by this procedure and so on until a terminal node is reached. We shall call this

choice function G-PROC.

Example 3 A choice function C : Γ′ → X, Γ′ ⊂ Γ, is Satisficing or SAT if there exists a

strict ordering ≻ over X and a threshold a∗ ∈ X such that for any t ∈ Γ′, C(t) is the first

alternative in the tree that is not inferior to a∗ (recall that t can be written as an ordered

sequence t ≡ (X1, X2, . . . , XM), where Xi, i = 1, 2, . . . ,M are ordered sets); if there is none

then the last alternative in the tree is chosen. This rule follows from Simon (1955) and has

also been mentioned in Rubinstein and Salant (2006).

In the next section we consider axioms which help us to characterize choice functions.

2kth branch at a decision node in a tree is the next branch to the (k− 1)th branch from the left emanated

from that decision node

18

2.3 Axioms

In this section we introduce and discuss the axioms which we impose on choice functions

from trees. These axioms are similar in spirit to the axioms used in Rubinstein and Salant

(2006). First we define an operation on trees.

Definition 2 Let t1, t2, t3, . . . , tp ∈ Γ, where ti ≡ (X1
i , X

2
i , . . . , X

ni
i). The horizontal con-

catenation of t1, t2, . . . , tp, denoted by (t1 o t2 o . . . o tp), is the tree t ≡ (X1
1 , X

2
1 , . . . , X

n1
1 ,

X1
2 , X

2
2 , . . . , X

n2
2 , ., X1

p , X
2
p , . . . , X

np
p) ≡ (X1, X2, . . . , XN); where X1 = X1

1 , X
2 = X2

1 , . . . ,

XN = X
np
p . Alternatively t can also be represented as t ≡ ({x11, x12, . . . , x1k1}, {x

2
1, x

2
2, . . . , x

2
k2
},

. . . {xl1, xl2, . . . , xlkl}).

REMARK 1 We have defined horizontal concatenation for any set of trees in Γ. This op-

eration can also be defined for trees in Γk, with p = k. Thus for k-ary trees, this operation

has been defined such that resulting tree is also a k-ary tree. This operation can be used

recursively. For instance, suppose t′, t′′, t′′′ are three ternary trees, each formed by horizontal

concatenation of 3 trees from Γ3. A new ternary tree t∗ can be formed by horizontal con-

catenation of t′, t′′ and t′′′. Thus a k-ary tree can be formed by horizontal concatenation of

k trees from Γk where each of these k-ary trees are formed by horizontal concatenation of k

trees from Γk and so on. We will use this recursive property in the axiom to be discussed

next.

Backward Consistency (BC): For each tree t ≡ {t1 o t2 o . . . o tp} ∈ Γ, the following holds:

C(t) = C(C(t1), C(t2), . . . , C(tp))

Here t is a concatenation of t1, t2, . . . , tp and ti is concatenation of t1i , t
2
i , . . . , t

ki
i (i =

1, 2, . . . , p) and so on. Observe that BC is defined recursively. If we partition a tree t into
19

a set of sub-trees so that t is a concatenation of these sub-trees, then BC works on these

partitions inductively. It implies that the DM chooses the same alternative from an arbitrary

tree whether he chooses from the tree as a whole, or partitions the tree into sub-trees, chooses

from each sub-tree and then again chooses from the reduced form tree and so on.

This axiom is called“Backward Consistency”because it is similar in spirit to the backward

induction. Backward induction is widely used in economics, for instance in sub-game perfect

equilibrium in sequential games and in various dynamic optimization problems. The BC

axiom requires that one can start from the “end” of a tree choosing subsequently from the

sub-trees which are concatenated backward to form the entire tree. This axiom is clearly

based on the general principle of backward induction.

The BC axiom is also related to the Partition Independence (PI) axiom in Rubinstein and Salant

(2006). A choice function satisfying PI chooses the same alternative from a list whether the

DM chooses from the whole list or he partitions the list and chooses from the list comprising

chosen alternatives from the sub-partitions. Here BC implies the same choice from a tree

as a whole or from a tree comprising choices from sub-trees which are concatenated to form

the whole tree. Similarly we can relate BC to several Path Independence axioms, (e.g. Plott

(1973)) used in social choice theory.

Example 4 Let t ≡ ({a, b, c}, {d, e, f}, {g, h, i}) and let C satisfy BC. We have C(t) =

C({a, b, c}, {d, e, f}, {g, h, i}) = C(C(a, b, c), C(d, e, f), C(g, h, i)).

Reconsider the example of the online purchase of a television. Suppose the DM chooses a

42′′ LCD television in this process. Consider the situation when the DM has the only option

to choose from LCD televisions and she can choose any one from the following tree: t1 ≡ (25′′

LCD, 42′′ LCD). BC implies that the DM still chooses a 42′′ LCD television. Also consider

two separate cases. (i) The DM has to choose from Flat televisions and the options appear
20

in the form of the following tree: t2 ≡ (14′′ Flat, 22′′ Flat, 29′′ Flat). Suppose C(t2) = 22′′

Flat. (ii) The DM has to choose from Ordinary televisions and options appear in the form

of the following tree t3 ≡ (21′′ Ord., 29′′ Ord., 17′′ Ord.). Suppose C(t3) = 29′′ Ord. Now

consider the same DM who has to choose from the following tree t′ ≡ (22′′ Flat, 42′′ LCD,

29′′ Ord). BC implies the DM chooses the 42′′ LCD television. Thus BC ensures that the

choices are independent of the path in which the choices appear.

In order to introduce the next axiom, an additional definition is needed.

Definition 3 Let t ≡ (X1, X2, . . . , XM), t ∈ Γ. For any alternative xji (we note that xji is

the i-th alternative from the left in Xj) we define the Partner Set of xji as the set {xjl ; l ̸= i

and xjl ∈ Xj} and denote it by {β(xji)}. A representative alternative from the Partner Set

is β(xji), which is called a Partner alternative.

For an elementary binary tree, the Partner Set of an alternative is singleton. For instance,

if t ≡ {a, b}, then {β(a)} = {b} and {β(b)} = {a}.

Repetition Indifference (RI): For any tree t ≡ (X1, X2, . . . , XM), if C(t) = xji then C(t
′) = xji

where t′ has been obtained from t by replacing any xlk (xlk ̸= xji) by β(xlk) (1 ≤ l ≤ M),

where xnm is the alternative that occupies m-the position from left in the set Xn.

This axiom requires that choice from a tree remains the same when some non-chosen

alternative has been replaced by an alternative from its partner set. We provide examples:

Example 5 Let t ≡ ({a, b}, {c, d)}). Suppose that C(t) = b. Then RI implies that C(t′) = b

where t′ ≡ ({a, b}, {c, c)}).

Example 6 Let t = ({a, b, c}, {d, e, f}, {g, h, i)}). Suppose that C(t) = b. Then C(t′) = b,

where t′ ≡ ({a, b, a}, {d, e, f}, {g, h, i)}).
21

RI is in the same spirit as the various Independence of Irrelevant Alternatives (IIA)

axioms used in social choice theory. For instance, Sen’s Property (Sen (1993)) α (or Con-

traction Consistency): for each pair of sets S and T , and for each x ∈ S, if x ∈ C(T) and

S ⊂ T , then x ∈ C(S). RI requires choice from a tree to remain the same when some

other alternative (i.e. an alternative which is not chosen from the tree) is replaced by an

alternative from its partner set. This is justified because here choice is made sequentially-

at each non-terminal node an offspring is chosen from the available ones, and ultimately an

alternative at a terminal node is chosen. We observe that the partner set of an alternative

(say, x) contains all other alternatives available for choice at the non-terminal node (call it

n∗), from which the offspring containing x has emanated. Thus after DM has reached n∗,

she has x and its partner set available to choose from. Consider choosing from a tree t in

which n∗ is a non-terminal node and C(t) ̸= x. If we consider contraction consistency by

replacing x, then it must be replaced by one of its partner alternatives because only partner

alternatives are available as options from n∗. Otherwise the contraction may not be com-

patible with the choice problem. We explain with a simple example: consider purchasing a

television online. Suppose initially DM needs to choose between black and white category

(BW) and colored (C). Within BW, there are two types: flat screen (F-BW) and normal

screen (N-BW) and similarly within C, there are two categories: (F-C) and (N-C). Suppose

DM chooses a flat screen television in the colored category, i.e (F-C) is chosen. Now we con-

sider checking contraction consistency of DM’s choice function. To do so, if we replace (F)

category under (BW) by a colored flat screen television (F-C), then we have fundamentally

altered the structure of the initial choice problem by removing the colored vs BW distinction.

But we can replace a (F-BW) by a (N-BW) under black and white category. This explains

why we choose to replace an alternative by only one of its partner alternative.

We characterize all choice functions satisfying BC and RI. We first show that these

conditions are independent.
22

Proposition 1 Backward Consistency and Repetition Indifference are independent.

Proof : (a) BC does not imply RI. Let X = {a, b, c}. Let C∗ be defined on elementary

binary trees as follows:

(i) C∗(a, b) = b; C∗(b, a) = a.

(ii) C∗(b, c) = c; C∗(c, b) = b.

(iii) C∗(a, c) = a; C∗(c, a) = c.

Choices from any arbitrary binary trees t are obtained by applying the choice function

C∗ recursively to elementary trees which are concatenated sequentially to form the tree t.

Note that choice function C∗ satisfies BC by construction. But we show that this rule does

not satisfy RI. Let t ≡ ({a, b}, {c, c}). Let t1 ≡ ({a, b}); t2 ≡ ({c, c}). Clearly C∗(t) = C∗(t1

o t2). Applying the definition of C∗ sequentially we get that C∗(t) = c. We now replace

b by a in above tree and get t′ ≡ ({a, a}, {c, c}). And C∗(t′) = a, again using C∗ for each

elementary tree. But this contradicts RI.

(b) RI does not imply BC. Let Ĉ: for any arbitrary binary tree t ≡ (t1 o t2 o. . . o tk) or t ≡

(X1, . . . , XM), C(t) = x12, where x
i
j: j-th alternative from the left in X i. We claim that this

rule satisfies RI. Let t : {(a, b), (c, d)}. Clearly C(t) = b. Therefore if any alternative (other

than b) is replaced by its partner alternative, b is still the outcome in the choice from new

tree. This argument holds for any arbitrary binary tree. Also observe Ĉ(Ĉ(a, b), Ĉ(c, d))=

Ĉ(b, d) = d. But Ĉ({a, b}, {c, d})=b. Clearly this rule violates BC.

�

23

It is important to compare our formal setting and axioms with those of Rubinstein and Salant

(2006). In the latter, lists can be of arbitrary length. A tree can be thought of as an ordered

n-tuples as we have seen in Section 2; however the Rubinstein and Salant (2006) axioms

do not extend naturally to this setting. Let t = {(a, b), (c, d)}. Suppose C(t) = a. The

Rubinstein and Salant (2006) axiom LIIA (List Independence of Irrelevant Alternatives)

would require the choice to be a if any other alternative, say c, is removed. However c

cannot be removed without destroying the binary structure of the set of alternatives. RI

requires the choice to be a when c is replaced by d in t, i.e. when the binary structure is

retained. PI (Partition Independence) axiom of RS is also distinct from BC. In particular,

arbitrary partitions of the n-tuple describing a tree,s are precluded. For instance consider

a tree t = {(a, b, c, d), (e, f)}. We cannot partition t into the sub-trees {(a, b), (c, d), (e, f)}.

It follows that our problem (characterizing choice from trees satisfying BC and RI) is not

equivalent to the Rubinstein and Salant (2006) problem of characterizing choice from lists

satisfying PI or LIIA. Interestingly, our results are very similar to theirs for the case of binary

trees but differ for higher order and mixed trees.

We now proceed to characterization results.

2.4 Choice from Binary trees

Our goal in this section is to show that choice functions from binary trees that satisfy the RI

and BC axioms have a simple structure. We begin with some examples of choice functions

that satisfy these axioms.

Example 7 Let C : Γ2 → X be the PREF. For any t ∈ Γ2, it chooses the maximal

alternative from X(t) according to the strict ordering ≻ over X. We note that if any

alternative in X(t) (apart from C(t)) is replaced by its Partner alternative and generate
24

a new tree t′, then C(t) remains the maximal alternative according to ≻ in X(t′). Thus

C(t′) = C(t) establishing that C satisfies RI. Suppose t is a concatenation of t1 and t2.

Assume without loss of generality that C(t) ∈ X(t1). Then C(t1) = C(t) because C(t) is

the maximal alternative according to ≻ in X(t1) and X(t1) ⊂ X(t). Also C(C(t1), C(t2) =

C(C(t), C(t2)) = C(t) because C(t) is the maximal alternative in {C(t), C(t2)} according to

≻.

Example 8 Let C : Γ2 → X be the SAT. Suppose C(t) = x for some t ∈ Γ2, i.e. x is

the left-most alternative in t that is at least as good as the threshold alternative a∗. If an

alternative (which is not x) is replaced by any of its partner alternatives, x remains the left-

most alternative in the new tree (say t′) that is at least as good as a∗. Therefore C(t′) = x.

It can be verified that C satisfies BC as well.

Given X and an ordering3 ≽ over X an Indifference Set, denoted by I ⊂ X consists of

alternatives which are indifferent to each other, i.e if x, y ∈ I, then x ≽ y and y ≽ x. Given

X and ≽, we denote the set of all indifference sets by I{X,≽}. We note that M(X,≽) ∈

I{X,≽}.

Given X and an ordering ≽ over X, an admissible binary indicator function δ is a

map δ : X → {left, right} such that δ(x) = δ(y) whenever x, y ∈ Ii. For instance, if

x1, x2, . . . , xm ∈M(X ′,≽), X ′ ⊂ X, then δ(x1) = δ(x2) = . . . = δ(xm) since M(X ′,≽) is an

indifference set.

Example 9 Let X = {a, b, c, d, e, f, g} and let ≽ be the following ordering: b ≻ c ∼ a ∼

d ≻ e ∼ f ≻ g. If δ is such that δ(c) = δ(a) = δ(d) = left and δ(e) = δ(f) = right, then it

3A binary relation is a Ordering if it is complete, reflexive and transitive, i.e. for any two alternatives

x, y ∈ X, either x ≽ y, or y ≽ x. Also if x ≽ y, y ≽ z, then x ≽ z, i.e. ≽ is transitive. Also if for x ̸= y,

x ≽ y, y ≽ x, then we say that x and y are indifferent.
25

is an admissible binary indicator function.

Definition 4 Let Γ′ ⊂ Γ. A choice function C : Γ′ → X is MIXED or MC, if there exists

an ordering ≽ over X and a binary indicator function δ (which may depend on ≽) such that

for any t ∈ Γ′:

(i) C(t) =M(X(t),≽) whenever M(X(t),≽) is unique.

(ii) If M(X(t),≽) is not unique, then we have the following:

(a) if δ(x) = left for all x ∈M(X(t),≽), then C(t) is the left-most alternative4 inM(X(t),≽

).

(b) if δ(x) = right for any x ∈ M(X(t),≽), then C(t) is the right-most alternative in

M(X(t),≽).

Consider an arbitrary tree t. How does an MC choose an alternative for t? Note that an

MC is associated with an ordering over X. Let this be called“binary-admissible” ordering. If

a unique maximal alternative according to this ordering exists for X(t), then the MC chooses

this alternative. If the the maximal set (say M) contains more than one alternative, then

the MC chooses the left-most or right-most alternative in M according as the admissible

indicator function for M prescribes “left” or “right”.

This choice function is described as being MIXED because it includes alternatives of both

pure-preference based rules and procedural rules. The former occurs if ≽ is anti-symmetric.

The later occurs in the case where ≽ is the universal indifference ordering, i.e. x ∼ y for all

x, y ∈ X. Let M denote the set that contains all MCs.

4We have already demonstrated that a tree can be represented as an ordered sequence. Thus the left-most

alternative in M(X(t),≽) is the alternative in M(X(t),≽) which lies to the left of the other alternatives in

M(X(t),≽) in t, when t is represented as an ordered sequence
26

Our main result is the following:

Theorem 1 A choice function C, C : Γ2 → X satisfies Backward Consistency and Repeti-

tion Indifference if and only if it is MIXED.

Proof : The proof is provided in the Appendix I.

�

REMARK 2 We have already shown that a SAT from binary trees satisfies BC and RI. Fol-

lowing Theorem 1, a SAT is also an MC and thus a SAT belongs to M. We can also directly

show that a SAT is an MC. Let C be a SAT associated with strict ordering ≻ and threshold

level alternative a∗. One can form a weak ordering ≽ that induces two indifference sets of

satisfactory and unsatisfactory alternatives. Also there exists an admissible binary indicator

function δ, such that for all alternatives in satisfactory class δ is l, and for all unsatisfactory

alternatives δ is r. This is the same argument as are given by Rubinstein and Salant (2006)

to show that a satisficing choice function from lists can be presented with a weak ordering

and an indicator function.

Similarly it is easy to check that if C1 is a PREF from binary trees, then C1 ∈ M. Also

if C2 is a PROC from binary trees, then C2 ∈ M. In case C is a PREF, the weak ordering

is the ordering (which is strict, according to the definition of PREF) according to which the

choice is made from a tree by C. For a PROC, one can form a weak ordering such that all

alternatives are indifferent according to the weak ordering and the δ for all the alternatives

is l (if the PROC chooses x(1; t) for any t ∈ Γ2) or r (if the PROC chooses x(2; t) for any

t ∈ Γ2). A PROC from binary trees is also a G-PROC from binary trees.

REMARK 3 Let C be G-PROC, but not PROC. We claim that C /∈ M, i.e. C is not MC.
27

To see this assume to the contrary that C is an MC. Suppose ≽ is the binary-admissible

ordering associated with C. Without loss of generality we assume that given any tree, C

chooses 1st branch at the initial node and 2nd branch at all consecutive decision nodes.

Consider t ≡ {(a, b), (c, d)}, t′ ≡ {(b, a), (c, d)}, t′′ ≡ {(c, d), (a, b)} and t′′′ ≡ {(d, c), (a, b)}.

Clearly C(t) = b, C(t′) = a, C(t′′) = d and C(t′′′) = c. We observe that X(t) = X(t′) =

X(t′′) = X(t′′′) = {a, b, c, d}. Thus a ∼ b ∼ c ∼ d and a, b, c, d ∈ Ii, where Ii is an indifference

set. Let δ(a) = δ(b) = δ(c) = δ(d) = l. This implies that for t ≡ {(a, b), (c, d)}, C(t) = a,

because a is the left-most alternative in X(t). But this contradicts C(t) = b. Similarly we

arrive at a contradiction if δ(a) = δ(b) = δ(c) = δ(d) = r. Thus a G-PROC that is not a

PROC cannot be an MC.

2.5 Choice from Ternary and Higher order trees

In this section we characterize choice in ternary and higher order trees. We have noted

that the results we have for binary trees are similar to the results in Rubinstein and Salant

(2006). We show in this section that the results for choice in ternary or higher order trees

are more subtle. In particular we show that there exists an ordering with the property that

indifference is permitted for bottom-ranked alternatives. For any tree t, if X(t) contains a

non-bottom-ranked alternative, C(t) is the (unique) maximal alternative according to this

ordering. If X(t) contains only bottom-ranked alternatives, then there are two possibilities

(i) if there are more than two bottom-ranked alternatives, then the alternative chosen is

x(r; t) (1 ≤ r ≤ k) (ii) if there are exactly two bottom-ranked alternatives and X(t) consists

of these two alternatives, then a relatively complicated tie-breaking rule can be used.

Below, we give an example of a choice function in ternary trees satisfying BC and RI

which is not covered by the binary tree case.

28

Example 10 Let X = {a, b}. The choice function Ĉ : Γ3({a, b}) → {a, b} is constructed as

follows. Let

Ĉ(a, b, b) = a, Ĉ(b, a, a) = a.

Ĉ(a, a, b) = a, Ĉ(b, b, a) = b.

Ĉ(a, b, a) = a, Ĉ(b, a, b) = b.

For an arbitrary ternary tree t, Ĉ(t) is obtained by the concatenation operation and the C

function defined above. It can be verified that this choice satisfies RI (BC is satisfied by

construction).

We claim that Ĉ is not MC (as defined earlier). If Ĉ were MC, there would either be (i)

a strict ordering over {a, b}, such that the maximal alternative from X(t) according to this

ordering would be chosen for any t; or (ii) a weak ordering R over {a, b} with an indicator

function δ, such that if aRb and bRa and for any t then Ĉ(t) would be the left-most (or the

right-most) alternative in t if δ(a) = δ(b) = l (or r). However Ĉ cannot satisfy (i) because

Ĉ(a, a, b) = a and Ĉ(b, b, a) = b. Nor can (ii) hold because Ĉ(a, b, b) = a and Ĉ(b, a, a) = a,

i.e. neither the left-most nor the right-most alternatives are chosen. It is also not the case

that Ĉ chooses the “middle branch” at all trees. Therefore, this example demonstrates that

choice functions satisfying BC and RI in ternary and higher order trees are qualitatively

different from those in binary trees.

We now provide a characterization.

Definition 5 A weak-ordering ≽ over X is admissible if [x ≻ y =⇒ @z, such that x ∼ z].

Indifference is permitted only for alternatives which are bottom-ranked in an admissible

ordering. If ≽ is an admissible preference ordering, let BT (≽) denote the set of bottom-
29

ranked alternatives in ≽. We note that a strict preference ordering is an admissible ordering.

The weak ordering ≽ over X where x ∼ y, for all x, y ∈ X is also an admissible ordering. In

this case BT (≽) = X.

Admissible preferences also appear in Ehlers (2002) in the context of a housing allocation

model and preferences over houses. Ehlers (2002) justifies these preferences on the grounds

that the DM does not possess (or does not have the incentives to acquire) information about

the bottom-ranked alternatives and hence ranks them as indifferent to each other.

We now define choice functions for the special case of trees t where X(t) has exactly two

alternatives.

Definition 6 A choice function C : Γk({a, b}) → {a, b} with a, b ∈ X, is Pair-Consistent

(over {a, b}), if

(i) for any t, t′ ∈ Γk, such that t, t′ ∈ Γk
e({a, b}) (k ≥ 2),[C(t) ̸= C(t′)] =⇒ [∃rk(t, t′) : 1 ≤

rk(t, t′) ≤ k, such that C(t) = x(rk(t, t′); t) and C(t′) = x(rk(t, t′); t′)].

(ii) for any t ∈ Γk, such that t ≡ t1 o t2 o. . . o tm, C(t) = C(C(t1), C(t2), . . . , C(tm)).

Suppose C is a Pair-Consistent choice function and let t, t′ ∈ Γk be elementary k-ary trees

such that t, t′ ∈ Γk
e({a, b}) and C(t) ̸= C(t′). Then there exists a position in an elementary

k-ary tree, say rk (rk : 1 ≤ rk ≤ k), such that x(rk; t) = C(t) and x(rk; t′) = C(t′). For

an arbitrary t ∈ Γk, C(t) is obtained by concatenation and the C function defined over

elementary k-ary trees above.

Consider PROC(r) over k-ary trees with X(t) = {a, b}, i.e the rth branch from the left

is chosen at every node. This choice function is obviously Pair-Consistent.

We now define HYBRID choice functions which we will show, are the only choice functions
30

which satisfy BC and RI for k-ary trees, k ≥ 2.

Definition 7 A choice function C : Γk → X, is HYBRID, if there exists an admissible

preference ordering (≽) over X, such that

(i) C(t) =M(X(t),≽), whenever X(t) ∩ (X −BT (≽)) ̸= ϕ.

(ii) C(t) = x(r; t), r : 1 ≤ r ≤ k, if X(t) ⊂ BT (≽) and |BT (≽)| ≥ 3.

(iii) C is Pair-Consistent over BT (≽), if X(t) = BT (≽) and |BT (≽)| = 2.

For any t ∈ Γk, a HYBRID chooses the maximal alternative from X(t), according to an

admissible preference ordering, if the maximal alternative is unique. For all trees in Γk such

that X(t) ⊂ BT (≽) and |BT (≽)| = 2, C is Pair-Consistent over BT (≽). If |BT (≽)| ≥ 3,

then for all trees in Γk, such that X(t) ⊂ BT (≽), C is PROC(r). Let H denote the set that

contains all HYBRIDs.

We now state the main result of this section:

Theorem 2 A choice function C : Γk → X satisfies Backward Consistency and Repetition

Indifference if and only if C is HYBRID.

Proof : Provided in the Appendix.

�

REMARK 4 Let C∗ be a PREF and let C∗∗ be a PROC. Clearly C∗, C∗∗ ∈ H, i.e. PREF

and PROC are HYBRID. In the case of PREF, the admissible ordering is a strict ordering

while in the case of PROC, the admissible ordering ≽ is such that BT (≽) = X.
31

REMARK 5 SAT is not HYBRID. To see this, assume to the contrary that SAT is HY-

BRID. Pick an arbitrary SAT (C) and let ≻ and d be the ordering and threshold respectively,

associated with it. Let t ≡ {(e, f, g), (f, d, c), (a, b, b)} and t′ ≡ {(e, f, g), (c, d, c), (a, b, b)}.

Suppose a ≻ b ≻ c ≻ d ≻ x, for any x ∈ X − {a, b, c, d}. Clearly, C(t) = d and C(t′) = c.

Since C is a HYBRID by assumption, let R be the associated admissible ordering. Since

C(t) = d, dmust either be the maximal alternative inX(t) according to R, orX(t) ⊆ BT (R).

Since X(t) = X(t′), if M(X(t), R) = d, then we must have M(X(t′), R) = d implying

C(t′) = d. But this contradicts C(t′) = c. Thus X(t) ⊆ BT (R). Here |X(t)| > 2; ac-

cording to the definition of HYBRID, we must have C(t) = x(r; t), C(t′) = x(r; t′), where

r : 1 ≤ r ≤ 3. But this is false because x(r; t) ̸= d, for any r with 1 ≤ r ≤ 3.

We can also show directly that SAT does not satisfy RI. Let t ≡ ({e, e, g}, {f, d, c}, {a, b, c}).

Here the first alternative from the left in the tree t that is not inferior to d, is d and thus C(t) =

d. Suppose we replace f by its partner alternative c and we get t′ ≡ ({e, e, g}, {c, d, c}, {a, b, c}).

Applying RI, we get C(t′) = d. But since C is SAT, it chooses the first alternative from the

left in the tree t′ that is not inferior to d, which is c. Thus we have a contradiction.

We end this section by emphasizing once again the difference in our results between

the binary and ternary and higher order trees. In the former case, the admissible ordering

permits indifference at all “levels” while in the latter case, indifference is permitted only at

the bottom. Tie-breaking in the binary case is done by picking“left”or“right” in the maximal

set in X(t). In the latter case, if there are are at least three bottom-ranked alternatives,

the chosen alternative is the alternative obtained by picking the rth branch in the tree at

every node. A more complicated tie-breaking rule can be used if there are exactly two

bottom-ranked alternatives.

32

2.6 Choice in general trees

In this section we characterize choice in general trees, i.e. all trees in Γ. Observe that Γk ⊂ Γ,

∀k ≥ 2. Since a choice function defined over Γ also defines a choice function over Γk, k ≥ 2,

we can use the results of the previous sections to characterize choices in the general case.

Definition 8 Let W = {≽}i, i = 1, 2, . . . be a collection of orderings over X. The set

W satisfies Mutual Consistency if @ ≽i∈ W and x, y, z ∈ X such that following conditions

hold: (i) x ≻i y ≻i z or x ≻i y ≽i z or x ≽i y ≻i z and (ii) there is a sequence of orderings

≽1,≽2, . . . ,≽k∈ W and a sequence of alternatives v0, v1, . . . , vk ∈ X such that v0 = z, vk = x

and vi ≽i+1 vi+1, i = 0, 1, . . . , k − 1.

The mutual consistency property requires the orderings inW to satisfy a“non-reversality”

property. Pick a pair of alternatives x, y and an ordering ≽i such that x ≻i z with the

property that there exists an alternative y which lies “between” x and y according to y.

Then there should not exist an ordering ≽j which “reverses” the ordering between x and

z; more generally there should not exist sequences of orderings in W and alternatives in X

through which the ”reverse” ordering between x and z can be obtained. We illustrate this

definition below.

Example 11 Let X = {a, b, c}. Let W = {≽1,≽2,≽3} where a ≻1 b ∼1 c, b ≻2 aP ≻2 c,

a ∼3 b ∼3 c. W is not Mutually Consistent, since a ≻1 b ∼1 c and c ∼3 a.

Definition 9 A choice function C : Γ → X is General-Hybrid (G-HYBRID) if (i) there

exists an MC choice function C2 over Γ2 (with an associated binary-admissible preference

ordering R2) (ii) there exist HYBRID choice functions {Ck}k≥3 (with associated admissible

orderings Rk, k ≥ 2) (iii) the set W = {Rk, k ≥ 2} is mutually consistent. Moreover,
33

(i) for any t ∈ Γk
e , C(t) = Ck(t), k ≥ 2.

(ii) for any t ∈ Γ, such that t ≡ t1 o t2 o. . . o tm, C(t) = C(C(t1), . . . , C(tm)).

A G-HYBRID defines choice function Ck over k-ary trees (k ≥ 2), where Ck is MC for

k = 2 and HYBRID for k ≥ 3. Thus for any t ∈ Γk, C(t) = Ck(t), and for any mixed tree t,

C(t) is obtained by concatenation operation and C function defined over k-ary trees above.

Also C2 is associated with a binary-admissible ordering and Ck, k ≥ 3 is associated with an

admissible ordering, such that the set of these orderings is mutually consistent. Let G denote

the set of all General-Hybrid choice functions.

We state the main result of this section:

Theorem 3 A choice function C : Γ → X satisfies Backward Consistency and Repetition

Indifference, if and only if C is G-HYBRID.

Proof : Provided in Appendix.

�

REMARK 6 It is easy to show that PREF, PROC choice functions are G-HYBRID and

thus belong to G. But a G-PROC choice function which is not a PROC is not G-HYBRID.

This follows from the same argument which establishes that a G-PROC, but not a PROC

is not MC over Γ2. Also a SAT choice function is not a G-HYBRID. To see this, assume to

the contrary that SAT is G-HYBRID. Pick an arbitrary SAT (C) defined over Γ. Clearly C

is SAT over k-ary, (k ≥ 2) also. On the other hand since C is G-HYBRID by assumption,

C is also HYBRID over k-ary trees (k ≥ 3). This is because a G-HYBRID choice function

defines a HYBRID choice function for k ≥ 3. Thus C is a HYBRID as well as SAT over k
34

-ary trees (k ≥ 3). But we have shown earlier that a SAT choice function from k-ary trees

(k ≥ 3) is not HYBRID. Thus we arrive at a contradiction.

2.7 Conclusion

This chapter characterizes choice functions when the DM encounters the set of alternatives

in the form of a tree. The choice functions are assumed to satisfy two behavioral axioms-

backward consistency and repetition indifference. These two axioms are shown to be inde-

pendent of each other. We characterize the choice functions from binary trees followed by

the characterizations of higher order and general trees.

We note that several questions remain unanswered. Other behavioral axioms can be

imposed on the choice functions and characterization results can be obtained for the same.

Apart from the axiomatic approach, non-cooperative game theoretic frameworks can also be

interesting. In case the trees resulting from the decision problems are large or are unknown,

the DM can have a belief over expected outcomes at each node and can update it along the

process. An optimal search problem can be of interest in this respect. We hope to address

some of these issues in future work.

35

Chapter 3

Implementation in undominated

strategies

3.1 Introduction

Implementation theory aims to characterize the outcomes of group decision-making processes

under various information structures. The group’s collective objectives are specified by a

social choice correspondence that selects a set of alternatives from the available set in every

possible “state of the world”. Implementation theory attempts to structure the interactions

amongst the agents by designing a game-form such that in every state, equilibrium actions of

agents according to some pre-specified equilibrium notion, lead to outcomes that are socially

desirable, i.e. belong to the image of the social correspondence in that state.

The literature on implementation is vast and considers various equilibrium notions. In

the complete information model, all agents are assumed to know the state while the mech-

anism designer does not. A natural notion of equilibrium in this context is Nash equilib-

36

rium (Maskin (1999)). Other notions that are consistent with this information setting and

have been studied include the iterated eliminated of weakly undominated strategies (Moulin

(1979)), sub-game perfect Nash equilibrium and various other Nash equilibrium refinements.1

In this chapter, we consider a private information setting. Each agent has private infor-

mation about her type and a state of the world is a collection of types, one for each agent. In

what follows, an agent’s type will be her preference ordering over a finite set of alternatives.

Thus each agent knows her own preferences but is ignorant of the preferences of others. The

mechanism designer has no information regarding the state. In such a model, equilibrium

notions such as the iterated elimination of dominated strategies or Nash implementation are

inappropriate. For instance, an agent will be unable to predict the strategies that will be

eliminated by other agents (since they depend on the types of the other agents which are

unobservable).

Natural notions of equilibria under such an information structure are dominant strategies

and Bayes-Nash equilibrium. If the dominant strategy notion is used, then there exists a

message at each state of the world that dominates all other messages. On the other hand,

a strategy is Bayes-Nash equilibrium if unilateral deviations are not profitable in terms

of expected pay-offs where these expectations are computed based on prior beliefs of the

other agents. The significant advantage of using dominant strategy concept is that the

mechanism designed does not depend on the prior beliefs of the agents. However domi-

nant strategy implementation is a very demanding requirement. For instance, according to

the Gibbard-Satterthwaite (Gibbard (1973), Satterthwaite (1975)) Theorem, the only social

choice functions that can be implemented in a complete domain of preferences are the dic-

tatorial (provided that the range of the social choice function has a range of at least three

alternatives).

1See Corchòn (2009), Jackson (2001) and Serrano (2004) for surveys of this literature.

37

In this chapter we will consider another natural prior-free notion of equilibrium that is

consistent with the private information assumption. This is the single round elimination

of weakly dominated strategies. We will refer to implementation with this solution concept

as implementation in undominated strategies. From a decision theoretic perspective, im-

plementation in undominated strategies has many of the strengths of dominant strategy

implementation. However as we shall see, implementation in undominated strategies is not

as restrictive as dominant strategy implementation provided we consider social choice corre-

spondences rather social choice functions.

Implementation in undominated strategies was first introduced and studied in an impor-

tant paper by Jackson (1992). The paper proved a surprising and powerful result: all social

choice correspondences can be implemented in undominated strategies. The mechanism con-

structed involves infinite strings of strategies each of which dominates the earlier one. The

paper interpreted this as a weakness in the solution concept and proposed the following re-

striction on admissible mechanisms: for each state each weakly dominated strategy must be

dominated by an undominated strategy. The paper refers to such mechanisms as bounded

mechanisms.

A natural question is the following: what are the social choice correspondences that can be

implemented in undominated strategies by bounded mechanisms Unfortunately, this appears

to be an exceedingly difficult question to answer. The only available general result available

so far is in Jackson (1992), which shows that a social choice function is implementable over a

complete domain of preferences if and only if it is dictatorial. In this chapter we shall inves-

tigate some special aspects of the implementation in undominated strategies. Throughout

the chapter we will consider the mechanisms in which the message spaces are finite. Note

that such a mechanism is bounded. However the converse is not true (see Jackson (1992) for

such an example). Borgers (1991) and Yamashita (2010) also use finite message spaces and

38

provide additional justification for their use.

We first provide a complete characterization of all implementable SCCs for the case

where there is a single agent and three alternatives, where the agent has an anti-symmetric

ordering over the alternatives. We show that it is important to consider the mechanisms

where there is a dummy agent who sends dummy messages. We provide a necessary and

sufficient condition called the “Neighborhood Flip (NF) condition” for implementation. This

condition can be thought of as a generalization of the standard monotonicity condition that

is necessary for implementation in dominant strategies. We also highlight the differences

with implementation in dominant strategies by showing that a wider class of SCCs can be

implemented.

Next, we investigate implementation (for an arbitrary number of players and alternatives)

in a more restricted class of mechanisms which we call “covered mechanisms”. These are

mechanisms where every message of an agent is undominated for at least at one preference

ordering of the agent. In general a mechanism that implements a SCC may contain a message

for an agent that is always dominated. We show that if a SCC is implementable, then

there exists a covered mechanism that implements the SCC weakly, i.e. implements a sub-

correspondence of the SCC. We identify a condition which we call “General Monotonicity

(GM)” that is necessary for implementation by covered mechanisms. The GM condition

builds on the NF condition and also implies the strategy-resistance condition that Jackson

shows is necessary for implementation. We show that the Pareto correspondence for two

agents and three alternatives fails the GM condition and hence cannot be implemented by a

covered mechanism. However, we show that there exists a complicated uncovered mechanism

that implements this SCC. These results further underscore the earlier point that a full

characterization of implementable SCCs is very difficult.

It is well-known that SCCs which pick unions of top-ranked alternatives of agents at

39

every preference profile, are implementable.2 A drawback of these SCCs is that they over-

look “compromise” alternatives. Consider a case where there are two agents and a hundred

alternatives. Alternative a is ranked first by agent 1 but hundredth by agent 2. Alternative

b is ranked first by agent 2 but hundredth by agent 1. On the other hand, alternative c

is ranked second by both agents. It seems very natural for a SCC to pick c at this profile

while the union of top-ranked alternatives SCC will pick the set {a, b}. Borgers (1991) in-

vestigates the implementability of SCCs which pick compromise alternatives. In particular

an alternative is a compromise at a profile if is not first-ranked by an agent but is (Pareto)

efficient and a SCC satisfies the Compromise Axiom if there exists a preference profile where

the SCC picks only compromises. The chapter proves that if there are either two agents or

three alternatives, then there doest not exist an efficient, implementable SCC satisfying the

compromise axiom.

We extend and refine the Borgers’ result (Borgers (1991)) in a number of ways by proving

a number of possibility as well as impossibility results. In particular we show the following:

• There does not exist an efficient, implementable SCC for any number of agents and

alternatives satisfying the compromise axiom at preference profile that are “near unan-

imous”, i.e. preference profiles where all but one agents agree on the top-most alterna-

tive.

• There does not exist a neutral, implementable SCC for two agents and an arbitrary

number of alternatives satisfying the compromise axiom. A neutral SCC is one that

treats alternatives symmetrically.

• There does not exist a unanimous, implementable SCC for two agents and an arbitrary

number of alternatives satisfying the compromise axiom and the additional axiom of

2“Integer game” mechanisms of the type used in complete information implementation theory (Maskin

(1999)) can be used for the purpose.
40

minimality. A unanimous SCC uniquely picks the alternative that is top-ranked by all

agents at a preference profile. Each alternative in the image set of a minimal SCC at

a profile is the maximal alternative in that set for some agent at that profile.

• There exists a unanimous, implementable SCC for two agents and three alternatives

satisfying the compromise axiom.

• There exists an efficient, implementable SCC satisfying the compromise axiom for an

arbitrary number of agents and alternatives in the special case where a single agent

has only one preference ordering (i.e. a single “type”).

Finally, we investigate the structure of SCCs satisfying the property of strategy resis-

tance that Jackson (1992) introduced as a necessary (but not sufficient) condition for the

implementablity of a SCC. We provide a general characterization of minimal (as defined

previously) strategy-resistant SCCs. We show that such SCCs have a particularly simple

form in the case where there are two agents but an arbitrary number of alternatives.

The chapter is organized as follows: In next section we set up the model, introduce def-

initions and state some preliminary results. Section 3 considers the single agent and three

alternatives environment and the NF condition while Section 4 concerns covered mecha-

nisms. Sections 5 deals with implementation with the Compromise Axiom. The final section

concludes.

3.2 The Model and Preliminaries

Let X denote a finite set of alternatives and N = {1, 2, ..., n}, the set of agents or players.

Let |X| = m. We shall assume that each agent i has a linear (or anti-symmetric) preference

41

ordering Pi over the alternatives of X. If xPiy then “x is strictly better than y”. In general,

for any two alternatives x, y ∈ X, we will write xRiy if either xPiy or x = y.

Let P denote the set of all orderings over the alternatives of X. An admissible domain

for every agent i denoted by Di is a subset of P . Let D ≡ D1 ×D2 ××Dn.

An environment is a collection (N,X,D).

Let P denote a preference profile which is the n-tuple (P1, P2,, Pn), where P ∈ D

For all orderings Pi we shall denote the k-th ranked alternative by tk(Pi).

A social choice correspondence (SCC) S is a map S : D → 2X \∅. Thus a SCC associates

a non-empty subset of X with every profile P ∈ D. Note that a SCC can be defined over an

arbitrary domain.

A sub-correspondence S ′ of a SCC S is a map S ′ : D → 2X \ ∅ such that S ′(P) ⊆ S(P)

for a preference profile P ∈ D.

Amechanism or game-form is anN+1 tuple Γ = ⟨M1,M2, ...Mn; g⟩ whereMi, i = 1, 2, ...n

is the message set of player i and g :M1 ×M2 × ...×Mn → A is an outcome function.

Let a mechanism Γ = (M, g) be given. We say that mi ∈ Mi weakly dominates m′
i ∈ Mi

at Pi, if g(mi,m−i)Rig(m
′
i,m−i) for all m−i ∈ M−i with g(mi,m−i)Pig(m

′
i,m−i) for at least

one m−i ∈M−i. If there is a strategy m∗
i ∈Mi that weakly dominates all other strategies in

Mi at Pi, then we say that m∗
i a dominant strategy at Pi. Let Di(Γ, Pi) denote the set of all

messages of agent i which are not weakly dominated at Pi. Also let Hi(Γ, Pi) denote the set

of dominant strategies of agent i at Pi. Since Pi is a strict ordering Hi(Γ, Pi) can consist of

at most one alternative. A strategy mi is undominated at Pi, if there is no strategy in Mi

that weakly dominates mi at Pi.

42

For any preference profile P , let D(Γ, P) ≡ D1(Γ, P1) × ... × Dn(Γ, Pn) denote the set

of undominated strategy profiles. Also, for any profile P , let H(Γ, P) ≡ H1(Γ, P1) × ... ×

Hn(Γ, Pn) denote the set of dominant strategy profiles and an alternative of H(Γ, P) is

denoted by h(Γ, P). Note that H(Γ, P) is a singleton for all P .

Definition 10 The SCC S is implementable in dominant strategies if there exists a mech-

anism Γ = ⟨M1,M2, ...MN ; g⟩ such that S(P) = g(h(Γ, P)) for all P ∈ D. Note that if S is

implementable in dominant strategies, then S(P) is singleton-valued at all profiles P .

We assume that the agents know their own preference orderings or “types”. When dom-

inant strategies exist in the mechanism, it is natural to assume that agents will play them.

This strategy is a best-response for an agent to any belief that the agent may have regarding

the the choice of strategies of other agents.

Include the necessary and sufficient condition for implementation in dominant strategies.

Definition 11 The SCC S is implementable in undominated strategies if there exists a

mechanism Γ = ⟨M1,M2, ...MN ; g⟩ such that S(P) = g(D(Γ, P)) for all P ∈ D. Note that

S(P) may be multi-valued.

We say that a SCC S is weakly implementable in undominated strategies if there exists

an implementable sub-correspondence S ′ of S.

The set of all undominated strategies at Pi for an agent contain only those strategies

that survive elimination of weakly dominated strategies at Pi. The solution concept of

implementation in undominated strategies is weaker than the implementation in dominant

strategies. It requires that the outcome set in the game form at a state of the world coincides

with the socially desired outcome set when all agents play the undominated strategies at that
43

state of the world. We provide an example to highlight the difference with the implementation

in dominant strategies.

Example 12 There is a single agent and the set of alternatives X = {a, b, c}. Let Pi,

i = 1, 2, .., 6, denote the six possible preference orderings over X such that aP1bP1c, aP2cP2b,

cP3aP3b, cP4bP4a, bP5cP5a and bP6aP6c. Let S be the following SCC: S(P1) = {a, b},

S(P2) = {a, b}, S(P3) = {a, b, c}, S(P4) = {a, b, c}, S(P5) = {b} and S(P6) = {b}.

We claim that S cannot be implemented in dominant strategies. Suppose it can. Let

(M, g) be a mechanism that implements it. We allow the mechanism designer (who has no

preferences) to send an arbitrary number of dummy messages. (We are allowing for the case

where the designer sends a single or no message.) Let mi be the message which is dominant

at P4. Since a ∈ S(P4), it must be that mi produces a against some dummy message. But

the message (say, m′
i) that is dominant at P5 produces only b for all dummy messages since

S(P5) = {b}. However since bP4a, mi is not a dominant at P4.

However, it can be verified that the mechanism (Γ) below implements S in undominated

strategies. In this mechanism, the mechanism designer sends three dummy messages, α1,

α2, α3, and while the single agent can send one of two messages m1 and m2. The outcome

function is described below.

m1 m2

α1 a b

α2 b b

α3 c b

Table 3.1: Mechanism Γ implementing S

We note that m1,m2 ∈ Di(Γ, P
1
1), m1 ∈ Di(Γ, P

1
2), m1 ∈ Di(Γ, P

1
3), m1,m2 ∈ Di(Γ, P

1
4),

44

P1 P2 P3 P4 P5 P6

m1 m2 m1 m1 m1 m2 m1 m1

α1 a b a a a b b b

α2 b b b b b b b b

α3 c b c c c b b b

Table 3.2: Description of undominated strategies in Γ implementing S

m1 ∈ Di(Γ, P
1
5), m1 ∈ Di(Γ, P

1
6). The example shows that a wider class of SCCs can be

implemented in undominated strategies.

In our study of implementation in undominated strategies, it is important to introduce a

qualification. Jackson (1992) has shown that it is possible to implement any SCC in undom-

inated strategies if no restrictions are imposed on the mechanism. However the canonical

mechanism used for this result involves an infinite string of strategies each of which domi-

nates the earlier strategy without having any undominated strategy. This is unsatisfactory

because an agents’ best-response according to the criteria specified, does not exist. Jackson

(1992) therefore introduces the restriction of “bounded-ness” on admissible mechanisms.

Definition 12 A mechanism Γ is bounded if, for all mi ∈ Mi, if mi /∈ Di(Γ, Pi) then there

exists m̂i ∈ Di(Γ, Pi) and m̂i weakly dominates mi at Pi.

Thus the bounded-ness property puts the restriction that there cannot be an infinite

sequence of dominated strategies without any undominated strategy at the“end”. We restrict

attention only to bounded mechanisms. In fact we make the stronger assumption throughout

this chapter that the message spaces for all agents are finite. This ensures that every agent i

will have at least one undominated strategy at any Pi. Thus, a finite mechanism is bounded

although the converse is false. Throughout the chapter we shall say that S is implementable
45

if S is implementable in undominated strategies by a finite mechanism.

Jackson (1992) provides a necessary condition that an implementable SCC must satisfy.

Jackson (1992) calls this condition “strategy-resistance”.

Definition 13 Strategy-resistant SCC:A SCC S is strategy-resistant if for all i, P , and P ∗
i

and for each b ∈ S(P ∗
i , P−i) there exists a ∈ S(P) such that aRib.

Equivalently, S is strategy-resistant if for all i, P, P ∗
i , we have τ(Pi, S(Pi, P−i))Riτ(Pi, S(P

∗
i , P−i))

where τ(Pi, B) is the maximal alternative in B according to Pi. Thus a strategy-resistant

SCC is not manipulable by any agent by misrepresenting her ordering.

We now introduce some general properties of SCCs that we will use later.

Definition 14 A SCC S : D → 2X \ ∅ satisfies neutrality if following holds: let λ be a

bijection λ : X → X and let P, P ′ ∈ D such that xPiy implies that λ(x)P ′
iλ(y), for all

x, y ∈ X, for all i ∈ N . Then S(P) = λ(S(P ′)).

If a SCC satisfies neutrality, then it does not discriminate between alternatives.

Definition 15 Pareto Efficiency: A SCC S : D → 2X \ ∅ satisfies Pareto efficiency if for no

P ∈ D, there are x, y ∈ X such that xPiy for all i ∈ N and y ∈ S(P).

An alternative is Pareto dominated at a profile if there exists another alternative which

is strictly preferred to this alternative by all agents. A SCC is Pareto-efficient if it never

picks a Pareto dominated alternative at any profile.

Definition 16 A SCC S : D → 2X \ ∅ satisfies unanimity if for all P ∈ D and a ∈ X such

that t1(Pi) = a for all i ∈ N , we have S(P) = a.
46

A unanimous SCC always respects consensus if it exists. Thus it always picks an alterna-

tive ranked first by all agents in a profile. Clearly a Pareo efficient SCC satisfies unanimity.

Note that the properties of neutrality, unanimity and Pareto efficiency are familiar in the

literature and these are discussed in Moulin (1983).

3.3 The single agent and three alternatives environment

In this section, we consider an environment E0 with a single agent and three alternatives,

i.e. E0 = ({i}, X,P) where |X| = 3. We will characterize the class of SCCs that can be

implemented in this environment.

As we have seen earlier, an important issue is the set of dummy messages that the designer

can send. A natural case to consider is the one where the designer is completely passive. It

is best to think of this case as the one where the agent sends a message which leads to an

outcome. Equivalently one can think of the designer sending a single dummy message i.e.

|M−i| = 1. We shall call these mechanisms simple mechanisms.

The characterization of an implementable SCC with simple mechanisms is trivial and

is given below. We first introduce a piece of notation that will be used extensively in this

section.

Let x, y ∈ X and Pi, Pj ∈ P . We say (x, y) is a neighborhood flip for Pi, Pj, if

1. xPiy, yPjx and there is no z ∈ X such that xPizPiy and yPjzPjx;

2. for any alternative w ∈ X, such that wPix, we have wPjy and for any alternative

q ∈ X such that yPiq, we have xPjq.

Thus x and y are contiguous in Pi and Pj. Their rankings are reversed in these two
47

orderings while those of all other alternatives remain unchanged.

Proposition 2 A SCC S is implementable by a simple mechanism if and only if it satisfies

the following condition. If (x, y) is a neighborhood flip between Pi and P
′
i and S(Pi) ̸= S(P ′

i),

then S(Pi) = x and S(P ′
i) = y.

The proof of Proposition 2 is straightforward and therefore omitted. An implementable

SCC must be singleton-valued at all orderings. In addition, if Pi and P
′
i have a neighborhood

flip, then S(Pi) and S(P
′
i) are the same or (S(Pi), S(P

′
i)) is the neighborhood flip between

Pi and P
′
i . Example 13 provides an example of a SCC satisfying the condition.

We now consider the general case where the mechanism designer can send multiple dummy

messages which together with the message sent by the agent determines the outcome. We

show that the Neighborhood Flip condition defined below is necessary and sufficient for

implementation.

Definition 17 Let (x, y) be a neighborhood flip between Pi and P
′
i . A SCC S satisfies the

Neighborhood Flip (NF) condition if for all a ∈ S(Pi) \ S(P ′
i),

1. either a = x and y ∈ S(P ′
i) or

2. yPia and x, y ∈ S(Pi), y ∈ S(P ′
i).

The NF condition says the following. Suppose that a ∈ S(Pi) and a /∈ S(P ′
i), where Pi

and P ′
i have a neighborhood flip. Then there exists an alternative b ∈ S(P ′

i) such that b is

strictly preferred to a at P ′
i . If a is not strictly preferred to b at Pi, then both x, y must

belong to S(Pi) and y must belong to S(P ′
i).

48

We give two examples of SCCs satisfying the NF condition and one which does not.

Let X = {a, b, c}. Let Pi, i = 1, 2, .., 6, denote the possible preference orderings aP1bP1c,

aP2cP2b, cP3aP3b, cP4bP4a, bP5cP5a and bP6aP6c.

Example 13 Let S be the following SCC: S(P1) = {a}, S(P2) = {a}, S(P3) = {a}, S(P4) =

{b}, S(P5) = {b} and S(P6) = {b}. S satisfies the NF condition and is implementable by a

simple mechanism.

Example 14 Let S be the following SCC: S(P1) = {a, b}, S(P2) = {a, b}, S(P3) = {a, b, c},

S(P4) = {a, b, c}, S(P5) = {b} and S(P6) = {b}. Clearly S satisfies the NF condition. In

Example 12 we have illustrated the mechanism that implements S.

Example 15 Let S be the following SCC: S(P1) = {a, b}, S(P2) = {a, b}, S(P3) = {a, b, c},

S(P4) = {a, b, c}, S(P5) = {b} and S(P6) = {b, c}. We note that (b, a) is a neighborhood

flip between P6, P1 and c ∈ S(P6) \ S(P1). But b /∈ S(P6). Thus S does not satisfy the NF

condition.

We have the following characterization result.

Theorem 4 A SCC S is implementable in environment E0 if and only if it satisfies the NF

Condition.

Proof : See Appendix II for the proof. �

We illustrate the algorithm and the argument in the proof for the SCC described in

Example 16

49

Example 16 We provide an example to illustrate the algorithm for designing the imple-

menting mechanism in case (B). Let Pi, i = 1, 2, .., 6, denote the six possible preference

orderings over X such that aP1bP1c, aP2cP2b, cP3aP3b, cP4bP4a, bP5cP5a and bP6aP6c. Let

S be the following SCC: S(P1) = {a, b}, S(P2) = {a, b, c}, S(P3) = {a, c}, S(P4) = {b, c},

S(P5) = {b, c} and S(P6) = {a, b, c}. We note that b ∈ S(P2) \ S(P3), c ∈ S(P6) \ S(P1) and

a ∈ S(P5) \ S(P4). Following the algorithm described above we construct the mechanism

implementing S in Step 1, 2 and 3.

The first, second and third blocks from Steps 1, 2 and 3 are given in Tables 3.3, 3.4, 3.5

and the augmented mechanism that implements S is given in Table 3.6 .

P1 P2 P3 P4 P5 P6

m6 m1 m′
1 m2 m3 m4 m5

α1 b b c c c b b

α2 a a c c c c a

α3 a a a a b b b

Table 3.3: The first block from Step 1

P1 P2 P3 P4 P5 P6

m2 m3 m4 m5 m6 m1 m′
1

α4 a a c c c c a

α5 a a a b b b a

α6 b c c c b b b

Table 3.4: The second block from Step 2

50

P1 P2 P3 P4 P5 P6

m5 m4 m3 m2 m1 m′
1 m6

α7 a a c c a c a

α8 b c c c b c b

α9 a a a b b b b

Table 3.5: The third block from Step 3

P 1
1 P 2

1 P 1
3 P 1

4 P 1
5 P 1

6

m1 m2 m3 m4 m5 m6 m7 m8 m9

α1 b b c c c b b b b

α2 a a c c c c c a a

α3 a a a a b b b b b

α4 a a a c c c c c a

α5 a a a a b b b b a

α6 b c c c c b b b b

α7 a a a c c a c a a

α8 b c c c c b c b b

α9 a a a a b b b b b

Table 3.6: The mechanism implementing S

3.4 Covered and uncovered mechanisms

In this section we investigate implementation of SCCs by a more restricted class of mech-

anisms. An implementing mechanism may include a message that it is dominated at all

Pi ∈ Di, i.e. this message is “never” undominated. Yamashita (2010) has termed such mes-

sages nuisance messages. In this section we investigate the role played by such messages in

implementation.

51

We define the class of mechanisms that do not contain nuisance messages.

Definition 18 A mechanism γ = (M, g) is covered if for each agent i ∈ N and for each

message mi ∈Mi, there exists Pi ∈ Di such that mi is undominated at Pi.

A mechanism Γ = (M, g) is covered if all messages (for every agent) are undominated in at

least one preference ordering. According to the next Proposition attention can be restricted

to the covered mechanisms provided the solution concept is weakened from implementation

to weak implementation.

Proposition 3 If a SCC is implementable then there exists a covered mechanism that weakly

implements it.

Proof : We provide the proof for n = 2, but it can be generalized to an arbitrary number

of agents. Let Γ = (M, g) be a finite mechanism that implements S. For an arbitrary agent

i, let M∗
i = {m∗

i ∈ Mi| there is no Pi ∈ Di, such that m∗
i ∈ Di(Γ, Pi)}, i = 1, 2. Thus,

M∗
i ⊂Mi denotes the set of messages for the agent, so that all messages in this set are never

undominated at an ordering for the agent. Let M̃ i =Mi \M∗
i . For an arbitrary message in

M̃ i, there exists Pi ∈ Di such that the message is undominated at Pi. We can say that M̃ i

contains all no nuisance messages for i in Γ.

Let m∗
1 ∈ M∗

1 . We construct a mechanism Γ′ = (M ′, g) such that M2 = M ′
2 and M ′

1 =

M1 \ {m∗
1}. Thus the mechanism Γ′ is obtained from Γ by eliminating the message m∗

1 from

the message space for the agent 1 without affecting the message space for the other agent and

the outcome function g. We analyze the impacts of this elimination on the other messages

in the mechanism, i.e. whether an undominated message at an arbitrary P2 ∈ P in the

mechanism Γ remains undominated at P2 in the mechanism Γ′ and whether an undominated

52

message at an arbitrary P1 ∈ P in the mechanism Γ remains undominated at P1 in the

mechanism Γ′.

Let P1 ∈ D1 be an arbitrary preference ordering of the agent 1. There must exist a

message, say m′
1 ∈ M ′

1 so that m′
1 ∈ D1(Γ, P1) and m′

1 weakly dominates m∗
1 at P1 in Γ.

This is because m∗
1 ∈ M∗

1 and thus m∗
1 is never undominated. Clearly the elimination of

m∗
1 from Γ will leave m′

1 undominated at P1. All other messages in D1(Γ, P1) which do not

weakly dominate m∗
1 at P1 in Γ also remain undominated at P1. Also the elimination of m∗

1

from Γ does not convert any message m′′
1 into an undominated message at P ∗

1 ∈ D1 in Γ′,

where m′′
1 /∈ D1(Γ, P

∗
1). Thus after the elimination of m∗

1 from Γ also, M̃1 remains the set of

all “no nuisance” messages for the agent 1 in Γ′.

Thus if we eliminate a message of the agent 1 from M1 in Γ, such that the message is

weakly dominated at all P1 ∈ D1, it does not affect the set of messages for the agent 1 which

are undominated at a preference ordering of the agent 1.

Next we consider the impact of the elimination of m∗
1 on the set of messages for the agent

2, which are undominated at a preference ordering of agent 2, i.e. M̃2. Let m
′′
2 ∈ M̃2 where

m′′
2 ∈ D2(Γ, P2) for P2 ∈ D2. There can be two possible effects of the elimination of m∗

1:

(a) There exists m′′′
2 ∈ D2(Γ, P2) ⊂ M̃2 such that g(m1,m

′′′
2)P2g(m1,m

′′
2) for all m1 ∈

M1 \ {m∗
1} and g(m∗

1,m
′′
2)P2g(m

∗
1,m

′′′
2). Clearly the elimination of m∗

1 from the mechanism

allows m′′′
2 to dominate m′′

2 at P2. But m
′′′
2 remains undominated at P2 in the mechanism Γ′,

i.e. after the elimination of m∗
1 from Γ. Thus although M̃2 contains m′′

2, but M̃2
′
does not

contain m′′
2. Also a message m∗

2 that belongs to M
∗
2 cannot become undominated at P2 after

the elimination of m∗
1. This is because if a message is dominated by another undominated

message at P2 in Γ, even after eliminating the message m∗
1 it remains dominated by the later

message at P2. It can be easily verified.

53

(b) m′′
2 remains undominated at P2 in Γ′. Thus if we delete a message which is not undomi-

nated at any possible preference ordering of an agent from a mechanism, the set of messages

which are undominated at some preference ordering of that agent remains the same. It may

contract the set of messages which are undominated at some possible preference ordering of

the other agent. But the deletion of the message can never expand the set of messages which

are undominated at some possible preference ordering of the other agent.

The implication of eliminating a message which is never undominated in a mechanism is

that no message which was not an undominated message, can become undominated at a pref-

erence ordering for an agent. Thus the mechanism obtained after deleting the message can

implement a sub-correspondence of the SCC implemented by the former mechanism. Since

Γ implements S, Γ′ implements a sub-correspondence of S and hence it weakly implements

S. If we keep on deleting all messages from M∗
1 and M∗

2 then we arrive at a mechanism Γ′′

so that M̃ i
′′ ⊆ M̃ i, i = 1, 2. Thus Γ′′ weakly implements S.

�

In the last section we have showed that the NF condition is necessary as well as sufficient

for implementation when there is a single agent and three alternatives. Next we identify

a condition which we call the General Monotonicity (GM) condition that is necessary for

implementation by a covered mechanism for an arbitrary number of agents and alternatives.

The GM condition generalizes the NF condition when we consider implementation by covered

mechanisms. We also show that the GM condition implies the strategy-resistance condition

which is necessary for implementation (see Jackson (1992)). We state the condition after we

introduce a definition.

Definition 19 A tuple z = (a, P, i, P ′
i) where a ∈ X, P ∈ D, i ∈ N , P ′

i ∈ Di, is an

“admissible tuple” if a ∈ S(P) \ S(P ′
i , P−i). Let za denote the first alternative in z, i.e.

54

za = a.

Definition 20 A SCC S : D → X satisfies the General Monotonicity (GM) condition if

there exists an association Ψ : X ×D×N ×∪Di → X ×X ×X ×X ×X ×∪D−i, such that

1. (a) if a1 ∈ S(Pi, P−i) ∩ S(P ′
i , P−i), then Ψ(a1, P, i, P

′
i) = (a1, a1, a1, a1, a1, P−i);

(b) if a1 /∈ S(Pi, P−i) \ S(P ′
i , P−i), i.e. (a1, P, i, P

′
i) is an admissible tuple, then

Ψ(a1, P, i, P
′
i) = (a2, a3, a4, a5, a6, P

′
−i), where a2 ∈ S(P ′

i , P−i), a3 ∈ S(Pi, P−i),

such that a2P
′
ia1, a2R

′
ia3, a3Ria2. If a3 = a1, then a4 = a5 = a6 = a1, P

′
−i = P−i.

If a3 ̸= a1, then a4Pia5, a5Ria6, a6R
′
ia5, a6P

′
ia4, where a4, a5 ∈ S(P), a6 ∈

S(P ′
i , P−i).

(c) if z1 = (a1, P, i, P
′
i) and z2 = (a1, P, j, P

′
j) be two admissible tuples, where i ̸= j;

i, j ∈ N , then there exist b1 ∈ S(P), b2 ∈ S(Pi, P
′
j , P−ij), b3 ∈ S(P ′

i , Pj, P−ij) and

b4 ∈ S(P ′
i , P

′
j , P−ij), such that (i) b1Rib3, b2Rib4, b3R

′
ib1, b3R

′
iΨ2(z2), b4R

′
ib2 and

b4R
′
iΨ1(z2); (ii) b1Rjb2, b3Rjb4, b2R

′
jΨ2(z1), b2R

′
jb1, b4R

′
jΨ1(z1) and b4R

′
jb3.

2. there does not exist a sequence of admissible tuples z0, z1,, zT , zT+1, where

(a) zT+1 = z0;

(b) zra = Ψk(z
r−1) for some k = 1,, 5, 1 ≤ r ≤ T +1, where Ψk(a, P, i, P−i) denotes

an alternative in Ψ(a, P, i, P−i), k = 1, 2, 3, 4, 5.

Proposition 4 If a SCC can be implemented by a covered mechanism, then it satisfies the

GM condition.

Proof : Let S be a SCC that is implemented by a covered mechanism Γ = (M, g). Let

Pi, P
′
i ∈ Di, P−i ∈ D−i. Let a1 ∈ S(Pi, P−i). There is a message mi which is undominated at

55

Pi and a message m−i which is undominated at P−i, such that g(mi,m−i) = a1. There are

two possibilities:

1. a1 ∈ S(P ′
i , P−i), or

2. a1 ∈ S(Pi, P−i) \ S(P ′
i , P−i).

In the later case, there is a message m′
i which is undominated at P ′

i and a message m′′
i

which is undominated at Pi, such that m′
i dominates mi and m

′′
i at P ′

i and m
′′
i dominates m′

i

at Pi.

Let g(m′
i,m−i) = a2 and g(m′′

i ,m−i) = a3, so that a2P
′
ia1, a3Ria2 and a2R

′
ia3. We note

that a2 is strictly preferred to a1 according to P ′
i because mi /∈ D(Γ, P ′

i). This is because

a1 /∈ S(P ′
i , P−i). But m′

i and m′′
i dominate each other at P ′

i and Pi respectively and it is

also possible that a2 = a3. Since m′
i ∈ D(Γ, P ′

i) and m′′
i ∈ D(Γ, Pi) and m−i ∈ D(Γ, P−i),

we must have a2 ∈ S(P ′
i , P−i) and a3 ∈ S(Pi, P−i). If m′′

i = mi then clearly a3 = a1. But if

m′′
i ̸= mi, since both mi and m

′′
i are undominated at Pi there must exist a message profile,

say m′
−i ∈M−i and there exists P ′

−i such that m′
−i ∈ D(Γ, P ′

−i) and g(mi,m
′
−i)Pig(m

′′
i ,m

′
−i).

This is because since m′′
i ̸= mi and thus a3 ̸= a1, it must be that a3Pia1. But since both mi

and m′′
i ∈ D(Γ, Pi), there must exist a message profile by other players, say, m′

−i ∈ D(Γ, P ′
−i)

such that g(mi,m
′
−i)Pig(m

′′
i ,m

′
−i). Let g(m′′

i ,m
′
−i) = a5 and g(mi,m

′
−i) = a6. Since m′′

i

dominates m′
i at Pi and m

′
i dominates m′′

i at P
′
i , we must also have a5Ria6 and a6R

′
ia5. Since

m′
i dominates mi at P

′
i , we also have a6P

′
ia4.

It easy to construct an association Ψ : X×PN ×N×∪Pi → X×X×X×X×X×∪P−i,

such that if a1 ∈ S(Pi, P−i) ∩ S(P ′
i , P−i), then Ψ(a1, P, i, P

′
i) = (a1, a1, a1, a1, a1, P−i). If

a1 /∈ S(Pi, P−i) \ S(P ′
i , P−i), then the following holds.

We have shown that if a1 /∈ S(Pi, P−i) \ S(P ′
i , P−i), there are a2 ∈ S(P ′

i , P−i) and
56

a3 ∈ S(Pi, P−i) such that a2P
′
ia1, a3Ria2 and a2R

′
ia3. Thus we have Ψ(a1, P, i, P

′
i) =

(a2, a3, a4, a5, a6, P
′
−i), such that if a3 = a1, then Ψ(a1, P, i, P

′
i) = (a2, a1, a1, a1, a1, P−i). If

a3 ̸= a1, then we have P ′
−i ∈ P−i, such that a4Pia5, a5Ria6, a6R

′
ia5 and a6P

′
ia4. Thus,

in this case Ψ(a1, P, i, P
′
i) = (a2, a3, a4, a5, a6, P

′
−i). Combining both the cases we have

that if a1 /∈ S(Pi, P−i) \ S(P ′
i , P−i), then Ψ(a1, P, i, P

′
i) = (a2, a3, a4, a5, a6, P

′
−i), where

a2 ∈ S(P ′
i , P−i), a3 ∈ S(Pi, P−i), such that a2P

′
ia1, a2R

′
ia3, a3Ria2. If a3 = a1, then

a4 = a5 = a6 = a1, P
′
−i = P−i. If a3 ̸= a1, then a4Pia5, a5Ria6, a6R

′
ia5, a6P

′
ia4, where

a4, a5 ∈ S(P), a6 ∈ S(P ′
i , P−i). Hence 1.(a) and 1.(b) are proved.

Let z1 = (a1, P, i, P
′
i) and z2 = (a1, P, j, P

′
j) be two admissible tuples, where i ̸= j; i, j ∈

N . It follows from the discussion above that there are three messages, mi, m
′′
i ∈ D(Γ, Pi)

and m′
i ∈ D(Γ, P ′

i)for the agent i and three messages, mj, m
′′
j ∈ D(Γ, Pj) and m

′
j ∈ D(Γ, P ′

j)

for the agent j, such that (i) mi is weakly dominated by m′
i at P

′
i , m

′′
i is weakly dominated

by m′
i at P

′
i and m

′
i is weakly dominated by m′′

i at Pi; (ii) mj is weakly dominated by m′
j at

P ′
j , m

′′
j is weakly dominated by m′

j at P
′
j and m

′
j is weakly dominated by m′′

j at Pj.

Clearly, g(mi,mj,m−ij) = a1, g(mi,m
′′
j ,m−ij) = Ψ2(z2), g(mi,m

′
j,m−ij) = Ψ1(z2),

g(m′′
i ,mj,m−ij) = Ψ2(z1) and g(m

′
i,mj,m−ij) = Ψ1(z1). This follows from the design of the

implementing mechanism Γ, where m−ij represents the message profile by all other agents

except agents i and j.

Let g(m′′
i ,m

′′
j ,m−ij) = b1, g(m

′′
i ,m

′
j,m−ij) = b2, g(m

′
i,m

′′
j ,m−ij) = b3 and g(m

′
i,m

′
j,m−ij) =

b4. Since mi, m
′′
i ∈ D(Γ, Pi), m

′
i ∈ D(Γ, P ′

i), mj, m
′′
j ∈ D(Γ, Pj) and m

′
j ∈ D(Γ, P ′

j), we have

b1 ∈ S(P), b2 ∈ S(Pi, P
′
j , P−ij), b3 ∈ S(P ′

i , Pj, P−ij) and b4 ∈ S(P ′
i , P

′
j , P−ij). It is easy to

check that (i) b1Rib3, b2Rib4, b3R
′
ib1, b3R

′
iΨ2(z2), b4R

′
ib2 and b4R

′
iΨ1(z2); (ii) b1Rjb2, b3Rjb4,

b2R
′
jΨ2(z1), b2R

′
jb1, b4R

′
jΨ1(z1) and b4R

′
jb3. If Ψ2(z2) = a1 and Ψ2(z1) = a1, then b1 = a1,

b2 = Ψ1(z2) and b3 = Ψ1(z1). If Ψ2(z1) = a1, Ψ2(z2) ̸= a1, then b1 = Ψ2(z2) and b2 = Ψ1(z2).

Similarly, if Ψ2(z2) = a1, Ψ2(z1) ̸= a1, then b1 = Ψ2(z1) and b3 = Ψ1(z1). Hence we prove

57

1.(c).

We prove the last part of the condition by the method of contradiction. Let S be an

implementable SCC and let Γ = (M, g) be the covered mechanism that implements S. Let

z0, z1,, zT , zT+1 be a sequence of admissible tuples such that

1. zT+1 = z0;

2. zra = Ψk(z
r−1) for some k = 1,, 5, 1 ≤ r ≤ T + 1.

Thus, Ψk(z
T) = zT+1

a . Since zT+1 = z0, we have zT+1
a = z0a. Let z0 = (z0a, P, i, P−i)

for P ∈ D, i ∈ N,P−i ∈ D−i. Since z0a ∈ S(Pi, P−i) \ S(P ′
i , P−i), there must exist mi ∈

D(Γ, Pi), m
′
i ∈ D(Γ, P ′

i), m
′′
i ∈ D(Γ, Pi), m−i ∈ D(Γ, Pi) such that g(mi,m−i) = z0a

and m′
i dominates mi and m′′

i at P ′
i . Also m′′

i dominates m′
i at Pi. There also exists

P ′
−i ∈ D−i, m

′
−i ∈ D(Γ, P ′

−i) such that g(mi,m
′
−i)Pig(m

′′
i ,m

′
−i), g(m

′′
i ,m

′
−i)Rig(m

′
i,m

′
−i),

g(m′
i,m

′
−i)R

′
ig(m

′′
i ,m

′
−i). Clearly, g(m′

i,m−i) = Ψ1(z
0), g(m′′

i ,m−i) = Ψ2(z
0), g(mi,m

′
−i) =

Ψ3(z
0), g(m′′

i ,m
′
−i) = Ψ4(z

0) and g(m′
i,m

′
−i) = Ψ5(z

0). Thus from an admissible tuple z0

we have a set of messages, as described above.

We note that z10 = Ψk(z
0), k = 1, .., 5. Since z1 is an admissible tuple, we have a set of

messages in a similar way as described above and this forms a chain of messages as z2, z3,....,

zT are admissible tuples. Since zT+1 = z0, we complete a round of having sets of messages in

the mechanism and come back to the initial admissible tuple, which again requires to have

a set of messages and so on. This leads to cycles after cycles of messages and thus we have

infinite messages in the mechanism. Thus the implementing mechanism cannot be finite.

This proves that there does not exist a sequence of admissible tuples z0, z1,....,zT , zT+1, with

zT+1 = z0 and zra = Ψ(zr−1) (for some k = 1,, 5 and 1 ≤ r ≤ T + 1). Hence the theorem

is proved.

58

�

In the following proposition we show that the GM condition implies the strategy-resistance

of SCC.

Proposition 5 A SCC satisfying the GM condition satisfies strategy-resistance.

Proof : We prove it by the method of contradiction. Let S be a SCC satisfying GM condition.

Suppose that it does not satisfy strategy-resistance. This implies that there are a, b ∈ X,

Pi, P
′
i ∈ Di such that a =MaxPi

{S(Pi, P−i)}, b ∈ S(P ′
i , P−i) \ S(Pi, P−i) and bPia.

Since (b, (P ′
i , P−i), i, Pi) is an admissible tuple and S satisfies the GM condition, we must

have an association Ψ : X × D × N × ∪Di → X × X × X × X × X × ∪D−i, such that

Ψ(b, (P ′
i , P−i), i, Pi) = (b2, b3, b4, b5, b6, P

′
−i), where b2 ∈ S(Pi, P−i), b3 ∈ S(P ′

i , P−i), such that

b2Pib, b2R
′
ib3, b3Rib2.

Since b2Pib and bPia, we have b2Pia. But this contradicts a = MaxPi
{S(Pi, P−i)}, since

b2 ∈ S(Pi, P−i). �

3.4.1 An Application

In this subsection, we explore the covered versus uncovered mechanism question and provide

an illustration of Proposition 4. In what follows, the Pareto correspondence (denoted by

S : P → 2X \ ∅) is the correspondence that selects the set of efficient alternatives at all

profiles.

59

Proposition 6 The Pareto correspondence is not implementable by a covered mechanism in

the case n = 2 and m = 3.

Proof : We will show that the Pareto Correspondence violates the GM condition and then

invoke Proposition 4.

Let N = {1, 2}, X = {a, b, c} and Pi = {P i
1, P

i
2, P

i
3, P

i
4, P

i
5, P

i
6} for i ∈ N such that

aP i
1bP

i
1c, aP

i
2cP

i
2b, cP

i
3aP

i
3b, cP

i
4bP

i
4a, bP

i
5cP

i
5a, bP

i
6aP

i
6c. The following table presents the

Pareto correspondence S in this environment.

P 2
1 P 2

2 P 2
3 P 2

4 P 2
5 P 2

6

P 1
1 {a} {a} {a, c} {a, b, c} {a, b} {a, b}

P 1
2 {a} {a} {a, c} {a, c} {a, b, c} {a, b}

P 1
3 {a, c} {a, c} {c} {c} {b, c} {b, c, a}

P 1
4 {a, b, c} {a, c} {c} {c} {b, c} {b, c}

P 1
5 {a, b} {a, b} {b, c} {b, c} {b} {b}

P 1
6 {a, b} {a, b} {b, c, a} {b, c} {b} {b}

Table 3.7: Pareto Correspondence for the n = 2, m = 3 case

We note that S(P 1
1 , P

2
4) = {a, b, c}, S(P 1

1 , P
2
3) = {a, c}, S(P 1

2 , P
2
3) = {a, c}, S(P 1

2 , P
2
4) =

{a, c}. To see that S cannot be implemented by a covered mechanism we prove it by the

method of contradiction. Let Γ = (M, g) be a covered mechanism that implements S. Since

b ∈ S(P 1
1 , P

2
4)\S(P 1

2 , P
2
4), (b, (P

1
1 , P

2
4), 1, P

1
2) is an admissible tuple. Since S is implementable

it must satisfy the GM condition and thus there must exist an association Ψ : X ×P ×N ×

∪Pi → X ×X ×X ×X ×X ×P2, such that Ψ(b, (P 1
1 , P

2
4), {1}, P 1

2) = (x1, x2, x3, x4, x5, P
′
2),

where x1P
1
2 b, x2R

1
1x1 and x1R

1
2x2.

There are the following subcases.

60

(A.1) x1 = c, x2 = b. Following the GM condition we have x3 = x4 = x5 = b and

P 2′ = P 2
4 .

(A.2) x1 = a, x2 = a, Following the GM condition we have x3 = b, x4 = c, x5 = c and

P 2′ = P 2
4 .

Similarly, since b ∈ S(P 1
1 , P

2
4) \ S(P 1

1 , P
2
3), (b, (P

1
1 , P

2
4), {2}, P 2

3) is an admissible tuple.

Following the GM condition, there is an association Ψ : X ×P ×N ×∪Pi → X ×X ×X ×

X × X × P1, such that Ψ(b, (P 1
1 , P

2
4), {2}, P 2

3) = (y1, y2, y3, y4, y5, P
′
1), where y1P

2
3 b, y2R

2
4y1

and y1R
2
3y2.

We have two subcases.

(B.1) y1 = a, y2 = b, y3 = y4 = y5 = b and P 1′ = P 1
1 .

(B.2) y1 = c, y2 = c, y3 = b, y4 = a, y5 = a and P 1′ = P 1
1 .

We consider various possibilities discussed above.

(1) (A.1) and (B.1): Thus x1 = c, x2 = b, x3 = x4 = x5 = b and y1 = a, y2 = b,

y3 = y4 = y5 = b. Following 1.(c) of the GM condition, we must have b1 ∈ S(P 1
1 , P

2
4),

b2 ∈ S(P 1
1 , P

2
3), b3 ∈ S(P 1

2 , P
2
4) and b4 ∈ S(P 1

2 , P
2
3), such that (i) b1R

1
1b3, b2R

1
1b4, b3R

1
2b1,

b3R
1
2b, b4R

1
2b2 and b4R

1
2a; (ii) b1R

2
4b2, b3R

2
4b4, b2R

2
3b, b2R

2
3b1, b4R

2
3c and b4R

2
3b3.

Clearly, b1 = b, b2 = a, b3 = c. But there is no alternative b4 satisfying the condition

above. For instance, if b4 = a then b4R
2
3c does not hold good. Similarly, if b4 = c, then b4R

1
2a

does not hold good. Thus 1.(c) of the GM condition is violated.

(2) (A.1) and (B.2): In this case, according to 1.(c) of the GM condition, we must have

b1 ∈ S(P 1
1 , P

2
4), b2 ∈ S(P 1

1 , P
2
3), b3 ∈ S(P 1

2 , P
2
4) and b4 ∈ S(P 1

2 , P
2
3), such that (i) b1R

1
1b3,

b2R
1
1b4, b3R

1
2b1, b3R

1
2c, b4R

1
2b2 and b4R

1
2c; (ii) b1R

2
4b2, b3R

2
4b4, b2R

2
3b, b2R

2
3b1, b4R

2
3c and b4R

2
3b3.

61

Clearly, b1 = c, b2 = c, b3 = c and b4 = c. We also note that y3 = b and P 1′ = P 1
1 . Let z

0 =

(b, (P 1
1 , P

2
4), {2}, P 2

3) . We note that Ψ3(z
0) = b and (b, (P 1

1 , P
2
4), {2}, P 2

3) is again admissible

tuple. This violates the part (2) in the GM condition.

Similarly we can show that if (A.2) and (B.1) hold good or if (A.2) and (B.2) hold good,

then the GM condition is violated.

�

However, note that the Pareto correspondence is implementable for n = 2 and m = 2. In

particular the following mechanism Γ̂ in Table 3.8 can be used.

m2
1 m2

2 m2
3 m2

4

m1
1 a a a b

m1
2 a a b a

m1
3 a b b b

m1
4 b a b b

Table 3.8: Mechanism Γ̂

Proposition 7 The Pareto correspondence is implementable in the case where n = 2 and

m = 3.

Proof : We consider the environment described in the proof of Proposition 6. We provide a

mechanism Γ̄ = (M, g) in Table 3.9 that implements the Pareto correspondence (S) when

there are two agents and three alternatives.

The message space for the agent 1 in the mechanism in Table 3.9 has 20 messages and

the message space for the agent 2 has 18 messages: from m2
1 to m2

18. The messages for the
62

m2
1 m2

2 m2
3 m2

4 m2
5 m2

6 m2
7 m2

8 m2
9 m2

10 m2
11 m2

12 m2
13 m2

14 m2
15 m2

16 m2
17 m2

18

m1
1 a a a a a b b a a c a a b a a a a a

m1
2 a a a a b a a b a a a c a a a b b a

m1
3 a a a a a c b a a c a a c a a a a a

m1
4 a a a a b a a b a a a c a a a c c a

m1
5 a b b c b b b b b c c b b b b b b b

m1
6 b b a b b b b b b b b c b b c b b c

m1
7 a b b a b b b b b c a b b b b b b b

m1
8 b b a b b b b b b b b c b b a b b a

m1
9 a a c c c c b c a c c c c c c c c c

m1
10 c c a c b c c b c c c c c c c c c c

m1
11 a b c c c c b c b c c c c c c c c c

m1
12 c c a c b c c b c c c c c c c c c c

m1
13 a a a c c b b a a c c c c c c c c c

m1
14 a a a a b b b b b a a c b c c c c a

m1
15 a a a a b b b b b b a c b b c c b a

m1
16 a a a a b c a b a c c c c c c c c a

m1
17 a c a a b c c b a c c c c c c c c a

m1
18 b b a c b b b b b c c c c c c c c a

m1
19 c b a c b c b b c c c c c c c c c a

m1
20 a a a a b b b b b c a c c c a a c a

Table 3.9: Mechanism Γ̄

agent 1 are presented as row messages and the messages for the agent 2 are presented as

column messages. For agent 1, m1
1 and m1

2 are undominated at P 1
1 , i.e. m

1
1,m

1
2 ∈ D(Γ̄, P 1

1).

Similarly, m1
3,m

1
4 ∈ D(Γ̄, P 1

2), m
1
5,m

1
6 ∈ D(Γ̄, P 1

5), m
1
7,m

1
8 ∈ D(Γ̄, P 1

6), m
1
9,m

1
10 ∈ D(Γ̄, P 1

3),

m1
11,m

1
12 ∈ D(Γ̄, P 1

4). For the agent 2, we have m2
1,m

2
2 ∈ D(Γ̄, P 2

1), m
2
3,m

2
4 ∈ D(Γ̄, P 2

2),

m2
5,m

2
6,m

2
7 ∈ D(Γ̄, P 2

5), m
2
8,m

2
9 ∈ D(Γ̄, P 2

6), m
2
10,m

2
11,m

2
12 ∈ D(Γ̄, P 2

3) and m
2
13 ∈ D(Γ̄, P 2

4).

�

REMARK 7 In view of Proposition 6, it must be the case the mechanism used in the proof

of this Proposition is uncovered. This is indeed the case and can be verified directly as follows.

The message space for the agent 1 in mechanism Γ̄ can be been partitioned into two sets,

M̄1 consisting of messages m1
1 through m1

12 and M̂1 from m1
13 through m1

20. Every message

in M̄1 is undominated for some ordering for agent 1 while messages in M̂1 are dominated

all orderings. Thus M̂1 is a set of nuisance messages for 1. Similarly, messages from m2
14

63

through m2
18 are nuisance messages for 2. Clearly Γ̄ is uncovered. A critical observation is

that implementation fails if nuisance messages are deleted. For instance consider a truncated

mechanism where the nuisance messages for agent 2 are deleted. Then m1
5 weakly dominates

m1
1 in the truncated mechanism; thus m1

1 is no longer undominated at P 1
1 . Consequently,

there does not exist undominated messages for agents 1 and 2 which yield b at the profile

P 1
1 , P

2
4 even though it is Pareto-efficient at the profile. Hence the truncated mechanism does

not implement S (although it weakly implements it according to Proposition 3).

The discussion above makes it clear that the GM condition is not necessary for imple-

mentation (if we allow for uncovered mechanisms). It also illustrates complexities involved

in characterizing implementable SCCs.

3.5 Enforcing Compromises

In this section, we investigate some issues raised in Borgers (1991).

Definition 21 The alternative x is a compromise at profile P if

(i) There does not exist an agent i ∈ N such that t1(Pi) = x

(ii) x is Pareto efficient.

A SCC S satisfies the Compromise Axiom (CA) if there exists a profile P ∈ D such that

[x ∈ S(P)] ⇒ [x is a compromise at P]

64

Thus S satisfies CA if there exists a profile where the outcome set contains only com-

promises. Borgers (1991) investigates the implementability of SCCs which satisfies CA. He

shows the following.

Theorem 5 (Borgers (1991)) There does not exist an efficient, implementable SCC S :

P → 2X \ ∅ satisfying CA in the case n = 2 or m = 3.

We extend and refine Theorem 5 in several ways in this section. The next three propo-

sitions extend the impossibility result while the next two are possibility results.

The next result shows that the impossibility result can be extended to an arbitrary

number of agents and alternatives provided that the CA axiom is strengthened. In particular

compromises cannot be the only outcomes at near-unanimous profiles.

Definition 22 A preference profile P ∈ D is near-unanimous if there exists an agent i ∈ N

such that t1(Pj) = t1(Pk) ̸= t1(Pi), for all j, k ∈ N \ {i}.

All except one agent agrees on the top-ranked alternative at a near-unanimous profile.

Definition 23 A SCC S satisfies the Strong Compromise Axiom (SCA) if there exists a

near-unanimous profile P̂ ∈ D such that

[x ∈ S(P̂)] ⇒ [x is a compromise at P̂]

We note that SCA is a stronger axiom than CA. If n = 2, then SCA is equivalent to

CA and Proposition 8 below generalizes one part of Theorem 5. For large n, SCA may

be regarded as restrictive because it is “close” to violating unanimity. Thus SCA would be

65

incompatible with the assumption of No Veto Power which is widely used in the theory

of Nash implementation. However, as Proposition 8 below demonstrates, compromises at

near-unanimous profiles are problematic while implementing efficient SCCs.

Proposition 8 Let n ≥ 2 and m ≥ 3 be arbitrary. There does not exist an efficient,

implementable SCC S : P → 2X \ ∅ satisfying SCA.

Proof : We prove it by the method of contradiction. Let S : P → 2X \∅ be an efficient SCC

that is implementable by Γ = (M, g) and satisfies SCA. Let P ∈ P be a near-unanimous

profile such that t1(P 1) = t1(P 2) = = t1(P n−1) = a and t1(P n) = b. We can present P in

the following matrix.

=

P1 P2 . . Pn−1 Pn

a a . . a b

.

.

.

.

.

.

Let P ′ ∈ P , such that t1(P ′

1) = t1(P ′
2) = = t1(P ′

n−1) = a, t1(P ′
n) = b, t2(P ′

1) =

t2(P ′
2) = = t2(P ′

n−1) = b and t2(P ′
n) = a.

66

=

P ′
1 P ′

2 . . P ′
n−1 P ′

n

a a . . a b

b b . . b a

.

.

.

.

.

.

Let S(P) = c, where c is a compromise. The analysis remains the same if we have more

than one compromise alternative in S(P). Clearly, if Pn = P ′
n then following the efficiency

axiom, we have S(P) = a or b. Thus S cannot satisfy SCA. Interesting case arises when

Pn ̸= P ′
n. We prove the following Claims.

Claim 1: S(P1, P2,, P
′
n) = a.

Proof: Since S is efficient, S(P1, P2,, P
′
n) ∈ {a, b}. But if S(P1, P2,, P

′
n) = b, the

agent n can manipulate at P via P ′
n. This is because we have assumed that S(P) = c, where

c is a compromise and thus bPnc. Thus strategy-resistance, which is a necessary condition

for implementability (Jackson (1992)), is violated.

Claim 2: a /∈ S(P ′
1, P2,, Pn).

Proof: This claim also follows directly from the strategy-resistance of S.

Claim 3: S(P ′
1, P

′
2,, P

′
n−1, Pn) = b.

67

Proof: Since S is Pareto efficient, S(P ′
1, P

′
2,, P

′
n−1, Pn) is a subset of {a, b}. Let a ∈

S(P ′
1, P

′
2,, P

′
n−1, Pn). Therefore there are m′

1 ∈ D(Γ, P ′
1),...., m

′
n−1 ∈ D(Γ, P ′

n−1), mn ∈

D(Γ, Pn) such that g(m′
1,,m

′
n−1,mn) = a. Either m′

n−1 ∈ D(Γ, Pn−1), or there is message

m̃′
n−1 ∈ D(Γ, Pn−1), such that g(m1,m2,, m̃

′
n−1,mn) Rn−1 g(m1,m2,,m

′
n−1,mn) for all

m1 ∈ M1, m2 ∈ M2,...,mn−2 ∈ Mn−2, mn ∈ Mn. In particular, we have the following:

g(m′
1,m

′
2,,m

′
n−2, m̃

′
n−1,mn) Rn−1 g(m

′
1,m

′
2,,m

′
n−2,m

′
n−1,mn).

This follows from the finiteness of the mechanism. Note that we have assumed that

g(m′
1,m

′
2,,m

′
n−2,m

′
n−1,mn) = a. We observe that g(m′

1,m
′
2,,m

′
n−2, m̃

′
n−1,mn) Rn−1

g(m′
1,m

′
2,,m

′
n−2,m

′
n−1,mn) and t

1(Rn−1) = a. Thus g(m′
1,m

′
2,,m

′
n−2, m̃

′
n−1,mn) = a.

This follows from the strategy-resistance. Therefore a ∈ S(P 1
′, P ′

2,, P
′
n−2, Pn−1, Pn).

Therefore there are m′
1 ∈ D(Γ, P ′

1),...., m
′
n−2 ∈ D(Γ, P ′

n−2), mn−1 ∈ D(Γ, Pn−1), mn ∈

D(Γ, Pn) such that g(m′
1,,m

′
n−2,mn−1,mn) = a. There are two possibilities, one of which

holds good: (i) m′
n−2 ∈ D(Γ, Pn−2); (ii) there is message m̃′

n−2 ∈ D(Γ, Pn−2), such that

g(m1,m2,,mn−3, m̃
′
n−2,mn−1,mn) Rn−2 g(m1,m2,,mn−3,m

′
n−2,mn−1,mn) for all m1 ∈

M1, m2 ∈M2,...,mn−3 ∈Mn−3, mn−1 ∈Mn−1, mn ∈Mn.

In particular, g(m′
1,m

′
2,,m

′
n−3, m̃

′
n−2,mn−1,mn)Rn−2 g(m

′
1,m

′
2,,m

′
n−3,m

′
n−2,mn−1,mn).

But g(m′
1,,m

′
n−2,mn−1,mn) = a and t1(Rn−2) = a. Thus g(m′

1,m
′
2,,m

′
n−3, m̃

′
n−2,mn−1,mn) =

a. Therefore we have a ∈ S(P 1
′, P ′

2,, P
′
n−3, Pn−2, Pn−1, Pn).

We can thus show that a ∈ S(P 1
′, P2,, Pn−3, Pn−2, Pn−1, Pn). But this contradicts

Claim (2). Therefore a /∈ S(P ′
1, P

′
2,, P

′
n−1, Pn) and S(P ′

1, P
′
2,, P

′
n−1, Pn) = b. This

completes the proof of Claim (3).

From Claim (3) we know that S(P ′
1, P

′
2,, P

′
n−1, Pn) = b. Thus for all m′

1 ∈ D(Γ, P ′
1),

m′
2 ∈ D(Γ, P ′

2),....,m
′
n−1 ∈ D(Γ, P ′

n−1),mn ∈ D(Γ, Pn). Letm
′
1 ∈ D(Γ, P ′

1),m
′
2 ∈ D(Γ, P ′

2),....,m
′
n−1 ∈

D(Γ, P ′
n−1), mn ∈ D(Γ, Pn). We have two possibilities. Either (i) mn ∈ D(Γ, P ′

n) or (ii) there

68

exists m̂′
n ∈ D(Γ, P ′

n), such that g(m1,m2,,mn−1, m̂
′
n) R

′
n g(m1,m2,,mn−1,mn), ∀m1 ∈

M1,m2 ∈M2,,mn−1 ∈Mn−1. Therefore g(m
′
1,m

′
2,,m

′
n−1, m̂

′
n)R

′
n g(m

′
1,m

′
2,,m

′
n−1,mn).

Thus g(m′
1,m

′
2,, m̂

′
n) = b. This is because t1(P ′

n) = b. We Note this holds for all messages

in D(Γ, P ′
1), D(Γ, P ′

2),....,D(Γ, P ′
n−1).

From Claim 1 we know that for all m1 ∈ D(Γ, P1), m2 ∈ D(Γ, P2),...., mn−1 ∈ D(Γ, Pn−1)

and for the message m̂′
n, we have g(m1,m2,,mn−1, m̂

′
n) = a. Letm∗

1 ∈ D(Γ, P1) be an arbi-

trary message. Eitherm∗
1 ∈ D(Γ, P 1

′) or there ism∗∗
1 ∈ D(Γ, P ′

1) such that g(m∗∗
1 ,m2,,mn)

R′
1 g(m

∗
1,m2,,mn) for all m2,,mn. Thus g(m∗∗

1 ,m2,, m̂
′
n) R

′
1 g(m

∗
1,m2,, m̂

′
n), for

all m2 ∈ D(Γ, P2),...., mn−1 ∈ D(Γ, Pn−1).

We know that for allm1 ∈ D(Γ, P1),m2 ∈ D(Γ, P2),,mn−1 ∈ D(Γ, Pn−1) and for m̂n
′ ∈

D(Γ, P n
′) it must be that g(m1,m2,,mn−1,mn

′) = a. Thus g(m∗
1,m2,,mn−1, m̂n

′) =

a, for all m2 ∈ D(Γ, P2),,mn−1 ∈ D(Γ, Pn−1). Since t1(P 1
′) = a, we must have that

g(m∗∗
1 ,m2,,mn−1, m̂

′
n) = a, for all m2 ∈ D(Γ, P2),, mn−1 ∈ D(Γ, Pn−1).

Therefore g(m∗∗
1 , m̃2,m3,,mn−1, m̂

′
n) = a for any arbitrary m̃2 ∈ D(Γ, P2) and for all

m3 ∈ D(Γ, P3),, mn−1 ∈ D(Γ, Pn−1). Either m̃2 ∈ D(Γ, P ′
2) or there exists m̂2 ∈ D(Γ, P ′

2)

such that g(m1, m̂2,m3,,mn) R
′
2 g(m1, m̃2,m3,,mn) for all m1,m3,,mn. Therefore

g(m∗∗
1 , m̂2,m3,,mn−1, m̂

′
n) R

′
2 g(m∗∗

1 , m̃2,m3,,mn−1, m̂
′
n), where m3 ∈ D(Γ, P3),....,

mn−1 ∈ D(Γ, Pn−1). Thus g(m∗∗
1 , m̂2,m3,,mn−1,m

′
n) = a. This is because the follow-

ing holds good:

g(m∗∗
1 , m̃2,m3,,mn−1, m̂

′
n) = a, where m3 ∈ D(Γ, P3,...., mn−1 ∈ D(Γ, Pn−1) and t

1(R′
2) =

a.

Continuing like this we can show that g(m∗∗
1 , m̂2, m̂3,, m̂n−1,m

′
n) = a, where m̂3 ∈

D(Γ, P3),, m̂n−1 ∈ D(Γ, Pn−1). But we arrive at a contradiction to the finding above

that g(m1,m2,m3,,mn−1,m
′
n) = b for all m1 ∈ D(Γ, P ′

1),,mn−1 ∈ D(Γ, P ′
n−1).

69

We have proved that S(P) must have either a or b. Therefore it is not possible that

the outcome set at a near-unanimous profile consists of only compromises. Hence an imple-

mentable, efficient SCC does not satisfy SCA.

�

The next proposition shows that the impossibility result is retained if the efficiency axiom

is replaced by neutrality. However this result holds only when there are two agents and three

alternatives.

Proposition 9 : There exists no implementable SCC S : P → 2X \ ∅ satisfying neutrality

and CA in the case n = 2 and m = 3.

Proof : Let X = {a, b, c} and N = {1, 2}. Let Pi = {P i
1, P

i
2, P

i
3, P

i
4, P

i
5, P

i
6}, where aP i

1bP
i
1c,

aP i
2cP

i
2b, cP

i
3aP

i
3b, cP

i
4bP

i
4a, bP

i
5cP

i
5a and bP i

6aP
i
6c, i = 1, 2. Let S be an implementable SCC

that satisfies neutrality and CA. Let Γ = (M, g) be a mechanism that implements S. Since

S satisfies CA, there is a profile such that the image set of S at that profile consists of only

compromise alternatives. Without loss of generality, we assume that S(P 1
1 , P

2
4) = b. We

note that only compromise alternative at this profile is b. Thus, for all m1
1 ∈ D(Γ, P 1

1) and

for all m2
4 ∈ D(Γ, P 2

4), we have g(m1
1,m

2
4) = b. Since t1(P 1

5) = b there exists m1′
5 ∈ D(Γ, P 1

5)

such that g(m1′
5 ,m

2
4) = b, for all m2

4 ∈ D(Γ, P 2
4). This is because, all m1

1 ∈ D(Γ, P 1
1) must

either be undominated or be weakly dominated by an undominated message at P 1
5 .

Let h : X → X be a bijection such that h(a) = b, h(b) = c, h(c) = a. Since S(P 1
1 , P

2
4) = b

and S is neutral, it follows that at the profile P ′ = (P 1
5 , P

2
2) we have S(P ′) = c. Thus for

m1
5 ∈ D(Γ, P 1

5) and for m2
2 ∈ D(Γ, P 2

2), we have g(m1
5,m

2
2) = c. Since c is the top-most

alternative in P 4
2 , there is an undominated strategy m2′

4 at P 4
2 , such that together with all

the undominated strategies at P 1
5 it produces c. This implies that g(m1

5,m
2′
4) = c, for all

70

m1
5 ∈ D(Γ, P 1

5). But we have already observed that there is m1′
5 ∈ D(Γ, P 1

5) such that

g(m1′
5 ,m

2
4) = b, for all m2

4 ∈ D(Γ, P 2
4). This leads to a contradiction.

�

Our next (impossibility) result relates to the implementation of “small” correspondences.

Roughly speaking there is a bias in favor of large SCCs in the matter of implementability.

For instance, there is a super-correspondence of every SCC that is implementable. Although

this may be trivial SCC that selects the entire set of alternatives at every profile. Consider

the following sort of question: given a SCC, is there a sub-correspondence that is also

implementable? An immediate consequence of an implementable sub-correspondence must

be that it is minimal, which we define below.

Definition 24 A SCC S is minimal if for all P , S(P) = ∪i{τ(Pi, S(P))}.

Thus each alternative in the image set of a minimal SCC at a profile is the maximal

alternative for some agent at that profile. Minimality is of interest because of the proposition

below.

Proposition 10 If a SCC is implementable, then it must be the super-correspondence of a

minimal SCC.

The proof of Proposition 10 is an immediate consequence of the necessity of strategy-

resistance for implementation which is demonstrated in Jackson (1992). Two examples of

minimal SCCs are the dictatorial SCC 3 and the SCC that picks the top-ranked alternatives

of all agents. Observe that neither of these two SCCs satisfies the CA axiom. Our next

3A SCC S is dictatorial if there exists an agent i ∈ N such that for every profile P , S(P) = t1(Pi).

71

result states that this holds generally; minimality, unanimity, implementability and CA are

irreconcilable.

Proposition 11 Assume n = 2. There does not exist a unanimous, minimal and imple-

mentable SCC S : P → 2X \ ∅ satisfying CA.

In order to prove the result we will use the lemma below.

Lemma 1 Let S : P → 2X \∅ be a strategy-resistant SCC for an arbitrary number of agents

and alternatives. There exists mappings ψi : P−i → 2X , ∀i ∈ N such that [τ(Pi, ψi(P−i))] ∈

S(P) for all P , i.e. S is a super-correspondence of [τ(Pi, ψi(P−i))]. If S is minimal, then

we have S(P) = [τ(Pi, ψi(P−i))].

Proof : We first show that τ(Pi, ψi(P−i)) ∈ S(P). We define ψi(P−i) = ∪Pi
{S(Pi, P−i)}.

Therefore, τ(Pi, ψi(P−i)) = τ(Pi,∪Pi
S(Pi, P−i)) and let τ(Pi, ψi(P−i)) = x. To see that

x ∈ S(P), we use the method of contradiction. Suppose x /∈ S(P). Since τ(Pi, ψi(P−i)) = x,

there must be P i
′, P i

′ ̸= Pi, such that x ∈ S(P i
′, P−i). Since x = τ(Pi,∪Pi

{S(Pi, P−i)}), we

must have xRiy, ∀y ∈ S(P). Therefore player i can manipulate via P i
′. This is a violation

of the strategy-resistance. Therefore τ(Pi, ψi(P−i)) ∈ S(P) for all i ∈ N .

Since S is minimal, it is easy to show that S(P) = [τ(Pi, ψi(P−i))]. This follows from

the following argument. We have to show that S(P) does not consist of an alternative other

than [τ(Pi, ψi(P−i))]. We prove this by the method of contradiction. Let z ∈ S(P) where

z ̸= τ(Pi, ψi(P−i)) , for i ∈ N . Since S is minimal and z ∈ S(P) then it must be that z =

τ(Pj, S(Pj, P−j)) for j ∈ N . Let τ(Pj, ψj(P−j) = z′, z ̸= z′. Since ψj(P−j) = ∪Pj
S(Pj, P−j),

we must have z′Rjx, for x ∈ S(P). Thus z′Rjz, since z ∈ S(P). But this contradicts

z = τ(Pj, S(Pj, P−j)).

72

�

We now return to the main proof. Proof : Let S be an implementable SCC satisfying

unanimity and minimality. From Lemma 1 we have ψi : P−i → 2X , ∀i ∈ N such that

S(P) = [τ(Pi, ψi(Pj))] for all P . Since S is unanimous t1(Pj) ∈ ψi(Pj)∀i, j; i ̸= j. This

can be shown by the method of contradiction. Without loss of generality, we assume that

t1(P2) /∈ ψ1(P2). Let t1(P2) be denoted by y. Let P ∗
1 ∈ P1 such that t1(P ∗

1) = t1(P2) = y.

We know that τ(P ∗
1 , ψ1(P2)) ∈ S(P ∗

1 , P2). But y /∈ ψ1(P2) and hence τ(P ∗
1 , ψ1(P2)) ̸= y. Let

τ(P ∗
1 , ψ1(P2)) = x, x ̸= y. Thus x ∈ S(P ∗

1 , P2). But since S is unanimous and t1(P ∗
1) =

t1(P2) = y, it must be that S(P ∗
1 , P2) = y. Thus we arrive at a contradiction.

To see that S cannot satisfy CA we assume that the converse is true. Let P be a

profile such that S(P) = b, where b is a compromise. Let t1(P1) = x, t2(P2) = y. Thus

x ∈ ψ2(P1) and y ∈ ψ1(P2). It must be that bP1y, bP2x, since b is an efficient alternative

at P . Let P ′
1 ∈ P1 where rankings of all alternatives are same as in P1, except that y and

b have interchanged their ranks in P ′
1. Let P ′

2 ∈ P2, where rankings of all alternatives are

same as in P2, except that x and b have interchanged their ranks in P ′
2. We know that

S(P1, P
′
2) = {τ(P1, ψ1(P

′
2)), τ(P

′
2, ψ2(P1)). Since x ∈ (ψ2(P 1), the best alternative in (ψ2(P 1)

according to P ′
2 is x and thus x ∈ S(P1, P

′
2). This is because, player 2 cannot manipulate

to get an alternative which is ranked above b in P2 or above x in P ′
2. This follows from the

strategy-resistance of S.

Since S is minimal, S(P1, P
′
2) contains only x. This is because, if S(P1, P

′
2) would contain

an alternative t, t ̸= x, then t would not be the best alternative in S(P1, P
′
2) for an agent

according to the orderings P1 or P ′
2. Thus minimality is violated. Similarly S(P ′

1, P2) = y.

We consider the profile P ′
1, P 2′. and the mechanism which implements S. Since top-ranked

alternative in P ′
1 is x, there exists a message that is undominated at P ′

1 and results x together

73

with all messages that are undominated at P ′
2. [We call this “Observation 1”]

But the top alternative of P ′
2 is y. Thus at least an undominated message at P ′

2 results

in y together with all undominated messages at P ′
1. [We call this ”Observation 2”]

We complete the proof by noting that Observations 1 and 2 contradict each other.

�

The next example shows that minimality is critical for Proposition 11. In particular we

show that there exists a unanimous and implementable SCC S : P → 2X \ ∅ satisfying CA

in the case n = 2 and m = 3.

Example 17 We use the same environment and notation as in Example 12. In Table 3.10

we present an unanimous SCC S∗ for two agents and three alternatives. We note that S∗

satisfies unanimity and S∗(P 1
1 , P

2
4) = b. Thus S∗ also satisfies CA. We prove that S∗ is

implementable. In particular the mechanism in Table 3.11 can be used to implement S∗.

In this mechanism m1
1 are m1

2 undominated at P 1
1 and P 1

2 respectively. There are two

strategies, m1
3 and m1

4, that are undominated at P 1
3 . m

1
3 is undominated at P 1

4 and m1
5 is

undominated at both P 1
5 and P 1

6 . We note that this is a symmetric mechanism i.e. the agent

2 has the same undominated strategies as the agent 1 at different orderings.

Whether Borgers’ result (Borgers (1991)) can be extended to an arbitrary number of

agents and alternatives, is an open question. We consider an environment with an arbitrary

number agents and alternatives, where an agent, i, has an arbitrarily fixed ordering P̄ i. Thus

Di = {P̄i}. We say that this agent is a “passive” agent. Other agents have all preference

orderings over X. Let Ed = (N,X, D̃) denote this environment. We have the following

result.
74

P 2
1 P 2

2 P 2
3 P 2

4 P 2
5 P 2

6

P 1
1 {a} {a} {a, b} {b} {b} {b}

P 1
2 {a} {a} {a, c} {c} {b} {b}

P 1
3 {a, b} {a, c} {c} {c} {b} {b}

P 1
4 {b} {c} {c} {c} {b} {b}

P 1
5 {b} {b} {b} {b} {b} {b}

P 1
6 {b} {b} {b} {b} {b} {b}

Table 3.10: The SCC S∗

m2
1 m2

2 m2
3 m2

4 m2
5

m1
1 a a b a b

m1
2 a a c a b

m1
3 b c c c b

m1
4 a a c c b

m1
5 b b b b b

Table 3.11: The mechanism implementing S∗

Proposition 12 There is an implementable SCC in environment Ed, efficient SCC satisfy-

ing CA when there is an arbitrary number of agents and alternatives.

Proof : We prove it for an arbitrary number of agents and alternatives. Without loss of

generality, we assume that agent 1 is the passive agent. Thus the ordering of agent 1 is fixed,

say at P̄1. Thus the domain of orderings for the agent 1 is restricted to D1 = {P̄1}. The

domains of orderings for the other agents are assumed to be complete, i.e. for an agent j,

j ̸= i, we have Dj = Pj.

75

Let S be a SCC such that the following holds:

for a profile, P̄ = (P̄1, P2,, Pn), where P2 ∈ P2,....,Pn ∈ Pn, we have

(i) S(P̄) = t2(P̄1), if t
2(P̄1) is an efficient alternative at P̄ ;

(ii) S(P̄) = t1(P̄1), if t
2(P̄1) is inefficient at P̄ .

It is easy to check that S is a Pareto efficient SCC.

Let Γ = (M, g) be a direct mechanism, i.e. Mi = Pi, ∀i ∈ N . Also let g(P̄1, P2,, Pn) =

S(P̄1, P2,, Pn) for all P2 ∈ P2,....,Pn ∈ Pn.

Let P̄2 ∈ P2,....., P̄n ∈ Pn such that t1(P̄2) = t3(P̄1) and t1(P̄j) = t4(P̄1), for all

j ∈ N \ {1, 2}. We note that S(P̄1, P̄2,, P̄n) = t2(P̄1). This is because b is efficient

at (P̄1, P̄2,, P̄n). We also note that t2(P̄1) is a compromise alternative at (P̄1, P̄2,, P̄n).

Thus S satisfies the CA. It is easy to check that telling the truth is the only undominated

strategy at an ordering for an agent. Thus Γ implements an efficient SCC that satisfies the

CA.

�

3.6 Conclusion

This chapter investigates some aspects of implementation in undominated strategies by fi-

nite mechanisms. We provide a condition called the NF condition that characterizes imple-

mentable SCCs in an environment with a single agent and three alternatives. We also provide

another condition called the GM condition and show that this is necessary for implementable

SCCs in a general environment. We also prove various possibility and impossibility results

76

regarding SCCs satisfying the Compromise axiom and efficiency.

A full characterization of implementable SCCs remains very difficult. We are yet to prove

whether the GM condition is also sufficient for implementation. Whether Borgers’ (Borgers

(1991)) impossibility result generalizes also remains open. In future we hope to address some

of these questions.

77

Chapter 4

Appendices

4.1 Appendix I

Appendix 1 We give the proofs of Theorems 1 and 2 here.

Proof of Theorem 1 Necessity: Let C be a choice function from binary trees that satisfies

BC and RI. Define the following binary relations: for all a, b ∈ X (i) a ∼1 b if and only if

C(a, b) = a, C(b, a) = b; (ii) a ∼2 b if and only if C(a, b) = b, C(b, a) = a; and (iii) a ≻ b if

and only if C(a, b) = C(b, a) = a. We claim that

CLAIM 1. ∼i is symmetric for i = 1, 2 ;

CLAIM 2. ≻ is asymmetric;

CLAIM 3. ∼i is transitive for i = 1, 2.

CLAIM 4. ≻ is transitive.

Claims 1 and 2 follow obviously from the definitions of ∼i and ≻. Let us prove Claim 3.

78

Let a ∼1 b, b ∼1 c. Let t ≡ ({a, a}, {b, c}). By BC, C(t) = C(C(a, a), C(b, c)). Since a ∼1 b

and b ∼1 c we have C(t) = C(a, b) = a. By RI, C({a, a}, {c, c}) = a. By BC, C(a, c) = a

[Observation (1)]

Let t′ ≡ ({c, c}, {b, a}). Using the definitions of ∼i, i = 1, 2 and by BC, C(t′) =

C(C(c, c), C(b, a))=C(c, b) = c. By RI and replacing b by a, we get C({c, c}, {a, a}) = c. By

BC, C(c, a) = c [Observation (2)]

From observations (1) and (2), we conclude that ∼1 is transitive. We can show similarly

that ∼2 is also transitive.

Next we show that ≻ is also transitive. Let a ≻ b, b ≻ c. Let t ≡ ({a, a}, {b, c}).

By BC and the definition of ≻, we get C(t)=C(C(a, a), C(b, c)) = C(a, b) = a. By RI,

C({a, a}, {c, c}) = a. By BC, C(a, c) = a. Let t′′ ≡ ({c, b}, {a, a}). Applying BC and

the definition of ≻ we get C(t′′) = C(C(c, b), C(a, a)) = C(b, a) = a. RI implies that

C({c, c}, {a, a}) = a. BC then implies C(c, a) = a. Thus a ≻ c. Thus ≻ is transitive.

We prove following claims for any {a, b, c} ∈ X:

CLAIM 1. a ≻ b, b ∼1 c =⇒ a ≻ c,

Let a ≻ b and b ∼1 c. Let t ≡ ({a, a}, {b, c}). By BC and using the binary relations,

C(C(a, a), C(b, c)) = C(a, b) = a. By RI, C({a, a}, {c, c}) = a. Thus C(a, c) = a. Let

t′ ≡ ({b, c}, {a, a}) and by BC, C(t′) = C(b, a) = a. By RI again, C({b, c}, {a, a}) =

C({c, c}, {a, a}) = a. Thus C(c, a) = a. Therefore a ≻ c.

CLAIM 2. a ≻ b, b ∼2 c =⇒ a ≻ c,

We can prove CLAIM 2 similarly.

CLAIM 3. a ∼1 b, b ≻ c =⇒ a ≻ c,

79

Let a ∼1 b, and b ≻ c. Let t ≡ ({a, b}, {b, c}). Applying BC and using the definitions

of binary relations ∼1 and ≻ we get C(C(a, b), C(b, c)) = C(a, b) = a. Applying RI we

get C(C(a, a), C(c, c)) = a. But applying BC yields C(C(a, a), C(c, c)) = C(a, c) and hence

C(a, c) = a. Therefore only possible relations are a ∼1 c and a ≻ c. But if a ∼1 c holds then

using symmetry of ∼1, we get a ∼1 c implies c ∼1 a. Also using transitivity of ∼1 and given

a ∼1 b we get c ∼1 b. But this is in contradiction with b ≻ c. Thus a ≻ c.

CLAIM 4. a ∼2 b, b ≻ c =⇒ a ≻ c.

We can show similarly that CLAIM 4 holds.

CLAIM 5. It is not possible to have a ∼1 b and b ∼2 c.

Suppose the claim is not true. Let t ≡ ({b, a}, {c, c}). Applying BC we get C(t) =

C(C(b, a), C(c, c)). Given a ∼1 b and b ∼2 c, we get C(t) = C(b, c) = c. Now applying RI,

C({a, a}, {c, c}) = c. Again BC implies that C(a, c) = c. We can show a ∼2 c is not possible.

This is because had that been true, then a ∼2 c, b ∼2 c or c ∼2 b (by symmetry of ∼2) would

imply a ∼2 b by transitivity of ∼2. But this contradicts a ∼1 b.

Note that C(a, c) = c rules out the case a ≻ c and a ∼1 c directly. The only remaining

possibility is c ≻ a. Suppose this is true. Let t′ ≡ ({c, c}, {a, b}). By BC, C(t′) = C(c, a) = c.

By RI and BC, we thus get C({c, c}, {a, b}) = c = C((c, c), (b, b)) = C(c, b). This contradicts

b ∼2 c. Thus a ∼1 b and b ∼2 c is not possible.

Define an order ≽∗ as follows: for all a, b ∈ X, a ≻∗ b if a ≻ b and a ∼∗ b if either a ∼1 b

or a ∼2 b. It follows from earlier claims that ≽∗ is complete, reflexive and transitive. Thus

≽∗ is a weak ordering over the set of alternatives X. We define an indifference set I as a

subset of X such that for any x, y ∈ I we have x ≽∗ y and y ≽∗ x. By CLAIM 5, all members

in any indifference set are related to each other by binary relation ∼1 or by ∼2, but both

80

cannot hold good. We define an indicator function δ(.) over indifference sets in following

manner: for an indifference set Ii, δ(Ii) = 1 if for any x, y ∈ Ii, x ∼1 y and δ(Ii) = 2 if for

any x, y ∈ Ii, x ∼2 y.

Let t ∈ Γ2 and suppose C(t) = xji . We claim that xji ∈ M(X(t),≽∗). Let us prove it by

contradiction. Suppose xji /∈ M(X(t),≽∗). Therefore ∃xnm ∈ X(t) such that xnm ≻∗ xji . We

now define an algorithm: Apply BC sequentially on trees which are recursively concatenated

to form t. Since t ia binary tree, Xn has two alternatives, one of which is xnm. Suppose the

other alternative of Xn is xnl (l,m = 1, 2; l ̸= m). Consider the choice from the elementary

binary tree represented by Xn. If xnm is chosen then xnm ≽∗ xnl , or if xnl is chosen then

xnl ≽∗ xnm. We denote the chosen alternative from this first round by x(1). In the next

round of applying BC, we observe the choice problem from an elementary tree comprising

of two alternatives one of which must be x(1) (= xnm or xnl , depending on the outcome

in the last round of choice problem). The outcome from the present round of the choice

problem, say x(2), will certainly satisfy following: x(2) ≽∗ x(1), which implies x(2) ≽∗ xnm

or x′ ≽∗ xnl , depending on the outcome in the last round of sequential choice problem. We

observe anyways x(2) ≽∗ xnm by the transitivity property of ≽∗. In fact this holds for outcome

for any p-th round x(p), i.e. x(p) ≽∗ xnm. We carry on applying BC sequentially to reach

the last round, say the r-th round, where we face the problem C(C(t1), C(t2)) such that

t ≡ (t1ot2) and x(r − 1) is the alternative that entered this last round of exercise we are

carrying recursively and we have x(r) that is the outcome of C(C(t1), C(t2)). Thus we have

x(r) ≽∗ xnm. But since C(t) = xji we have x(r) = xji . Thus x
j
i ≽∗ xnm. This is in contradiction

to what we assumed, i.e. xnm ≽∗ xji .

Let us characterize C(t) when M(X(t),≽∗) is not a singleton. We have C(t) = xji

and we have proved that xji ∈ M(X(t),≽∗). Consider any other alternative from the set

M(X(t),≽∗). Suppose xj
′

i′ ∈ M(X(t),≽∗). We get from the definition of a maximal set

81

xji ≽∗ xj
′

i′ and x
j′

i′ ≽∗ xji . Thus the maximal set is an indifference set characterized by either

∼1 or ∼2. W.l.o.g. assume that xji ∼1 x
j′

i′ . Thus δ(M(X(t),≽∗)) = 1. We claim that the

left-most alternative in M(X(t),≽∗) is chosen. We prove this below.

Suppose the left-most alternative in M(X(t),≽∗) is xji , i.e. i-th alternative from the

left in the set Xj. We note that for any alternative xnm which is to the left of xji , we have

xji ≻∗ xnm since xji is the left-most alternative of M(X(t),≽∗) in the tree t. We now consider

the algorithm described earlier starting from xji . We note that for each round p, x(p) (the

alternative that is chosen from the choice problem in p-th round) is xji . This is because in

each round p, staring from p = 1, if the elementary binary tree is of the form {xji , y} then

choice is xji . This is because if y ∈ M(X(t),≽∗), then it must be that xji ∼1 y and xji is

chosen. If y /∈M(X(t),≽∗) then xji ≻∗ y and thus xji is chosen. If the elementary binary tree

in round p is of the form {y, xji} then choice is again xji . This is because if y /∈M(X(t),≽∗)

then xji ≻∗ y and thus xji is chosen. Now we claim that the tree cannot be of the form {y, xji}

if xji ∼1 y. This is ensured from the fact that in t, xji is the left-most alternative in the set

M(X(t),≽∗) and from the definition of the algorithm. We note that following this algorithm

in the last round we get x(r) which is C(t). Thus C(t) = xji .

We have shown that if a choice function C from binary trees satisfies BC and RI then

there exists a weak order (≽∗) such that for any tree t ∈ Γ2, we have C(t) ∈ M(X(t),≽∗

). If M(X(t),≽∗) contains more than one alternative, then the left-most alternative in

M(X(t),≽∗) is chosen if δ(x) = 1 or the right-most alternative in M(X(t),≽∗) is chosen if

δ(x) = 2. Thus C is MC.

Sufficiency: It is easy to verify that a mixed choice function satisfies BC and RI. Let C be

a mixed choice function. If C is characterized by such an weak ordering (≽∗) over X, using

an algorithm similar to the algorithm described earlier one can show that C(t) = C(t′), where

t ≡ {t1ot2} and t′ ≡ (C(t1), C(t2)). This is because M(X(t),≽∗) is same as M(X(t′),≽∗).

82

If maximal set is not singleton, the tie-breaking rule through indicator function is also same.

It is easy to check C satisfies RI: suppose for t ∈ Γ2, C(t) = x. Thus x ∈ M(X(t),≽∗)

or if M(X(t),≽∗) is not singleton, then tie is broken according to the indicator function

δ(M(X(t),≽∗)). W.l.o.g. assume that the left-most alternative is chosen from M(X(t),≽∗).

Suppose any alternative x′(̸= x) is replaced by its partner and the new tree be denoted

by t′. We note that M(X(t′),≽∗) is still x if M(X(t),≽∗) = x. If M(X(t),≽∗) is not

singleton (and x is the left-most or the right-most alternative in M(X(t),≽∗) according to

the indicator function), then we observe M(X(t′),≽∗) ⊂ M(X(t),≽∗). Thus the indicator

function chooses the same alterative, i.e. x, because even after above replacement x remains

the left-most alternative in M(X(t),≽∗). Thus we show C satisfies RI.

Next we prove Theorem 2. Before the proof we need to discuss few definitions and we

also prove some lemmas.

Definition 25 Let C : Γk → X. We define a ≻ b, for any a, b ∈ X, if and only if C(t) = a

for any t ∈ Γk
e({a, b}).

Definition 26 Let C : Γk → X. We define a ∼r b, for any a, b ∈ X, if and only if

C(t) = x(t, r), 1 ≤ r ≤ k for any t ∈ Γk
e({a, b}).

Definition 27 Let C : Γk → X. We define a↔ b, for any a, b ∈ X, if and only if following

holds: (i) for any l : 1 ≤ l ≤ k, ∃t1 ∈ Γk
e({a, b}) such that C(t1) ̸= x(t1, l); and (ii) for

any t, t′ ∈ Γk
e({a, b}), C(t) ̸= C(t′) =⇒ ∃r : 1 ≤ r ≤ k, such that C(t) = x(r; t) and

C(t′) = x(r; t′).

Definition 28 A choice function C : Γk({a, b}) → {a, b}, for any a, b ∈ X, is ↔-based if

following holds:

83

(i) a↔ b.

(ii) for any t ∈ Γk({a, b}), such that t ≡ t1 o t2 otk, C(t) = C(C(t1), C(t2), ..., C(tk)).

We give an example to explain:

Example 18 Consider a↔-based choice function from ternary trees C : Γ3({a, b}) → {a, b}.

Suppose:

C(a, b, b) = a, C(b, a, a) = a.

C(a, a, b) = a, C(b, b, a) = b.

C(a, b, a) = a, C(b, a, b) = b.

Consider a tree t ≡ ({a, b, b},{b, a, b}, {a, a, b)}).

Then we have C(t) = C(C(a, b, b), C(b, a, b), C(a, a, b)) = C(a, b, a) = a.

Lemma 2 Let C : Γk → X and let C satisfy RI. Then for any {a, b} ∈ X either of following

holds: (i) a > b, (ii) a ∼r b; r : 1 ≤ r ≤ k or (iii) a↔ b.

Proof : Let C : Γk
e({a, b}) → {a, b} and let C satisfy RI. There are two possibilities: (i)

∀t ∈ Γk
e({a, b}), C(t) = a (or b). (ii) ∃A,A ⊂ Γk

e({a, b}) such that C(t) = a, ∀t ∈ A

and C(t) = b, ∀t ∈ Γk
e({a, b}) − A. We observe that if (i) occurs then a ≻ b (or b ≻ a).

If (ii) occurs then ∀t1, t2 ∈ Γk
e({a, b}), C(t1) ̸= C(t2) =⇒ ∃r : 1 ≤ r ≤ k, such that

C(t1) = x(r; t1) and C(t2) = x(r; t2). This can be shown as follows: suppose C(t1) = a and

C(t2) = b. Suppose @r : 1 ≤ r ≤ k such that x(r; t1) = a, x(r; t2) = b. Consider the set

I = {i : 1 ≤ i ≤ k;x(i, t1) = a} and the set J = {j : 1 ≤ j ≤ k; x(j, t2) = a}. It follows that

I ⊂ J . Thus a occupies at least those positions in the tree t2, which are occupied by a in the
84

tree t1. Thus following RI we get that C(t2) = C(t1) = a. This contradicts C(t2) = b. We

note that if ∃r : 1 ≤ r ≤ k such that C(t) = x(r; t), ∀t ∈ Γk
e({a, b}), then a ∼r b. Otherwise,

if for any l : 1 ≤ l ≤ k, ∃t1 ∈ Γk
e({a, b}) such that C(t1) ̸= x(t1, l), then we have a↔ b.

�

Lemma 3 Let C : Γk → X and suppose C satisfies RI. Then for any t1, t2 ∈ Γk
e(X

′), X ′ ⊆

X, [C(t1) ̸= C(t2)] =⇒ [∃r : 1 ≤ r ≤ k, such that C(t1) = x(r; t1) and C(t2) = x(r; t2)].

Proof : Let C : Γk → X. Suppose C satisfies RI. Consider choice from trees in Γk
e({a, b}).

There are three possibilities: (i) ∀t ∈ Γk
e({a, b}), C(t) = a ; (ii) ∀t ∈ Γk

e({a, b}), C(t) = b ;

and (iii) ∃A : A ⊂ Γk
e({a, b}), such that C(t) = a, ∀t ∈ A and C(t) = b, ∀t ∈ Γk

e({a, b})−A.

If (i) occurs, then clearly a ≻ b and similarly if (ii) occurs, then b ≻ a. If (iii) occurs,

we can sow that ∀t1, t2 ∈ Γk
e({a, b}), C(t1) ̸= C(t2) =⇒ ∃r : 1 ≤ r ≤ k, such that

C(t1) = x(r; t1) and C(t2) = x(r; t2). This can be proved by contradiction: suppose C(t1) = a

and C(t2) = b and @r : 1 ≤ r ≤ k, such that x(r; t1) = a, x(r; t2) = b. Consider the set

I = {i : 1 ≤ i ≤ k;x(i; t1) = a} and the set J = {j : 1 ≤ j ≤ k;x(j; t2) = a}. It follows that

I ⊆ J . Thus a appears at least in those positions in the tree t2, which are occupied by a in

the tree t1. Following RI we must have C(t2) = C(t1) = a. But this contradicts C(t2) = b.

�

Let C : Γk → X, such that C satisfies BC and RI. We know that C is associated with

either ≻, ∼r (1 ≤ r ≤ k) or ↔. Additionally we have following lemmas:

Lemma 4 ≻ is transitive i.e. for any a, b, c ∈ X, a ≻ b and b ≻ c implies a ≻ c.

Proof : Suppose a ≻ b and b ≻ c. Let t ∈ Γk({a, b, c}). Let t ≡ (X1, X2,, Xk) such
85

that t can be represented as concatenation of k elementary k-ary trees where X i (for all

i = 1, 2, 3,, k) represents elementary k-ary tree. Also suppose for any i : 1 ≤ i ≤ k, xir = a

for all r : 1 ≤ r ≤ k. Also suppose Xj (for any j: 1 ≤ j ≤ k, j ̸= i) is any elementary k-ary

tree with only b and c labeled at the terminal nodes. Given a ≻ b, b ≻ c and since C satisfies

BC it must be that C(t) = a.

We replace b by c in Xj (for all j: 1 ≤ j ≤ k, j ̸= i) in t and get t′. Applying RI we have

C(t′) = a. Applying BC on t′ we further obtain C(t′) = C(t′′) = a, where t′′ is an elementary

k-ary tree with x(i; t′′) = a and x(l; t′′) = c, l : 1 ≤ l ≤ k, l ̸= i. We observe in t′′ only one

position (i.e. the i-th position from the left) is occupied by a. It follows from RI that for

any t∗ ∈ Γk
e({a, c} such that x(i; t∗) = a, we must have C(t∗) = a. Since i is any arbitrary

position in the k-ary tree it follows that a ≻ c.

�

Lemma 5 Suppose for any a, b, c ∈ X, a ≻ b and b ∼r c. Then a ≻ c.

Proof : Let a, b, c ∈ X such that a ≻ b and b ∼r c. Let t′ ∈ Γk({a, b, c}) such that t ≡

(X1, X2,, Xk), where t can be represented as a concatenation of k elementary trees and

X i (i = 1, 2,, k) represents an elementary k-ary tree. Also let for arbitrary i : 1 ≤ i ≤ k,

xil = a for all l : 1 ≤ l ≤ k. Also for Xj (any j : 1 ≤ j ≤ k; j ̸= i), let xjr = b and xjs = c,

for all s : 1 ≤ s ≤ k; s ̸= r. Since a ≻ b and b ∼r c and applying BC we get C(t) = a.

In t we replace b by c in Xj for all j : 1 ≤ j ≤ k; j ̸= i to get tree t′. Applying RI we

get C(t′) = a. Applying BC we get C(t′′) = a, where t′′ is an elementary k-ary tree with

x(i, t′′) = a and x(t′′, l) = c for all l : 1 ≤ l ≤ k; l ̸= i. We observe that in t′′ only one

position (i-th position) is occupied by a and all other positions are occupied by c. Since

initial choice of position i is arbitrary we can similarly show that for any t ∈ Γk
e({a, c}) such

86

that x(j; t) = a (for any j : 1 ≤ j ≤ k) and x(i; t) = c (for all i : 1 ≤ i ≤ k, i ̸= j), we have

C(t) = a. Applying RI we get for any t ∈ Γk
e({a, c}), C(t) = a. This proves that a ≻ c.

�

Lemma 6 Consider any a, b, c ∈ X such that a ≻ b, b↔ c. Then a ≻ c.

Proof : Similar to the proof of Lemma 5.

�

Lemma 7 ∼r is transitive, i.e. for any a, b, c ∈ X, a ∼r b and b ∼r c implies a ∼r c.

Proof : Suppose a ∼r b and b ∼r c. Let t′ ∈ Γk({a, b, c}) such that t ≡ (X1, X2,, Xk),

where t can be represented as a concatenation of k elementary trees and X i (i = 1, 2,, k)

represents an elementary k-ary tree. Let xrl = a for all l : 1 ≤ l ≤ k. Also suppose for Xj (

for all j : 1 ≤ j ≤ k; j ̸= r) we have xjr = b and xjl = c for any l : 1 ≤ l ≤ k; l ̸= r. Given

that C satisfies BC and since b ∼r c, we have C(t) = a.

We now replace b by c in each Xj (for any j : 1 ≤ j ≤ k, r ̸= j) in the tree t to get t′.

Applying RI we get C(t′) = a. Let t′′ ∈ Γk
e({a, c}) such that x(r; t′′) = a and x(l; t′′) = c for

all l : 1 ≤ l ≤ k; l ̸= r. Again applying BC on t′, and using a ∼r b, we get C(t
′′) = C(t′) = a.

Similarly we can show C(t′′′) = c, where x(r; t′′′) = c and x(l; t′′′) = a for all l : 1 ≤ l ≤ k;

l ̸= r. Therefore a ∼r c. �

Lemma 8 For any a, b, c ∈ X if a ∼i b (i : 1 ≤ i ≤ k) then it is not possible to have b ∼j c

(j : 1 ≤ j ≤ k, j ̸= i).
87

Proof : Let a ∼i b and b ∼j c, i, j : 1 ≤ i, j ≤ k; i ̸= j. Let t ∈ Γk
e({a, b, c}) such that

x(i; t) = c, x(j; t) = a and x(l; t) = b, for all l : 1 ≤ l ≤ k; l ̸= i, j. We can show that

C(t) = a. Let t′ ∈ Γk
e({a, b}) such that x(i; t′) = b, x(j; t′) = a and x(l; t′) = b, for all

l : 1 ≤ l ≤ k, l ̸= i, j. Since C(t) = a, then applying RI we get C(t′) = a by replacing c by b

in t. But given a ∼i b we have C(t′) = b because x(i; t′) = b.

Following similar argument we can show that C(t) ̸= c. If C(t) = c then we use RI and

replace a by b in t to get t′′ such that C(t′′) = c. But x(j; t′′) = b and b ∼j c implying

C(t′′) = b. Thus we have a contradiction. Similar argument shows C(t) ̸= b also. Thus it is

impossible to have a ∼i b and b ∼j c; i ̸= j).

�

Lemma 9 For any a, b, c ∈ X it is not possible to have a ∼r b (r : 1 ≤ r ≤ k) and a ≻ c.

Proof : We prove it by contradiction. Let a, b, c ∈ X such that a ∼r b and a ≻ c. Let

t ∈ Γk
e such that x(r; t) = c, x(m; t) = a (r,m : 1 ≤ r,m ≤ k;m ̸= r) and x(n; t) = b for all

n : 1 ≤ n ≤ k;n ̸= r,m.

Clearly C(t) ̸= c. This is because since C satisfies RI, C(t) = c contradicts a ≻ c.

Similarly if we have C(t) = a, then we apply RI and replace c by b in the tree t to get tree

t′, such that C(t′) = a. But x(r; t′) = b and a ∼r b. This is a contradiction. Also if C(t) = b,

then we apply RI again and replace c by a in t to get tree t′′, such that C(t′′) = b. But this

contradicts a ∼r b because x(r; t) = a.

Thus we can show that for any a, b, c ∈ X if a ∼r b (r : 1 ≤ r ≤ k) then it is not possible

to have a ≻ c.

�
88

Lemma 10 For any a, b, c ∈ X it is not possible to have a↔ b and b ≻ c.

Proof : We prove it by contradiction. Let a, b, c ∈ X such that a ↔ b and b ≻ c. Since

a ↔ b, from the definition of ↔ we have ∃t1 ∈ Γk
e{a, b} such that C(t1) = a. Suppose

x(r; t1) = a where r : 1 ≤ r ≤ k. We have either

(i) ∃ a tree t2 ∈ Γk
e{a, b} such that x(r; t2) = a and C(t2) = b; Or

(ii) ∃t3, t4 ∈ Γk
e{a, b}, such that x(r; t3) = b, x(r; t4) = b, C(t3) = b and C(t4) = a. This

follows from a↔ b.

Thus given a↔ b we must either have (i) ∃t1, t2 ∈ Γk
e{a, b} such that x(r; t1) = x(r; t2) =

a and C(t1) = a, C(t2) = b; or (ii)∃t3, t4 ∈ Γk
e{a, b} such that x(r, t3) = x(r; t4) = b and

C(t3) = b, C(t4) = a.

W.l.o.g. we assume ∃t1, t2 ∈ Γk
e{a, b}, such that x(r, t1) = x(r, t2) = a, and C(t1) = a,

C(t2) = b. Since a ↔ b, ∃l; l : 1 ≤ l ≤ k;l ̸= r such that x(l; t1) = a and x(l; t2) = b. Also

suppose I = {i|x(i; t1) = b, i.e. I is the set of all positions (from the left) in elementary

k-ary tree such that for each such position i, we have x(i; t1) = b. Clearly r, l /∈ I.

Let t∗ ∈ Γk
e{a, b, c} such that x(r; t∗) = a, x(l; t∗) = c, x(i; t∗) = b, for all i ∈ I and

x(j; t∗) = c, ∀j : 1 ≤ j ≤ k; j ̸= r, l; j /∈ I.

Our claim is C(t∗) ̸= c. This follows from b ≻ c and applying RI. We can also show

C(t∗) ̸= b. This is because if C(t∗) = b, then we can replace all c in t∗ by a to get t∗∗ and

applying RI repetitively we get C(t∗∗) = b. But we note that t∗∗ = t1 and C(t1) = a. This

leads to a contradiction. Now let us show C(t∗) ̸= a by contradiction. Suppose C(t∗) = a.

We can replace c by b in t∗ in all positions occupied by c in t∗ to get t∗∗∗ and apply RI to get

C(t∗∗∗) = a. We also know C(t2) = b. We replace a by b in t2 in all positions in t2 occupied

by a, except the r-th position and get t∗∗∗∗. Applying RI repetitively we get C(t∗∗∗∗) = b.
89

But we observe t∗∗∗ = t∗∗∗∗ and we have C(t∗∗∗) = a. Hence we get a contradiction and prove

the Lemma. �

Lemma 11 For any a, b, c ∈ X, it is not possible to have a ∼r b and b↔ c.

Proof : Suppose a ∼r b, b ↔ c, where a, b, c ∈ X. Let t ∈ Γk
e{a, b, c} such that x(r; t) = c

and x(i; t) ∈ {a, b}, for all i : 1 ≤ i ≤ k; i ̸= r. Clearly C(t) ̸= a or b. To see this, assume to

the contrary, C(t) = a. We replace c by b in t and applying RI we observe that the choice

from the new tree should remain unaltered. But this violates a ∼r b. Similarly we can show

that C(t) ̸= b. Thus C(t) = c. Let t′ ∈ Γk
e{a, b, c} such that x(r; t′) = c, x(j; t′) = b for any

arbitrary j : 1 ≤ j ≤ k; j ̸= r, and x(i; t′) = a, for all i : 1 ≤ i ≤ k; i ̸= r, j. Since C(t) = c,

applying RI we get C(t′) = c. Let t′′ ∈ Γk
e{a, b, c} such that x(r; t′′) = b, x(j; t′′) = c, and

x(i; t′′) = a for all i : 1 ≤ i ≤ k; i ̸= r, j. Following Lemma 3 we have C(t′′) ̸= a. Also

C(t′′) ̸= b. This is because if C(t′′) = b, then using C(t′) = c and applying RI we can show

that b ∼r c. But this contradicts b ↔ c. Thus C(t′′) = c. We observe that in t′′ only

j-th position is occupied by c and choice of this j-th position is arbitrary. We already have

C(t′) = c, where only r-th position is occupied by c. Thus, applying RI for any t ∈ Γk{b, c}

such that x(i; t) = c (where i : 1 ≤ i ≤ k) and x(j; t) = b, for all j : 1 ≤ j ≤ k; j ̸= i, we get

C(t) = c. This implies c ≻ b, which contradicts b ↔ c. Thus we can conclude that it is not

possible to have a ∼r b and b↔ c for any a, b, c ∈ X. �

Lemma 12 For any a, b, c ∈ X, it is not possible to have a↔ b and b↔ c.

Proof : Suppose we have a↔ b and b↔ c. Let t1 ∈ Γk
e{a, b, c} such that x(i; t1) = a for any

arbitrary i : 1 ≤ i ≤ k and x(l; t1) ∈ {b, c} for all l : 1 ≤ l ≤ k; l ̸= i. We claim C(t1) ̸= a.

We prove this by contradiction. Assume C(t1) = a. Consider t2 such that x(i, t2) = a and
90

x(j, t2) = b where j : 1 ≤ j ≤ k; j ̸= i and x(l, t2) = c for all l : 1 ≤ l ≤ k; l ̸= i, j. Since

C(t1) = a, applying RI we get that C(t2) = a. Consider t3 such that x(i, t3) = b, x(j, t3) = a

and x(l, t3) = c for all l : 1 ≤ l ≤ k; l ̸= i, j.

Following Lemma 3 we get C(t3) ̸= c. We check if C(t3) = b. Since C(t2) = a, x(i; t2) = a

and x(i; t3) = b, then if C(t3) = b, applying RI we get a ∼i b. But this contradicts a ↔ b.

Thus C(t3) = a.

We note that C(t1) = a and a occupies only i-th position in t1. Consider t such that

x(i; t) = a and x(l; t) = b for all l : 1 ≤ l ≤ k; l ̸= i. Applying RI on C(t1) = a, we get

C(t) = a. Also we note that C(t3) = a and a occupies only j-th position in t3. Similarly

for any t′ such that x(j; t′) = a, x(l; t′) = b for all l : 1 ≤ l ≤ k; l ̸= j, we have C(t) = a.

But choosing the position j was arbitrary. Thus we observe that choice from any tree t such

that x(j; t) = a (any j : 1 ≤ j ≤ k) and x(l; t) = b for all l : 1 ≤ l ≤ k; l ̸= j, we have

C(t) = a. Applying RI one can show that for any t ∈ Γk
e({a, b}), we have C(t) = a. But this

implies a ≻ b which contradicts a ↔ b. Similarly we can show that for any t1 ∈ Γk
e{a, b, c}

such that x(i; t1) = b (or c) for any arbitrary i : 1 ≤ i ≤ k and x(l; t1) ∈ {a, c}(or{a, b}) for

all l : 1 ≤ l ≤ k; l ̸= i, we cannot have C(t1) = b (or c).

Consider choosing from elementary k-ary trees formed with {a, b, c}, i.e. trees in Γk
e{a, b, c}.

Consider the case when k = 3. Since a↔ b and b↔ c, we cannot have either C(a, b, c) = a,

C(a, b, c) = b or C(a, b, c) = c. This is because in t ≡ (a, b, c) each alternative occupies only

single position. Thus it is clear that if k = 3 we cannot have a↔ b and b↔ c.

For k = 4 consider t1 and t2 such that t1 ≡ (a, b, c, a) and t1 ≡ (a, b, b, c). Let a ↔ b

and b ↔ c. Again following the same argument as above C(t1) = a and C(t2) = b. This

is because in t1 each of b and c occupies single position. Similarly in t2 each of a and c

occupies single position. Applying RI to t1 ≡ (a, b, c, a) yields C(a, b, b, a) = a, because

91

C(a, b, c, a) = a. But again applying RI to t2 ≡ (a, b, b, c) yields C(a, b, b, a) = b, because

C(a, b, b, c) = b. Thus we arrive at a contradiction. Thus if k = 4 we cannot have a↔ b and

b↔ c.

For k = 5 we prove that we cannot have a↔ b and b↔ c. Let t1 ≡ (c, b, a, a, b) and t2 ≡

(c, b, a, b, a). We first show that we cannot have C(t1) = C(t2) = a. To see this, assume to

the contrary that C(t1) = C(t2) = a. Since C(c, b, a, a, b) = a, we have C(c, b, a, c, b) ̸= b

following Lemma 3. C(c, b, a, c, b) ̸= a since a occupies single position in this tree. Thus we

have C(c, b, a, c, b) = c. But C(c, b, a, b, a) = a implies C(c, b, a, c, a) = a following RI. Thus

we arrive at contradiction.

We note that C(t1) ̸= c and C(t2) ̸= c since c occupies single position in both the trees t1

and t2. C(t1) = C(t2) = a is already ruled out. Thus either C(t1) = b or C(t2) = b or both.

Without loss of generality we assume that C(t1) = b. We have C(c, a, a, a, b) = a because

both c and b occupy single position in this tree. Applying RI we get C(c, a, a, a, c) = a. Since

C(c, b, a, a, b) = b we have C(c, b, a, a, c) = c applying Lemma 3 and also because b occupies

single position. Applying RI we get C(c, a, a, a, c) = c. Thus we arrive at a contradiction.

Hence we cannot have a↔ b and b↔ c.

Next we prove that we cannot have a ↔ b and b ↔ c for k ≥ 6. Consider those trees in

Γk
e{a, b, c} such that for each such tree t, x(1; t) = c, x(2; t) = b and x(3; t) = a, i.e. first

three positions in these trees are occupied by c, b and a respectively. Also in each t out of

the last k− 3 positions all the positions except one position are occupied by a. In particular

we consider following trees:

t1 ≡ (c, b, a, . . . , a, b)

t2 ≡ (c, b, a, . . . , a, b, a)

92

.

.

tk−3 ≡ (c, b, a, b, a, . . . , a).

We first show it is not possible to have C(ti) = a for all i = 1, 2, . . . , (k−3). We prove this

by contradiction. Suppose C(ti) = a, for all i = 1, 2, . . . , (k−3). Thus C(c, b, a, b, a, . . . , a) =

a. Consider C(c, b, a, b, c, a, . . . , a). This cannot be b. This is because if C(c, b, a, b, c, a, . . . , a) =

b, then applying RI we get that C(c, b, a, b, a, . . . , a) = b, which contradicts above.

Also C(c, b, a, b, c, a, . . . , a) ̸= c. To see this, we assume that C(c, b, a, b, c, a, . . . , a) =

c. Applying RI again we get that C(c, b, a, a, c, a, . . . , a) = c. But we have assumed that

C(c, b, a, a, b, a, . . . , a) = a. Applying RI we get that C(c, b, a, a, c, a, . . . , a) = a. Thus we

arrive at a contradiction. Thus we must have C(c, b, a, b, c, a, . . . , a) = a. Applying RI we

get that C(c, b, a, b, b, a, . . . , a) = a.

Continuing like this we can show C(c, b, a, b, . . . , b, a) = a. But we started assuming

C(c, b, a, . . . , a, b) = a. This implies C(c, b, a, c, . . . , c, b) = c. We can explain this as fol-

lows: C(c, b, a, c, . . . , c, b) ̸= a, because a occupies only one position in this tree. Also

C(c, b, a, c, . . . , c, b) ̸= b, following Lemma 3. Using RI we get that C(c, b, a, c, . . . , c, a) = c.

But applying RI we can show that C(c, b, a, b, . . . , b, a) = a implies C(c, b, a, c, . . . , c, a) = a.

Thus we arrive at a contradiction.

Therefore it is not possible to have C(ti) = a, for all i = 1, 2, . . . , (k − 3). Thus ∃tj,j ∈

{1, 2, . . . , (k− 3)}, such that C(tj) = b (C(tj) ̸= c, because c occupies only single position in

tj,∀j = 1, 2, ..(k − 3)). W.l.o.g. we assume tj ≡ (c, b, a, a, a, a, b, a, . . . , a). Thus C(tj) = b.

But we must have C(c, a, a, a, a, a, b, a, . . . , a) = a. This is because both b, c occupy single

position in this tree. Therefore by applying RI we have C(c, a, a, a, a, a, c, a, . . . , a) = a. [We

93

call this observation (*)]

But we have C(c, b, a, a, a, a, b, a, . . . , a) = b. Hence C(c, b, a, a, a, a, c, a, . . . , a) = c. This

follows from RI and Lemma 3. This implies, by RI, C(c, a, a, a, a, a, c, a, . . . , a) = c. This

contradicts observation (*). Hence we prove that we cannot have a↔ b and b↔ c.

�

Proof of Theorem 2: Sufficiency is straightforward. We prove the necessity part in detail.

Let C : Γk → X and let C satisfy BC and RI. It follows from Lemma 2 that C induces either

≻, or ∼r (r : 1 ≤ r ≤ k) or ↔ over any {a, b} ∈ X. Lemmas 2 - 9 further characterize these

binary relations over X. These imply that there exists a weak ordering ≽∗ over X defined

as follows: a ≻∗ b, if a ≻ b and a ∼∗ b, if a ∼r b or a ↔ b. We observe that if a ≻∗ b then

@c ∈ X such that a ∼∗ c. This follows from Lemmas 5 and 6, which says that following

cannot happen: a ≻ b and a ∼r b or a↔ b. Thus ≽∗ is an admissible ordering.

Let t ∈ Γk. Since C satisfies BC we apply BC sequentially on trees which are recursively

concatenated to form the tree t. It follows that C(t) = M(X(t),≽∗) if X(t) ∩ (X − BT (≽∗

)) ̸= ϕ (where BT (≽∗) is the set of bottom-ranked alternatives in ≽∗). This is because in

this case M(X(t),≽∗) is unique and also is the outcome while applying BC sequentially on

the tree t.

If X(t) ⊂ BT (≽∗), then we can have two possibilities: (a) |BT (≽∗)| > 2: it must be the

case that for any x, y ∈ BT (≽∗), x ∼r y (1 ≤ r ≤ k). This follows from Lemma 8, Lemma

11 and Lemma 12: Lemma 8 says that it is not possible to have a ∼i b and a ∼j c, i ̸= j

for any a, b, c ∈ X; Lemma 11 says that it is not possible to have a ∼r b and a ↔ c for any

a, b, c ∈ X; and Lemma 12 says that it is not possible to have a ↔ b and a ↔ c for any

a, b, c ∈ X. In this case since X(t) ⊂ BT (≽∗), applying BC sequentially on the tree t as

94

mentioned above yields C(t) = x(r; t);

(b) |BT (≽∗)| = 2: it must be the case that for x, y ∈ BT (≽∗), x ∼r y or x ↔ y. If

x ∼r y then C(t) = x(r; t) whenever X(t) = {x, y} and if x↔ y then C is ↔-based whenever

X(t) = {x, y}. Following definition 15 this implies that if X(t) ⊂ BT (≽∗) and |BT (≽∗)| = 2

then C must be a mutually consistent choice function. Thus we prove that C must be a

HYBRID.

Next we provide the proof of Theorem 3.

Proof of Theorem 3: Sufficiency is straightforward. We prove the necessity in detail. Let

C : Γ → X and let C satisfy BC and RI. Since Γk ⊂ Γ, k ≥ 2, C also defines choice functions

from k-ary trees. Since C satisfies BC and RI, using the results in sections 4 and 5 we know

that C must define an MC (say, C2) over Γ2 and a HYBRID choice function (say, Ck) over

Γk, k ≥ 3. We know that an MC is associated with a binary-admissible preference ordering

and a HYBRID is associated with an admissible preference ordering over X. Let R2 be the

binary-admissible ordering and let {Rk}k≥3 be the admissible preference orderings associated

with C.

It follows that for any t ∈ Γk; k ≥ 2, we have C(t) = Ck(t). We have noted that any

mixed tree is formed after concatenating the trees recursively starting from elementary trees.

Since C satisfies BC, for any mixed tree t, C(t) can be obtained by concatenation operation

sequentially and C function defined for trees in Γk above. We also show that the set (say,W)

of orderings {Rk}k≥2 must satisfy mutual consistency. To see this, assume to the contrary

that the set of orderings {Rk}k≥2 do not satisfy mutual consistency. Thus there must exist

Ri ∈ W and x, y, z ∈ X such that (i) xPiyPiz or xPiyRiz or xRiyPiz, and (ii) there is a

sequence of orderings R1, R2, . . . Rk ∈ W and a sequence of alternatives v0, v1, . . . vk ∈ X

such that v0 = z, vk = x and viR
i+1vi+1, i = 0, 1, . . . k − 1. We make following assumptions

95

without loss of generality: Ri = R2, xI2yP2z, k = 1, R1 = R3 = I3. Further we assume that

I2 = ∼1 and I3 = ∼2. These assumptions, however, can be generalized to other possibilities.

Consider t ≡ t1 o t2 where t1 ≡ ({x, z, z}, {x, z, z}, {x, z, z}) and t2 ≡ ({y, y}, {y, z}). Here

t1 is a ternary tree and t2 is a binary tree. Using BC and the definitions of the relations we

have C(t) = y. We replace z by x in t and apply RI to get C(t′) = y, where t′ ≡ t∗1 o t2 and

t∗1 ≡ ({x, x, x}, {x, x, x}, {x, x, x}) is the tree obtained by replacing z by x in t1.

But we observe that C(t∗1) = x and using BC we get that C(t′) = C(C(t∗1), C(t2)) =

C(x, y) = x. But this contradicts C(t′) = y. Although we have shown that the set W must

satisfy mutual consistency with specific assumptions regarding Ri, k etc., this can be shown

for other cases as well in similar way. Hence the set of orderings W must satisfy mutual

consistency. Thus C must be a G-HYBRID choice function.

4.2 Appendix II

We provide the proof of Theorem 4.

Proof of Theorem 4: We prove the necessity part first. Let S be an implementable SCC

in environment E0. Let Γ = (M, g) be a mechanism that implements S where Mi is the

message space for the agent. Let (x, y) be a Neighborhood Flip between Pi and P
′
i , where

Pi, P
′
i ∈ P . Let a ∈ S(Pi) − S(P ′

i). Since S is implementable, we have mi ∈ Mi, such that

mi ∈ D(Γ, Pi) and g(mi,m−i) = a, for m−i ∈M−i. Also, since a /∈ S(P ′
i), we have m

′
i which

is undominated at P ′
i and dominates mi at P

′
i . This also implies there exists b ∈ X, such

that g(m′
i,m−i) = b and bP ′

ia. Thus b ∈ S(P ′
i). It must be that either m′

i is undominated at

Pi or m
′
i is dominated by m∗

i which is undominated at Pi. We have two possibilities.

(1) If aPib then we do not require further conditions. This is because it is possible to construct

96

mi such that it produces a together with dummy messages by the designer and m′
i such that

it produces b together with dummy messages by the designer. Thus mi dominates m′
i at Pi

and m′
i dominates mi at P

′
i . In this case m∗

i = mi. Since aPib and bP ′
ia, we have a = x,

b = y.

(2) If bPia then there are two possibilities: (i) m′
i is undominated at Pi; or (ii) m′

i is

dominated by m∗
i which is undominated at Pi (m∗

i ̸= mi) and m′
i dominates m∗

i at P ′
i .

If (i) holds then we have a dummy message m−i′ such that g(mi,m−i′)Pig(m
′
i,m−i′) but

g(m′
i,m−i′)P

′
ig(mi,m−i′). This is because, both mi and m

′
i are undominated at Pi and bPia.

It must then be that g(mi,m−i′) = x and g(m′
i,m−i′) = y. This implies that we must have

x, y ∈ S(Pi) and y ∈ S(P ′
i). Since m

′
i is undominated at Pi, we also have b ∈ S(Pi).

If (ii) holds, then we have g(m∗
i ,m−i) = c such that cRib and bR

′
ic. Sincem

′
i is dominated

by m∗
i ∈ D(Γ, Pi) and m

∗
i ̸= mi, we must have x, y ∈ S(Pi) and y ∈ S(P ′

i). This is because

cPia and both mi and m
∗
i are undominated at Pi.

In either case a ̸= x, because if a = x and since y ∈ S(P ′
i), we go back to (1). Also a ̸= y,

because |X| = 3 and x and y are contiguous in Pi and P
′
i . Clearly, it must be that a is the

bottom-ranked alternative in both Pi and P
′
i . Thus yPia.

It thus follows that if a ∈ S(Pi)− S(P ′
i), we have either (i) a = x and y ∈ S(P ′

i); or (ii)

x, y ∈ S(Pi), y ∈ S(P ′
i) and yPia.

Next we prove sufficiency. Let X = {a, b, c}. Let B = {(P, P ′)|P, P ′ ∈ P , t3(P) = t3(P ′)

and P, P ′ has a neighborhood flip}. We call (P, P ′) an admissible pair if (P, P ′) ∈ B. Let S

be an arbitrary SCC satisfying the NF condition. We describe an algorithm to construct a

mechanism implementing S. Several cases need to be considered.

Case (A): For all (P, P ′) ∈ B, we have t3(P) = t3(P ′) ∈ S(P) ∩ S(P ′).

97

In this case we have three dummy messages α1, α2, α3 for the mechanism designer and a

single message m1 for i. We have g(m1, α1) = a, g(m1, α2) = b and g(m1, α3) = c.

Case (B): There exists (P ∗, P ∗∗) ∈ B, so that t3(P ∗) ∈ S(P ∗) ∪ S(P ∗∗) but t3(P ∗) /∈

S(P ∗) ∩ S(P ∗∗). Without loss of generality let t3(P ∗) ∈ S(P ∗) − S(P ∗∗). We design the

mechanism in the following steps.

Step (B.1)

Let P : {1, 2, 3, 4, 5, 6} → P be a bijection such that P (1) = P ∗, P (2) = P ∗∗. Also let

P (j), P (j + 1), j = 2, 3, 4, 5 have a neighborhood flip. For instance, if aP (1)cP (1)b then

we have cP (2)aP (2)b, cP (3)bP (3)a, bP (4)cP (4)a, bP (5)aP (5)c, aP (6)bP (6)c. There are

dummy messages α1, .., αl, l ≤ 6, depending on various possibilities,four dummy messages for

the designer and 7 messages for the agent m1,m2,m3,m4,m5,m6,m7. We have g(m1, α1) =

t3(P (1)), g(m1, α2) = t1(P (1)) and g(m1, α3) = t1(P (1)). We also have g(m7, α1) = t2(P (1)),

g(m7, α2) = t2(P (1)) and g(m7, α3) = t1(P (1)). Next we have (i) g(m2, α1) = t2(P (1)) and

g(m2, α2) = t2(P (1)); (ii) g(m3, α1) = t2(P (1)) and g(m3, α2) = t2(P (1)); (iii) g(m4, α1) =

t3(P (1)); g(m5, α1) = t3(P (1)); g(m6, α1) = t3(P (1)), g(m6, α2) = t1(P (1)) and g(m6, α3) =

t1(P (1)). There are several subcases depending on whether t1(P (1)) ∈ S(P (2)) or t1(P (1)) /∈

S(P (2)).

Subcase B.1.1 : t1(P (1)) ∈ S(P (2)).

There are four further subcases.

98

B.1.1.1 : t1(P (1)) ∈ S(P (3)) ∩ S(P (4)).

There are six subcases that remain.

B.1.1.1.(i): t3(P (1)) /∈ S(P (3)) and t2(P (1)) /∈ S(P (4)).

We let g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)).

B.1.1.1.(ii): t3(P (1)) ∈ S(P (3)) and t2(P (1)) /∈ S(P (4)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)). We have another dummy message

α4 for the designer, so that g(m1, α4) = g(m7, α4) = g(m2, α4) = g(m6, α4) = t1(P (1)),

g(m3, α4) = g(m4, α4) = g(m5, α4) = t3(P (1)).

B.1.1.1.(iii): t3(P (1)) /∈ S(P (3)), t2(P (1)) ∈ S(P (4)), t2(P (1)) /∈ S(P5) ∪ S(P6).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)). We also have dummy messages

α4 for the designer, so that g(m1, α4) = g(m7, α4) = g(m5, α4) = g(m6, α4) = t1(P (1)),

g(m2, α4) = t2(P (1)), g(m3, α4) = g(m4, α4) = t2(P (1)).

99

B.1.1.1.(iv): t3(P (1)) /∈ S(P (3)), t2(P (1)) ∈ S(P (4)), t2(P (1)) ∈ S(P5) ∩ S(P6).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)). Next we have dummy messages α4

and α5 for the designer, so that g(m1, α4) = g(m7, α4) = g(m5, α4) = g(m6, α4) = t1(P (1)),

g(m2, α4) = t2(P (1)), g(m3, α4) = g(m4, α4) = t2(P (1)). We have g(m1, α5) = g(m7, α5) =

g(m2, α5) = g(m3, α5) = g(m4, α5) = g(m5, α5) = g(m6, α5) = t2(P (1)).

B.1.1.1.(v): t3(P (1)) ∈ S(P (3)), t2(P (1)) /∈ S(P (4)) and t2(P (1)) /∈ S(P5) ∪ S(P6).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)). We have dummy messages α4 and

α5 for the designer, so that g(m1, α4) = g(m7, α4) = g(m2, α4) = g(m6, α4) = t1(P (1)),

g(m3, α4) = g(m4, α4) = g(m5, α4) = t3(P (1)) and g(m1, α5) = g(m7, α5) = t1(P (1)),

g(m2, α5) = g(m3, α5) = g(m4, α5) = t2(P (1)), g(m5, α5) = g(m6, α5) = t1(P (1)).

B.1.1.1.(vi): t3(P (1)) ∈ S(P (3)), t2(P (1)) /∈ S(P (4)) and t2(P (1)) ∈ S(P5) ∩ S(P6).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t1(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t1(P (1)), g(m5, α2) = t3(P (1)) and g(m5, α3) = t1(P (1)). We have dummy messages α4, α5

and α6 for the designer, so that g(m1, α4) = g(m7, α4) = g(m2, α4) = g(m6, α4) = t1(P (1)),

g(m3, α4) = g(m4, α4) = g(m5, α4) = t3(P (1)) and g(m1, α5) = g(m7, α5) = t1(P (1)),

g(m2, α5) = g(m3, α5) = g(m4, α5) = t2(P (1)), g(m5, α5) = g(m6, α5) = t1(P (1)). Also we

let g(m1, α6) = g(m7, α6) = g(m2, α6) = g(m3, α6) = g(m4, α6) = g(m5, α6) = g(m6, α6) =

t2(P (1)).

100

B.1.1.2: t1(P (1)) ∈ S(P (3))− S(P (4)). There are three subcases that remain.

B.1.1.2.(i): t2(P (1)) /∈ S(P (4)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

g(m5, α2) = g(m5, α3) = t3(P (1)).

B.1.1.2.(ii): t2(P (1)) ∈ S(P (4)) and t2(P (1)) /∈ S(P (5)) ∪ S(P (6)).

We let g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = t2(P (1)), g(m4, α3) =

t3(P (1)), g(m5, α2) = t1(P (1)), g(m5, α3) = t3(P (1)).

B.1.1.2.(iii): t2(P (1)) ∈ S(P (4)) and t2(P (1)) ∈ S(P (5)) ∩ S(P (6)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

g(m5, α2) = g(m5, α3) = t3(P (1)). We have dummy message α4 for the designer, so that

g(m1, α4) = g(m7, α4) = g(m2, α4) = g(m3, α4) = g(m4, α4) = g(m5, α4) = g(m6, α4) =

t2(P (1)).

B.1.1.3: t1(P (1)) /∈ S(P (3)) ∪ S(P (4)). There are three sub-cases that remain.

B.1.1.3.(i): t3(P (1)) ∈ S(P (3)), t2(P (2)) /∈ S(P (4)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

101

g(m5, α2) = g(m5, α3) = t3(P (1)).

B.1.1.3.(ii): t3(P (1)) ∈ S(P (3)), t2(P (2)) ∈ S(P (4)) and t2(P (2)) /∈ S(P (5)) ∪ S(P (6)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = t2(P (1)), g(m4, α3) =

t3(P (1)), g(m5, α2) = t1(P (1)), g(m5, α3) = t3(P (1)).

B.1.1.3.(iii): t3(P (1)) ∈ S(P (3)), t2(P (2)) ∈ S(P (4)) and t2(P (2)) ∈ S(P (5)) ∩ S(P (6)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = t2(P (1)), g(m4, α3) =

t3(P (1)), g(m5, α2) = t1(P (1)), g(m5, α3) = t3(P (1)).

B.1.1.4: t1(P (1)) ∈ S(P (4))− S(P (3)).

There are two subcases that remain.

B.1.1.4.(i): t2(P (1)) /∈ S(P (5)) ∪ S(P (6)).

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

g(m5, α2) = g(m5, α3) = t3(P (1)). We also have dummy message α4 for the designer, so that

g(m1, α4) = g(m7, α4) = g(m5, α4) = g(m6, α4) = t2(P (1)) and g(m2, α4) = g(m3, α4) =

g(m4, α4) = t2(P (1)).

B.1.1.4.(ii): t2(P (1)) ∈ S(P (5)) ∩ S(P (6)).
102

We have g(m2, α3) = t1(P (1)), g(m3, α3) = t3(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

g(m5, α2) = g(m5, α3) = t3(P (1)). Next we have dummy messages α4 and α5 for the de-

signer, so that (i) g(m1, α4) = g(m7, α4) = g(m5, α4) = g(m6, α4) = t2(P (1)), g(m2, α4) =

g(m3, α4) = g(m4, α4) = t2(P (1)); and (ii) g(m1, α5) = g(m7, α5) = g(m2, α5) = g(m3, α5) =

g(m4, α5) = g(m5, α5) = g(m6, α5) = t2(P (1)).

Subcase B.1.2: t1(P (1)) /∈ S(P (2)).

There are two possibilities which we discuss as subcases.

B.1.2.1: t2(P (1)) /∈ S(P (4)).

We have g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α2) = g(m4, α3) = t3(P (1)),

g(m5, α2) = g(m5, α3) = t3(P (1)).

B.1.2.2: t2(P (1)) ∈ S(P (4)).

There are two possible subcases that remain.

B.1.2.2.(i): t1(P (1)) ∈ S(P (4)), t2(P (1)) ∈ S(P (5)) ∩ S(P (6)).

We let g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t2(P (1)), g(m5, α2) = g(m5, α3) = t1(P (1)). We also have dummy message α4 for the

designer, so that g(m1, α4) = g(m7, α4) = g(m2, α4) = g(m3, α4) = g(m4, α4) = g(m5, α4) =

g(m6, α4) = t2(P (1)).

103

B.1.2.2.(ii): t1(P (1)) ∈ S(P (4)), t2(P (1)) /∈ S(P (5)) ∪ S(P (6)).

We have g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α2) = t3(P (1)), g(m4, α3) =

t2(P (1)), g(m5, α2) = t3(P (1)), g(m5, α3) = t1(P (1)).

At the end of the Step (B.1) we get a set of seven messages, (m1,m2,m3,m4,m5,m6,m7),

for the agent, a set of dummy messages, α1, .., αl, l ≤ 6 depending on various possibilities,

for the designer and the outcomes. If there is no admissible pair (P ′′, P ′′′) ∈ B such that

t3(P ′′) ∈ S(P ′′) ∪ S(P ′′′) but t3(P ′′) /∈ S(P ′′) ∩ S(P ′′′), then the algorithm for designing the

mechanism ends after Step (B.1). If there exists (P ′′, P ′′′) such that t3(P ′′) ∈ S(P ′′)∪S(P ′′′)

but t3(P ′′) /∈ S(P ′′) ∩ S(P ′′′), then we move to Step (B.2).

Step B.2

Without loss of generality, let t3(P ′′) = t3(P ′′′) ∈ S(P ′′) − S(P ′′′). We again follow the

algorithm developed in step (1) with P ′′ = P̃ (1) and P ′′′ = P̃ (2), where P̃ : {1, 2, 3, 4, 5, 6} →

P is a bijection, similar to P in step 1. We get a set of messages, (m̃1, m̃2, m̃3, m̃4, m̃5, m̃6, m̃7),

for the agent and a set of dummy messages, α̃1, .., α̃k, k ≤ 6, for the designer and an outcome

function g̃.

Step B.3

If there is another admissible pair (P, P ′) ∈ B, such that t3(P) ∈ S(P) ∪ S(P ′) and t3(P) /∈

S(P)∩S(P ′), then we similarly build another block of messages for the agent and the designer
104

in Step B.3. Otherwise we move to Step B.4.

Step B.4

We note that we have got blocks of messages by the agent and dummy messages from Steps

B.1, B.2 and B.3. In this step we concatenate these blocks to form a single block of messages

by the agent and dummy messages. For sake of simplicity we show it for two blocks, but it

can be extended for three blocks in similar way. Let A : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6} be

a bijection so that A(i) = j if P (i) = P̃ (j). We augment the mechanism obtained in Step 1 in

the following way. We already have dummy messages, α1, .., αk, k ≤ 6, for the designer from

Step 1 and we now augment the message mi, such that g(mi, α̃j) = g̃(m̃A(i), α̃j), for all i ∈

{1, 2, 3, 4, 5, 6}, j = 1, .., k. We augment the message m7, such that g(m7, α̃j) = g̃(m̃A(1), α̃j),

for all j = 1, .., k. We also have m8 for the agent such that g(m8, αj) = g(mA−1(1), αj), for

all j ≤ l and g(m8, α̃j) = g̃(m̃7, α̃j), for all j ≤ k. Here we complete the description of Step

(B.4).

Case (C): For all (P, P ′) ∈ B, we have t3(P) = t3(P ′) /∈ S(P) ∪ S(P ′).

Let (P ∗, P ∗∗) ∈ B be an arbitrary admissible pair. Let P : {1, 2, 3, 4, 5, 6} → P be a bijection

such that P (1) = P ∗, P (2) = P ∗∗. Also let P (j), P (j+1), j = 2, 3, 4, 5 have a neighborhood

flip. For instance, if aP (1)cP (1)b then we have cP (2)aP (2)b, cP (3)bP (3)a, bP (4)cP (4)a,

bP (5)aP (5)c, aP (6)bP (6)c. We provide an algorithm for designing the mechanism Γ =

(M, g). We have three possibilities that we discuss as subcases.

Subcase C.1: S(P (1)) = t1(P (1)).
105

we have messagesm1,m2,m3,m4,m5,m6, for the agent, a dummy message α1 for the designer

and we let g(m1, α1) = t1(P (1)), g(m2, α1) = t2(P (1)), g(m3, α1) = t2(P (1)), g(m4, α1) =

t2(P (1)), g(m5, α1) = t1(P (1)), g(m6, α1) = t1(P (1)). There are two possibilities which we

describe as subcases.

C.1.1: S(P (2)) = t2(P (1)).

There are two further subcases that need to be discussed.

C.1.1.1: t3(P (4)) /∈ S(P (4)).

No further step is required and we finish the algorithm for designing the mechanism.

C.1.1.2: t3(P (4)) ∈ S(P (4)).

We have a dummy message α2, for the designer such that g(m1, α2) = t1(P (1)), g(m2, α2) =

t2(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t3(P (1)), g(m5, α2) = t3(P (1)), g(m6, α2) =

t1(P (1)).

C.1.2: t1(P (1)) ∈ S(P (2)).

We have a dummy message α2, for the designer such that g(m1, α2) = t1(P (1)), g(m2, α2) =

t1(P (1)), g(m3, α2) = t3(P (1)), g(m4, α2) = t3(P (1)), g(m5, α2) = t3(P (1)), g(m6, α2) =

t1(P (1)).

106

Subcase C.2: S(P (1)) = t2(P (1)).

We have messages m1,m2,m3,m4,m5,m6, for the agent, a dummy message α1, for the

designer and we let g(m1, α1) = t2(P (1)), g(m2, α1) = t2(P (1)), g(m3, α1) = t2(P (1)),

g(m4, α1) = t3(P (1)), g(m5, α1) = t3(P (1)), g(m6, α1) = t3(P (1)).

Subcase C.3: S(P (1)) = {t1(P (1)), t2(P (1))}.

We have messages m1,m2,m3,m4,m5,m6, for the agent, dummy messages α1, α2, for the

designer and we have g(m1, α1) = t2(P (1)), g(m2, α1) = t2(P (1)), g(m3, α1) = t2(P (1)),

g(m4, α1) = t3(P (1)), g(m5, α1) = t3(P (1)), g(m6, α1) = t3(P (1)). Next we have two possi-

bilities which we discuss as subcases.

C.3.1: S(P (2)) = t2(P (1)).

Let g(m1, α2) = t1(P (1)), g(m2, α2) = t2(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t2(P (1)),

g(m5, α2) = t1(P (1)), g(m6, α2) = t1(P (1)).

C.3.2: S(P (2)) = {t1(P (1)), t2(P (1))}.

There are more subcases that need to be considered.

C.3.2.1: t2(P (1)) ∈ S(P (4)).

107

We have messages m′
1,m

′
2,m

′
3,m

′
4,m

′
5,m

′
6, for the agent and we have g(m′

1, α1) = t1(P (1)),

g(m′
2, α1) = t1(P (1)), g(m′

3, α1) = t2(P (1)), g(m′
4, α1) = t2(P (1)), g(m′

5, α1) = t1(P (1)),

g(m′
6, α1) = t1(P (1)), g(m′

1, α2) = t2(P (1)), g(m′
2, α2) = t2(P (1)), g(m′

3, α2) = t3(P (1)),

g(m′
4, α2) = t3(P (1)), g(m′

5, α2) = t3(P (1)), g(m′
6, α2) = t3(P (1)), g(m1, α2) = t1(P (1)),

g(m2, α2) = t1(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t2(P (1)), g(m5, α2) = t1(P (1)),

g(m6, α2) = t1(P (1)).

C.3.2.2: t2(P (1)) /∈ S(P (4)).

We have g(m1, α2) = t1(P (1)), g(m2, α2) = t1(P (1)), g(m3, α2) = t3(P (1)), g(m4, α2) =

t3(P (1)), g(m5, α2) = t3(P (1)), g(m6, α2) = t1(P (1)).

Case (D): There exist (P, P ′), (P ′′, P ′′′) ∈ B, such that t3(P) = t3(P ′) ∈ S(P) ∩ S(P ′) and

t3(P ′′) = t3(P ′′′) /∈ S(P ′′) ∪ S(P ′′′).

Let P : {1, 2, 3, 4, 5, 6} → P be a bijection such that P (1) = P , P (2) = P ′. Also let

P (j), P (j + 1), j = 2, 3, 4, 5 have a neighborhood flip. For instance, if aP (1)cP (1)b then

we have cP (2)aP (2)b, cP (3)bP (3)a, bP (4)cP (4)a, bP (5)aP (5)c, aP (6)bP (6)c. We note that

(P (3), P (4)) and (P (5), P (6)) are admissible pairs. Without loss of generality, we assume

that P ′′ = P (5) and P ′′′ = P (6). We provide an algorithm for designing the mechanism

Γ = (M, g).

We have messages m1,m2,m3,m4,m5,m6, for the agent, a dummy message α1 for the de-

signer and we let g(m1, α1) = g(m2, α1) = g(m3, α1) = g(m4, α1) = g(m5, α1) = g(m6, α1) =

t3(P (1)). There are four possibilities which we describe as subcases.
108

Subcase D.1: S(P (1)) = S(P (2)) = S(P (3)) = S(P (4)) = S(P (5)) = S(P (6)) = t3(P (1)).

In this case, we do not need to proceed further.

Subcase D.2: S(P (1)) = {t1(P (1)), t3(P (1))}. There are two possibilities which we describe

as subcases.

D.2.1: S(P (2)) = {t2(P (1)), t3(P (1))}. We have another dummy message α2 and we

let g(m1, α2) = t1(P (1)), g(m2, α2) = t2(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t2(P (1)),

g(m5, α2) = t1(P (1)) and g(m6, α2) = t1(P (1)).

D.2.2: S(P (2)) = {t1(P (1)), t2(P (1)), t3(P (1))}. There are three possibilities which we

describe as subcases.

D.2.2.1: S(P (4)) = {t2(P (1)), t3(P (1))}. We have dummy messages α2, α3 and we let

g(m1, α2) = t1(P (1)), g(m2, α2) = t2(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t2(P (1)),

g(m5, α2) = t1(P (1)), g(m6, α2) = t1(P (1)), g(m1, α3) = t1(P (1)), g(m2, α3) = t1(P (1)),

g(m3, α3) = t3(P (1)), g(m4, α3) = t3(P (1)), g(m5, α3) = t3(P (1)), and g(m6, α3) = t1(P (1)).

D.2.2.2: S(P (4)) = {t1(P (1)), t3(P (1))}. We have dummy messages α2, α3 and we

let g(m1, α2) = g(m2, α2) = g(m3, α2) = g(m4, α2) = g(m5, α2) = g(m6, α2) = t1(P (1)),

g(m1, α3) = t1(P (1)), g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α3) = t3(P (1)),

g(m5, α3) = t3(P (1)), and g(m6, α3) = t1(P (1)).
109

D.2.2.3: S(P (4)) = {t1(P (1)), t2(P (1)), t3(P (1))}. We have dummy messages α2, α3,

α4 and we let g(m1, α2) = g(m2, α2) = g(m3, α2) = g(m4, α2) = g(m5, α2) = g(m6, α2) =

t1(P (1)), g(m1, α3) = t1(P (1)), g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α3) =

t3(P (1)), g(m5, α3) = t3(P (1)), g(m6, α3) = t1(P (1)), g(m1, α4) = t1(P (1)), g(m2, α4) =

t2(P (1)), g(m3, α4) = t2(P (1)), g(m4, α4) = t2(P (1)), g(m5, α4) = t1(P (1)), g(m6, α4) =

t1(P (1)).

Subcase D.3: S(P (1)) = {t2(P (1)), t3(P (1))}. We have another dummy message α2 and we

let g(m1, α2) = t2(P (1)), g(m2, α2) = t2(P (1)), g(m3, α2) = t2(P (1)), g(m4, α2) = t3(P (1)),

g(m5, α2) = t3(P (1)) and g(m6, α2) = t3(P (1)).

Subcase D.4: S(P (1)) = {t1(P (1)), t2(P (1)), t3(P (1))}. There are two possibilities which we

describe as subcases.

D.4.1: S(P (2)) = {t2(P (1)), t3(P (1))}. We have dummy messages α2, α3 and we let

g(m1, α2) = g(m2, α2) = g(m3, α2) = t2(P (1)), g(m4, α2) = g(m5, α2) = g(m6, α2) = t3(P (1)),

g(m1, α3) = t1(P (1)), g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α3) = t2(P (1)),

g(m5, α3) = g(m6, α3) = t1(P (1)).

D.4.2: S(P (2)) = {t1(P (1)), t2(P (1)), t3(P (1))}. We have dummy messages α2, α3,

α4 and we let g(m1, α2) = g(m2, α2) = g(m3, α2) = g(m4, α2) = g(m5, α2) = g(m6, α2) =

110

t1(P (1)), g(m1, α3) = t1(P (1)), g(m2, α3) = t2(P (1)), g(m3, α3) = t2(P (1)), g(m4, α3) =

t3(P (1)), g(m5, α3) = t3(P (1)), g(m6, α3) = t1(P (1)), g(m1, α4) = t2(P (1)), g(m2, α4) =

t2(P (1)), g(m3, α4) = t2(P (1)), g(m4, α4) = t3(P (1)), g(m5, α4) = t3(P (1)), g(m6, α4) =

t3(P (1)).

This completes the description of the algorithm for designing the implementing mecha-

nism. We prove that the mechanism obtained from the algorithm described above implements

S. We show it for all four possible cases, (A) - (D).

Case (A). In this case, since S satisfies the NF condition and the bottom-ranked alterna-

tive belongs to the image sets at all orderings, it must be that S(P) = {a, b, c}, for all P ∈ P .

The message space Mi for the agent consists of only one message m1, which together with

three dummy messages sent by the designer produces a, b and c. Clearly m1 is undominated

at all orderings in P .

Case (B). There is at least one admissible pair of orderings with the same bottom-ranked

alternative for both the orderings, such that, the bottom-ranked alternative is included only

in one of the image sets of S at these two orderings. Clearly the bijection P described in

the algorithm implies that P (1) contains its bottom-ranked alternative while P (2) does not,

where P (1) and P (2) have the same bottom-ranked alternative. The mechanism constructed

has at least seven messages for the agent and a set of dummy messages for the designer. The

message m1 produces the bottom-ranked alternative and the top-ranked alternative of P (1),

while m′
1 produces the middle-ranked alternative of P (1) together with two dummy messages

sent by the designer. m2 also produces the middle-ranked alternative of P (1) together with

these two dummy messages sent by the designer. Since the middle-ranked alternative of

P (1) is the top-ranked alternative of P (2) and the top-ranked alternative of P (1) is the

111

middle-ranked alternative of P (2), m2 weakly dominates m1 and m′
1 at P (2). Also m1 and

m′
1 are undominated at P (1) because m1 produces the bottom-ranked alternative and the

top-ranked alternative, while m′
1 produces the middle-ranked alternative at P (1) together

with the dummy messages sent by the designer.

In step (1) of the algorithm we build a block with seven messages for the agent together

with dummy messages sent by the designer and in step (2) we add another block constructed

in the similar fashion. We note that these two blocks are conjoint together such that the

following holds good: any two messages m and m′ in the first block, which are undominated

at P and P ′ respectively and m weakly dominates m′ at P , m′ weakly dominates m at P ′,

continue to hold these properties when augmented by the messages in the second block.

Clearly for all subcases, mj is undominated at P (j), j = 2, .., 6. Also mj weakly dominates

all other messages at P (j), j = 2, .., 6. At P (1), m1 or m′
1 weakly dominates all other

messages for the agent. Thus the mechanism implements S.

In Cases (C) and (D), it is easy to verify that the construction of the algorithm itself

ensures the mechanism implements S.

112

Bibliography

Attali, Y. and M. Bar-Hillel (2003): “Guess where: the position of correct answers in

multiple-choice test items as a psychometric variable,” Journal of Educational Measure-

ment, 40, 109–128.

Borgers, T. (1991): “Undominated Strategies and Coordination in Normalform Games,”

Social Choice and Welfare, 8, 65–78.

Christenfeld, N. (1995): “Choices from Identical Options,”Psychological Science, 6, 50–

55.

Corchòn, L. (2009): Encyclopedia of Complexity and Systems Editor Meyers, Robert A.

Springer, Springer, chap. The Theory of Implementation: What Did We Learn?, editor:

Robert A. Meyers.

Ehlers, L. (2002): “Coalitional Strategy-proof House Allocation,” Journal of Economic

Theory, 105, 298–317.

Gibbard, A. (1973): “The Manipulation of Voting Schemes: A General Result,”Economet-

rica, 41, 587–601.

Harary, F. (1969): Graph theory, Addison-Wesley Publishing Company, Inc.

Jackson, M. O. (1992): “Implementation in Undominated Strategies: A Look at Bounded

Mechanisms,”The Review of Economic Studies, 59, 757–775.
113

——— (2001): “A Crash Course in Implementation Theory,” Social Choice and Welfare, 18,

655–708.

Maskin, E. (1999): “Nash Equilibrium and Welfare Optimality,”The Review of Economic

Studies, 66, 23–38.

Moulin, H. (1979): “Dominance Solvable Voting Schemes,”Econometrica, 47, 1337– 1351.

——— (1983): The Strategy of Social Choice, North Holland, Advanced Textbooks in Eco-

nomics, No. 18, 214 p.

Ordeshook, P. and T. Schwartz (1987): “Agendas and the Control of Political Out-

comes,”American Political Science Review, 81, 179–200.

Plott, C. (1973): “ Path Independence, Rationality, and Social Choice,”Econometrica, 41,

1075–1091.

Rubinstein, A. and Y. Salant (2006): “ A Model of Choice from Lists,” Theoretical

Economics, 1, 3–17.

Rubinstein, A., A. Tversky, and D. Hellers (1996): Understanding Strategic Inter-

action: Essays in Honor of Reinhard Selten, Springer Verlag, Berlin, ediors: W. Albers,

W. Guth, P. Hammerstein, B. Moldovanu and E. van Damme.

Satterthwaite, M. (1975): “Strategy-proofness and Arrow’s Conditions: Existence and

Correspondence Theorems for Voting Procedures and Social Welfare Functions,” Journal

of Economic Theory, 10, 187–217.

Sen, A. (1993): “ Internal Consistency of Choice,”Econometrica, 61, 495–521.

Serrano, R. (2004): “The Theory of Implementation of Social Choice Rules,”SIAM Review,

46, 377–414.

114

Simon, H. A. (1955): “ A Behavioral Model of Rational Choice,” Quarterly Journal of

Economics, 69, 99–118.

Yamashita, T. (2010): “Worst-case Mechanism Design in Undominated Strategies,”Work-

ing Paper, Stanford University.

115

