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EFFICIENT ESTIMATION WITH MANY 
NUISANCE PARAMETERS 

(Part III) 

By J. BHANJA and J. K. GHOSH 

Indian Statistical Institute 

SUMMARY. Part III contains the constructions of efficient estimates in a mixture 

model where we have in addition direct observations on Q. Our method provides a more 

transparent solution than that of Ibragimov and Hasminskii, who first posed and solved 

this problem. 

6*. Mixture models with observations on G 

So far, we had only a single set of observations, which is used for estima 

ting both 6 and G. The question now arises what happens if another (indepen 

dent) set of observations giving information only on G is also available ? 

Will the problem become simpler ? Hasminskii and Ibragimov (1983, ? 3) 
has provided a positive answer to this question. In the following discussion 

we shall derive their results using the methods of Section 3 instead of the 

original method due to Hasminskii and Ibragimov (1983). The assumptions 
of direct observations on G allow a verification of the smoothness conditions 

of the optimal kernel. Less important, but still useful, is the fact that we 

also have a uniformly \/w-consistent estimate of G so that the splitting 

technique can be avoided and the identifiability assumption becomes 

much weaker. 

This problem is taken up mainly as a technically interesting case where 

the required smoothness of the optimal kernel can be demonstrated. How 

ever, it may also have some practical application as indicated in the following 
scenario. 

Example 6.1. Suppose there is a source sending a signal 6 over time. 

The signal as it comes out of the source at time t is distorted to 

Zt = d+et 

where et is the noise associated with the source, e?'s are, say, i.i.d. Yl (0, cr2), o*2 

known. As Zt passes through a channel there is a further distortion & 

leading to the observation of 

Wt = 
0+et+b._ 
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fi's are assumed to be i.i.d. with common distribution G. Clearly ?Vs are 

not observable at the time a signal is being sent, since they are confounded 

with the signal. But the distribution G can be estimated by observing 

Wt = it when a signal of magnitude zero is being sent from another con 

trolled source, i.e. when Zt 
= 0. Suppose that two independent sets of 

observations are recorded, the first one (Xl9 X2, ...,Xn, ...) being recorded 

at time instances when a signal is being sent from the original source and 

the other one (Yv Y2, ... Yn, ...) when sent from the other one. 

More generally, one assumes given a signal 6 and an ''uncontrollable" 

noise ?, the channel produces response X according to the density function 

/( > 0, ?). Along with observations on X, one has observations on the distri 

bution of f. Let us now write down the model explicitly. 

Model III. In this model, observations (Xt, F<) are i.i.d. random vectors 

in (Sv SX)^X(S2, S2)9( = (S, S)) with common distribution 

PF' = n f(xh 0O, G0)d/i(xj) II dG0(yk) for all (x, y) e flf xfl| 

for some (d0,G0)e@x? 

where (Sv &t) is an arbitrary measurable space, S2 is a compact metric space, 

S2 
= 

?(S2)> ? *s an ?Pen subset of R with compact closure ? and ? is the 

set of all probability measures on (S2, S2). [As in Section 1, let us also assume 

that the probability measures are well-defined on 0X*S] 

Note that 

(1) Definitions 2.1?2.5 have obvious Model Ill-analogues which is 

obtained by replacing X*'s by (Xi, F^'s and Pe G by Pj1^ in the relevant 

definition for Model II. 

As in Section 2, we shall abbreviate the phrase 'in Model III' by '(III)'. 

Notation. We shall denote the set of all Model Ill-kernels by K. 

We shall need the following definition. 

Definition 6.1. A function f : ̂ x 0X?-> R (S2X?X5-> R) is called 

an S^ykernel if f(. , 6, G) e L%(f(., 6, G)) (L\(G)) for all (d, G) in 0x ? and 
the set of all S? (#2)-kernels is denoted by KX(K2). 

Given an S^kernel tyx and an #2-kernel i/r2, let us define a function 

Q^ ^ fromSx0X*g to ? by 

0#lf *2((?> V)> 0,G):= I fx(xh 6, G)+ ? f2(yh, 6, G) 

for ((x9 y), 0, G)eSx?x? ... (6.1) 
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Note that 

(2) Relation (6.1) defines a bounded linear map from KtxK2 to K. 

As in relation (2.2), let us define the 0-score 80 for Model III by 

= 2 sB(x?, Q, G) for ((x, y), 6, G) eSx0XA ... (6.2) 

(3) S? 
e K if and only if s? 

e Kx so that 8e is well-defined under assump 
tion (A3). Also for p 

= 1 and q = 0, ?? 
= 

^. 

Before proceeding further let us make the following convention and 

definition. 

Convention : For any G in *S and (?> in Lg (G), we shall denote the func 

tion f /(. , . , ?) $ (?) d(? (?) by/(. , . , <f> dG). 

Definition 6.2. For any (6, G) in 0X.S and 0 in ?g (G), define A0iQ(</>) 
from /?! to R by 

and for any <j> in iT2, define A(<f>) from 8tx?X^S to B by 

?(Ma;, 0, G) : = 
Ag(?H. , d, G))(x) V (*, 0,G)eS1xex& 

Then 

(4) For any (0, G) in 0 X *S, ̂ a?^ is a bounded linear map from L? (G) to 

Ll(f(. , 6, G)) and A is a bounded linear map from K2 to ix. 

For any (0, G) in 0xa, define 

N0)G: 
= 

{?reLl(Pl?):3<f>eL?2(G) 
with p ? 

f(x, y) : = S ?a,G0)to)+ S ?%*) V(#, If)}. ... (6.3) 
j=i fc=i 

(5) The elements of the space N0i g may be thought of us 'directional 

scores' with respect to small variations in G. However, for the special case 

where p 
= 1 and q 

= 0, JV^g is a proper subset of N$tQ unless G has finite 

support so that (6.3) falls short of an analogue of (2.3). 
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As in Section 2, one can define an optimal kernel Y and the information 

lni by the following analogue of relation (2.4). 

Y(. , 6, G) : = 
ProjNl (SQ(. , 6, G)) 

e,Q 

I (6, (^ : = ||T(. , ?, 
0)11^^ 

V(d,G) ... (6.4) 

In order to get a simpler formula for evaluating Y, we shall need the 

following definitions and lemma. 

Definition 6.3. For any (0, G) in 0 X &, the closed linear space in L\ (P^q) 
spanned by 8e(., 6, G) and Nq9g will be called the tangent space at (0, G) and 

will henceforth be denoted by Tjf JG. 
Bemark 6.1. Our tangent space coincides with that considered in 

Hasminskii and Ibragimov (1983, ? 3). 

Definition 6.4. Call a kernel T a tangent-space-kernel if ?(., 0, G) e T^ 

for any (6, G)e0x<S. 

Observe that 

(6) ?T|Z? consists of functions of the form 2 (p?(xj) + S 02(^*) f?r 
i-i *=i 

some 0X e L%f(., 8, G)) and ^2 e L\(G) so that any tangent-space-kernel Y 

must be of the form Q, , for some ^ e ?^, i?r2 e K2. 

(7) A tangent-space-kernel Q , , is an optimal kernel if and only if 

p(i M, 0, G) A0tG($)(.) f(., 6, G)d/i(.))+q(! f2(., 6, G)<?>(.) dG(.)) = 0 ... (6.5) 

for all (6, G, <f>) with ^ e L%(G). 

In Lemma 6.1(a) (vide relation (6.6)), we give a simpler sufficient condi 

tion for a tangent-space-kernel to be optimal. Lemma 6.1(b) gives a sort of 

converse which is a Model Ill-analogue of Lemma 2.1. Then in Lemmas 

6.2?6.4 we show a smooth solution of (6.6) exists. 

Lemma 6.1. (a) If for some tangent-space-kernel Q. ,, 

P ? M-, ?> #)/(., 0 #') dfi(.)+? ? W-3 0> G) dG1 (.) = 0 v(0, aeVQxAx? 
... (6.6) 

?&ew Q , . is a version of the optimal kernel. 

(b) Conversely, if Q, f is a version of the optimal kernel defined through 

(6.2)?(6.4) and for all 0 the L.H.S. of (6.6) is continuous in (G, G'), then (6.6) 

holds for it, 
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Proof, (a) In view of observations (4), (7) and the fact that the set of all 

bounded functions <j) lying in L\ (G) is dense in it, it is enough to show (6.5) 
for bounded ^'s only. 

Now, let <fi be a bounded function in L\ (G), then there is e > 0 such that 

1+V<fi(y) > 0 for all y in S2 whenever ?y] < e. Fix one such e. Define 
the curve G. : (?e, e)-> *S by 

dGn (.) = 
{l+#(.)} dG (.) for all y e (~e, e). 

The relation (6.6) with G' = 
Gn implies relation (6.5) for <?>. Since <?> was 

arbitrary, this proves (a). 

(b) An easy modification of the proof of Lemma 2.1 (b). 

Let fa be an ^-kernel, i = 1,2. Consider the following Model Ill 

analogue of equation (3.1). 

? %u 4{Xi> F<); e> ^)+ SiQ*? *>({Xi'?i)'e' ^0) = ? " (6,7) 
t odd i even 

where Gn : = 
Fm(Ylv ..., Yw 721, ..., Y2Q) ..., Ynv ..., Ynq) and the suffixes 

E and 0 stand for the operations based on even and odd indices, respectively, 
as defined in (11) of Section 2. 

(8) By Lemma C.l of Appendix C, Gn is a uniformly consistent (III) 
estimate of G0 (vide Definition 2.1 and observation (1)). 

Assume that 

(El) There is a uniformly yVconsistent (III) estimate Un of 6Q (vide 
Definition 2.2 and observation (1)). 

Let Tn(Q\?,?tT?r2) be the estimate defined through Definition 3.1 and obser 

vation (1). We are now going to give regularity conditions on /, ^ and \?r2 

guaranteeing uniform asymptotic normality (III) (vide Definition 2.4 and 

observation (1)) of Tn(Qtflffa). 

Fix (d0, G0) in 0X*S. Let 80 denote a positive real-number which will 

be chosen later. The following are the required regularity conditions. 

U[i] Condition U(i) of Section 3 holds. 

For any condition U(C) among U(ii), U(iv)-U(vi) of Section 3, U[Cj 
denotes the condition that U(C) holds with \?r replaced by \?rx or the relevant 

parts of it hold with (\?r, f, ?i) replaced by (ijr2, u, G) where u denotes the func 

tion identically equal to one. The condition U[iii] is given below. 
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Upii] For anyc > 0 and e > 0, the supremum over 6eB(00, S0), GeB(G0, S0) 

and | O'-O | < cIVn, of (P? ({| y/wp J f? (., 0, ?n) /(., 6, G)d/i (.) 

+ Vn<l?ir2{->Q>Gr?dG(.)\ > e}) tends to zero as n->oo. 

The following is the Model Ill-analogue of Lemma 3.1a. 

Lemma 6.2. Assume (El). If f satisfies condition U[i] and (tfrv ̂2) 
satisfies conditions U[ii]?U[vi], then Tn(Q^lf ^a) is a uniformly ^-consis 
tent solution (III) (vide Definition 2.3 and observation (I)) of (6.7) as well as 
VAN (III) wiihAVV (., ., i/rv f2) mhere 

V(d, G, f,, f2) : = 
.^feg>^-W 

V (?, 0). 

Proof. An easy modification of the proof of the parts U(II)(B) 
and U(III)(B) of Lemma 3.1 proves the result. 

From now on, we shall assume that q is positive. 
Note that 

(9) If there is <p in K2 such that Qse-^A^),^ satisfies relation (6.6), then 

ini(d, G) = p\\s0(., 6, G)+A(<j>)(., d, G)\\\^AQ) +q\\<?>(., 6, 0)11^ V(0, G). 

Hence 1^(0, G) > 0 if and only if 

(E0) 0 < \\se(., 0, G)fH(fLM)) 
< ^(0, G). 

(10) Assumption (Dl) implies assumption (E0) and condition Up]. 

Therefore, in view of observation (9), conditions U[ii]?U[vi] hold for 

\Jrx 
= 

s0-{-A(<f>) and \?r2 
= 

ci provided there is <?> belonging to C70|1|0 (S2X?X?) 

such that (?L ^ satisfies relation (6.6). 1' 2 

Bemark 6.2. In view of observations (9)?(10), it remains to prove the 

existence of <f> lying in C0th0(S2x?X*S) such that Qso+Aty),^ satisfies 

the relation (6.6). 

Let us now observe that, for any }Jr1 in K? and ft2 in K2, relation (6.6) 

is equivalent to 

V i M-> ?)/(" 0> V) dM- )+#2(2/> 0, ?) == 0 for all (0, G, y) e ?X?xS2 
... (6.8) 
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Therefore, Qse+A{<?)), <j> satisfies relation (6.6) if and only if 

V i * (., e, G)f(., 6, y) d[i(.) = -p J A(<f>)(., 0, G)f(., 6, y) dp (.) ... (6.9) 

-q<f>(y,d,G) Y(0,G,y) 
But for any (d,G,y)e?X?X82, 

S a{<?? (., e, G)f(., e, y) dK.) = J 
M'0'**;; 

^ n*, e, y) dM.) 

= ?K{y,y',d,G)<j>[y',d,G)dG{y') ... (6.10) 

where the function K : S2 X S2 x 0 X & ?> R is defined by 

K(y, y', 6,G): = 
J/(" 

yffff'?*' 
V) M-) for (y, y', d, G) e S2X S2X?X?. 

Assume that 

(E2) (a) For any x in Sv fix, .,.)e Clt0 (0 X S2) 

and (b) the following three families of functions 

l/('' eiuo$? 

' 
{y> y'>0'G) e s*x s*x ? 

xs}' 

{?-'6f?,)??'{?)d'y'):(y,y',d,G)eS2xSzx?x?} 

and 
[M^^:(ry,iifl)(MxgX?) 

are uniformly integrable with respect to ?i. 

(11) Under assumption (E2), K e G0t0flt0(S2 X S2 X 0 X *?) and therefore 

the RHS of relation (6.10) defines a bounded operator B from CK2 to CK2 
where GK2 denotes the subspace C0tlt0(S2X?X?)K2, of C0>1>0 (S2X?X?). 

Define r? : 82X0X?->R by 

V(y, 0,G): = ?s9 (x, 0, G)f(x, 6, y) d[i(x) for all (y, 6, G) ... (6.11) 

(12) Under assumption (DI), t? belongs to the set GK2. 

By (6.9)-(6.11) we see that for all (y, 6, G) 

V(y,d,G)=-(B+?l)(t)(y,d,G) 
= 

-C(<f>)(y,d,G) 
... (6.12) 

where G denotes the (bounded) operator (B-\-? I \ from CJl2 to itself. 
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In view of observations (9)?(12), Remark 6.2 and relations (6.10)?(6.12), 
it remains to prove that C is invertible. As a first step towards this goal let 

us show that 

Lemma 6.3. Under assumption (E2), (a) C is 1-1 and (b) B is a compact 

operator. 

Proof, (a) Let 0 e CK2 be such that C<?> 
= 0. Then, 

f J fly, 0, G) K (y, y', 0, G) <?> (y', 0, G) dG(y) dG(yf) 

+ 
(?\\\$(.,0,G)\\l2(G)==O v(0,0) 

which, in turn, implies 

i.e., equivalently 

<f>(.,0,G) = O a.e.[G] ^(0,G) 

and hence 

<?> = 0 [Since <t>eCK2] 

(b) In the proofs available in standard literature, the measure G is 

fixed. For the sake of completeness a proof is given in Appendix D. 

As a corollary to Lemma 6.3, one can show 

Lemma 6.4. Under assumptions (D\) and (E2) there is a function 

<j> e CK2 such that \[r1 
= 

s0+A(<f>) and ijr2 
= 

<?> together satisfy (6.6) and condi 

tions U[ii]?U[vi]. 

Proof. In view of calculations done earlier it is enough to show that C 

is invertible. 

Suppose not. Then using the fact that q ̂  0 and compactness of B 

conclude from Theorem 4.25(b) of Rudin (1974) that C is not 1?1, which 

contradicts Lemma 6.3(a). 

In view of Lemmas 6.1?6.4 one can show 

Theorem 6.5. Assume (El), (Dl) and (E2). ~Let <f> be as considered in 

Lemma 6.4. Then 
Tn(Q^+A{^) 

is UAN (III) with AY (1/17/I). 

Remark 6.3. It is worth pointing out that we do need the compactness 

of the operator B since it acts on a Banaoh space rather than a Hubert space. 
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Note also that we make use of 'non-negative'-ness of B (vide Lemma 6.3) 

but the associated inner product will not give the norm of the Banach space. 

Bemark 6.4. We have verified assumptions (Dl) and (E2) for the following 

two cases : 

Case 1 (a) S is compact 

(*>) feC09M(SxQx?) 

(c) f(x,6,G)>0^-(x,6,G) 
and (d) P0,?({|/'(., 0, G) \ > 0}) > 0 V(#, G). 

Case II We have Euclidean S and exponential / following assumptions 

(a) and (f) of Remark 3.4 and additional assumptions 

(d)* i(n'j)*(d,?)>0V-(d,?) 

and (c)* for any d in 0, both 2TT0}xS2)-lfj({d}xS2) and 2?0}x82) 
?7Tj({6} X 82) belong to the interior of ?2. 

In particular, Exampe 6.1 falls in Case II of the above remark. 

Bemark 6.5. To solve (6.7), we have to determine for various values of 6, 

<p(Y, 6, G%) and <p(Y, 6, G%) evaluated at all the observation Ytfs on Y. 

Now, one can easily observe that for G's with finite support and y's 
restricted to the support of G, equation (6.12) can be rewritten in the form 

Ax = 
y where the matrix A is positive definite. Thus we have a unique A. +. 

solution for 0 (Yy9 6, G?) for odd i's and for <?> (Ytj, 0, G?) for even ?'s. 

To evaluate $(YtJ, 6, G% 1 < j < q, i even} and {<?>(Yih d, GEn), 

l<j<q,i odd}, define G?l : =(l-e)G%+e OS and G?2 : = e G?n+(l-e)GEn 

and solve the linear version of (6.12) with G = 
Gel and Ge2 for {<?)(Yy, 6,Gtl), 

1 < 3 < ?> ? even) and {<j>(Y(j, 6, Ge2), 1 < j < q, i odd}. Again the solu 
tions are unique. Now let e tend to zero. 

In actual practice one would solve 

S [ i {?9(X?, 0, ?5)+^)(Zw, 0, ??)}+ i <f{Yik, 6, G,2)] 
?odd 

S 
[ 

2 {se(Xi}, 6, <k)+A$) (X?h 6, k)}+ 2 ?(Ftt 0, G?l) 1 = 0 
i=?l l f=l k~l J 
t even 

for various values of e and stop when two consecutive values differ 

insignificantly. 

A 3-2 
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Appendix D 

Proof of Lemma 6.2(b). Want to show that AS is compact in 

|| ||0fli0-norm where 

AS : = 
{A(<?>) : <?> e S(Co,1(O(?2X0Xa))} 

and S(G0tli0(S2X?X?)): 
= 

{<f>eC0th0(S2X0X?): |0||OiLO 
= 1} 

Note that |0||OflfO 
= 

\\<f>\\sup+\\ ?<?> I for <?> e C0A>0 (S2X?x?). 
sup 

Also note that A3 is compact iff AS and (AS)' are uniformly bounded 

and equicontinuous, where 

(AS)' : = 
{? 

(A($)) : <f> e S(C0M (A2X0X.S))). 
We shall only show that AS is uniformly bounded and equicontinuous. 

One can prove this fact for (AS)' ir> a similar way. 

Now let us observe that 

Pdiw < Plu* u\up < iwitw \\noM v ^ * ?w-s.x ?x ?) - (D1) 

Therefore .4$ is uniformly bounded. 

Let us now fix (y0, 60, G0) e/S2X0Xa, then 

\A(<j>)(y,d,G)-A(t)(y0,d0,G0)\ 
= | f *iy, y', 6, G) $ (y', 6, G) dG(y')-$ K(y0, y', 60, G,)<?>(y', 60, G0)dG0 (y') | 

< | I {K(y, y', 6, G)-K(y0, y', d0? G0)}<?>W> 6, G)dG(y') \ 

+ | J K(y0, y', d0, G0){<j>(y', 6, G)-<?(y', d0, G0)} dG(y') | 

+1 ?K(y9, y', d0, G0) <?>(y', d0, G0) d(G-G0) (y') | < -1+-1+? = e ... (D.2) 

if 10?0Q |, d(G, G0) and p(y, y0) < 8 where p is some metiic inducing topology 
on S2 and 0 < S < 6/(3||Z"||?t?J)) is chosen in such a way that for ar>y pair 

(y, y', 0, G), (y, yf, 0,G); \ 0-01, d(G, G), p(y, y) and p(y\ y') < ?imply 

\<f>(y, 6, G)-<t>(y, 0, G)|<e/(3||*|U) 
and 

\K(y,y',0,G)-K(y,y',0,G)\ < e/3. 

From (D.l) and (D.2) it follows that AS is uniformly bounded and 

equicontinuous. 
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