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PATTERN RECOGNITION
WHEN FEATURE VARIABLES ARE SUBJECT TO ERROR

By SOMESH DAS GUPTA
Indian Statistical Institute

SUMMARY. In the problem of pattern recognition the measurements of the feature
variables are often subjected to noise. Various effects of this noise-vector are considered in

this paper especially with respect to the changes in the Bayes risk. The results of Chaudhuri
(1982), and Chaudhuri, Murthy and Dutta Majumder (1983) have been rigorized and extended
following a precise formulation.

1. INTRODUOTION

Let U denote an experimental unit randomly selected from a population
m, which is known to be one of two distinct populations 7; and #,. The basic
problem of classifying U into m; or 7, is generally based on some vector X
of p feature measurements on U. However, in some cases X cannot be measu-
red directly, and instead ¥ = X+{-e is available, where e denotes the noise-

vector affecting the X-value. In this paper we shall study the various effects
of the noise-component.

Let f; be the density of X with respect to the Lebesgue measure, when
w; obtains. A classification rule ¢ based on the available data d is given by
o(d) = (p4(d), p4(d)), where @i(d) is the probability of deciding 7= = =, given d.
If X-measurements were available, then one may consider the Bayes rule
¢*(X) for the prior probability vector (p,, p,), where p, is the prior probability
that 7; obtains. The Bayes rule ¢*, under zero-one loss function, is given by

‘ 1, if 2 fy(®) > py (@)
P1(x) =

(1.1)
0, if p,fil@) < ppfo(®).
The risk of ¢* can be found to be equal to
By = (‘%‘) [ 1— § |21fi(®)—p, fo(®) | d“’] . o (L2)

R?P
However, if only ¥-values are available then one would consider the

Bayes rule ¥*(¥), provided the density g; of ¥ under 7, is known. In that
case the Bayes risk of ¥* would be equal to

1
Ry = (‘—“) [1“" J 121 9{Y)— Do ga(y)ldy] . .o (1.3)
2
R?
AMS (1980) subject classification : 62H30.
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In case g¢'s are not known but fi’s are known, one may use the rule o*(Y)
(i.e., ¢* given in (1.1) with & being replaced by y). The Bayes risk of such g
rule is given by

Ry.x=01 § o2(Y) 91(y) AY+ps | @1(y) 9:(y) dy. e (L.4)
R? R?

The following problems will be considered in this paper.
(a) How does Ry compare with Rx?
(b) How does Ry:x compare with Ry and Rx?

(¢) How does the noise-distribution (i.e., the distribution of e) influence
the value of Ry.x?

(d) Given the noise distribution, how does Ry.x change with changes in
Jis

In the model ¥ = X--e, it is generally assumed that X and e are in-
dependently distributed, and the distribution of e is the same for both =,
and 7,. Instead of the above model, we shall consider ¥ in a more general
set-up, in which the conditional density h(y/a) of Y given X = & is the same
for both 7, and ,.

The basic object of this paper is to understand the role of the error
component.

2. COMPARISONS OF Ry, Bx AND Ry:Xx : GENERAL CASE
Theorem 2.1: Rx < Ry < Ry:x.

Proof : First note that

§ 121 9:Y)—p2 9:(y) | dy
= [| | (11 (@) —p fo@®))(y[x)dx|dy
< | 2o (@) —pa fol®) | (y[z)d | dy
= { | D1 f1(@®)—p, fol®) | dc.
The above result along with (1.2) and (1.3) yields
Bx < Ry.

Since the Bayes risk of ¢*(¥) cannot be smaller than the Bayes risk of
the Bayes rule ¥*(Y) based on Y, it follows that

Ry < Ry :x.



PATTERN RECOGNITION 289

Noite : It may be noted that ¢* and y* are different in general. The
equality ix = Ry can hold if, and only if 7, fi(a)—7p, fo(®) has the same sign
(a.e.). On the other hand, Ry = Ry:x can occur if, and only if, ¢* is a Bayes
rule based on Y. This means that the symmetric difference of the sets

P J(Y) > v [A(Y) and p; g4(Y) > p3 94(y), and the symmetric difference of the

sets p1 1Y) < Pafo(y) and p, 1Y) < P, go(y) have (Lebesgue) measure zero.
For example, consider the univariate case with p, = p, = 0.5, X ~ N(u;, o®)

under 7, ¥= X--e where e ~ N(0, 7?) independetnly of X ; in this case
¢* = yY* and Ry = Ry:x.
3. STUDY OF Ry:.X : GENERAL CASE

It can be seen that

By:x = pot+ [ [f 92 (Y)W(y/®)dy] (2, /(@) —ps fol®)) dx. ... (3.1)
Theorem 3.1 : Suppose p =1, and

(8) h(y/m)=-}ic("-’-;”), for 7> 0 and some density function k,

(b) 2, fi(x)—p, fox) changes sign only once, and takes nonzero value a.e.

Then Ry.x tncreases with 1.

Proof : Without loss of generality, suppose
P f{(®)—pa fol) 2 0 iff 2 > ¢,

for some ¢. Then
¢

J osMy[x)dy = | -,1‘-_- k (-'/_}":-?) dy

=K (?-1‘-"9-) o (3.2)

T

where K is the c.d.f. corresponding to k. Now note that, for 7y < 7,

& (=) —& (=) ] -2 <. . (3.3)

Te 7y
Hence, for all z

| (55) —K ()] eufi@-mbie > 0. ... (34)

To T

The desired result now follows from (3.1), (3.2) and (3.4).

The above theorem can easily be generalized to the multivariate case
a8 follows :
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Theorem 3.2 : Suppose

(8) 2, fi(®)—Dafo(®) 2 0 4ff T(®) > ¢ for some real-valued statistic T gug
constant ¢, py [1(®)—ps fo(®) # 0 a.e., and

(b) the conditional density of T(Y) given X = x 18 given by

1 (Jo-Tw@)

for some density function k and 7> 0. Then Ry.x increases with r.

Note 1 : Theorem 3.2 applies to the case when f; and f, are respective
densities of Ny(w;, &) and Npy(p,, &), and e is distributed as Ny(0, I') inde-
pendently of X. Then

T(x) = & &, —we),
and .-
Ty = (Ba—g) &7 L S (g —ppy).

Nofe 2: Chaudhury, Murthy and Dutta Majumdar (1983) considered

the problem of classifying U into one of I(I > 2) populations, and proved
that Rx < Ry under the tacit assumption ¢* = ¢*. It may be noted that,
except for some trivial or simple cases, ¢* and ¥* are different. Nevertheless,

the result Bx < Ry can be shown to be valid in general ; its proof is given
below.

Let f; and g; be the densities of X and ¥, respectively, under ;; let
h(y/x) be the conditional density of ¥ given X =— @. Then the Bayes risk of

¢, against the prior distribution (p,, ..., p,) and under zero-one loss, can be
shown to take the following form :

Rx=1— | max (pfi(x)) de.
R? | B X |

On the other hand,

Ry=1— | max (p;g;(y))dy
rP1Ki<1

=1— [ max {p[fi(x)h(y/x) dx}dy
pp1l<igI

>1— [{§ mex (pfi(@)hiy/) da} dy
pP ‘0111

= Rx.

When I > 2, the result Ry < Ry x follows from the argument used for the
case I = 2,
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4. SOME EXAMPLES

Example 4.1. Let f,, f, and h(./z) stand for the densities of N(u,, 0?),

N(ug, 0%) and N(z, 72), respectively. For simplicity, assume p, = p, = 0.5.
Then

Ry = Ry.x = ®(—pA[2),
where A= |—pllo, B = (1+72/0?)-172,

and @ is the c.d.f. of N(0,1). For fixed B, it can be easily shown that
By.x — Ry attains its maximum at

A = Ay(B) = [8In(1/B)/(1— )]V,

Moreover Ay(f) can be found to be a decreasing function of . The following
table gives the values of Ry.x — Rx at A = Ay(p) for various values of §

056 01 02 05 07 0.9

max (Ry.x—Rx)| 48 44 40 32 .16 .08 .02

The above result on maximisation of Ry.x — Rx was demonstrated by
Chaudhuri (1982) only through numerical computation of the graph of
Ry.x—Rx without explicit derivation of A,(#). For a sensitivity analysis
it seems more natural to consider

(-RY:Z“RX)/RX- (4'1)

It can be shown that the ratio (4.1) is approximately equal to the following

for large A :
7;—- oxp {(1—4%)A%8}—1.

On the other hand, for 72/02 close to 0 (or, £ close to 1) the ratio (4.1) is
approximately equal to
(1—F8) (A[2) ®'(—A[2)[/D(—A[2).

Example 4.2 : Let f, and f, represent the densities of N(u,,0%) and
N(p,, 0%), respectively. Assume, for simplicity, p; = py = 0.5. Suppose

0y > 0y;. Then
H(X)2 L) & € 2 € cy,

for some ¢,, ¢, depending on ug's and oy’s. Then it follows from (3.1) that
Ry.x = p1+{ § o1 h(y[z) (pa fol®)—p1 fi()dy d.



292 SOMESH DAS GUPTA

Henﬁe o Oy
2Ry.x =1+ | (h@—£@)] | byls) dy] do
i C1

Suppose now

hyjz) = — k (=),

=~ -
where k is some density function, and 7 > 0. Chaudhuri, Murthy and Dugg
Majumdar (1983) have claimed some monotonicity property of Ry.y with

respect to 7. To see that the claim of Chaudhuri, Murthy and Dutta Majumday
(1983) is not generally true, let us specialize the distributions as follows :

Assume py = pg = 0,0, >0y, and p, = p, = 0.5. Then the Bayes

rule ¢* is given by
1, if 22 <ec
P; (%) =

0, otherwise
where 2
C = 2- 0'2 111(0'3/0'1)
0'2 1
Thus

Ry.x = P[Y2 < ¢| Y ~ N(0, 03+78)]+P[Y2 > ¢| ¥ ~ N(0, 03+1%)]
= Q(¢/(03+72)+1—G(c/(03+72),

where @ is the c.d.f. of the chi-squaré distribution with 1 degree of freedom.
The derivative of Ry.x with respect to 72 is positive if, and only if

of o3 3 3 1, (02t
[GEOIC IO I (ﬁ"?+‘r2 ) '

The above inequality does not hold for all 72 and all o2 < o%.

It can be shown for this example that the Bayes rule ¢* with X replaced

by ¥ is unique Bayes and admissible in the class of rules based on Y, when e
is distributed as N(0, 72) independently of X. To see this, consider the follow-
ing prior density of 72 when ¢ obtains

C G'j/ (0'%+72)3!2:

where ¢ is a numerical constant. Then the unconditional density of Y under
m, becomes proportional to

(Yog) {1 —exp(—uf)}/ui,

where uf = (y—m)?/2 of.
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The desired result now follows by taking the prior probability p; propor-

tional to (1/oy) and after noting that {l1-+-exp(—a)}/e is decreasing function
of a > O.

5. THE LIXKELTHOOD-RATIO METHOD

It may seem inappropriate to use Y in the Bayes rule determined from
the known distributions of X. It may be proper to estimate the noise
distribution based on observation on Y and incorporate this estimate in
formulating a reasonable classification rule.

We demonstrate the above idea with the following simple case. Let

fi be the density of N(uy, 02), where u;’s and 0% are known. Let ¥ = Xe,
where e is distributed as N(0, 72) independently of X, with unknown 7 > 0.
Next we derive the likelihood-ratio classification rule. First note that

_ 1 1
\/21, f;l,% 91(?/) — Et;po \/;2_,_0-2__ exp {"‘ 2('0.2 +}§) (3/“"'/"()2 }

{ly-—ﬂdl'l oxp(—1/2), if (y—pu4)2jo® > 1
(1/0) exp {—(y—m)?/2 0%}, if (y—p4)?fo® < 1.

The general form of the likelihood-ratio rule can be expressed as follows.
Classify into , if, and only if

sup ¢,(y) > k sup ¢,(y),
>0 >0

where 0 << k << o0 is a constant. In particular, the above rule reduces to
the following when £ = 1. Classify into 7, if, and only if

(Y—:)* < (y—pa)*.
Now consider the above problem in the p-variate case. Then f; stands
for the density of N,(ws, Z), and e is assumed to be distributed as N4(0, 72 I,),
independently of X. The computation of the maximum likelihood estimate
of 72 becomes very complicated. We suggest to use

= (e (Top) =i 2
D +

3}
a8 an, estimate of 72 when 7; obtains. Now one may consider the following
clagsification rule : Classify 7 into m, if, and only if

(¥ —pa) (B3 Lp) (¥ —ppa) < (F—pia) (B473 1) (V— ).
It is believed that the above rule would be better than ¢* with X replaced
by Y.
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