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Chapter O
Plan of the thesis

This thesis is composed of chapters 1 to 5. In Chapter 1, we formally

define SDLCP and give some examples of SDLCP and show that SDLCP
is a special case of variational inequality problem. Also we show that LCP
is indeed a special case of SDLCP. Later section of this chapter deals with
definitions and notations.

In Chapter 2, we are concerned with the results which have been ob-
tained in an effort to generalize the P-matrix condition of LCP to SDLCP.
It is known that a matrix M is a P-matrix if and only if M does not re-
verse the sign of any nonzero vector. This notion of the P-matrix property
has been extended to the SDLCP setup through the P-property or the Pg-

property. If M is a P-matrix, then LCP(M, q) has a unique solution for



every ¢ € R™. But, if L has the P-property, it need not imply that, L has

the GUS-property.

It is known that the P-property may not imply the GUS-property al-

though it is true in the LCP situation. It has been shown that the P,-
property implies the GUS-property. We will also give an example to show
the GUS-property need not imply the Py-property. Also from this example,
it becomes clear that the Pa-property is stronger than the P-property.

If L has the strong monotonicity property, then it has the GUS-property
and the Po-property also implies the GUS-property. In view of this we would
like to know whether there is any relationship between the strong monotonic-
ity property and the Pa-property. Could we say the strong monotonicity
property = the Pq-property? We answer this question affirmatively. If a
linear transformation L : S™ — S™ has the strong monotonicity property,
then it has the Ps-property.

We provide an example to show that the Po-property need not imply the
strong monotonicity property in general. Finally, in this chapter we derive a

set of necessary and sufficient conditions for the linear map My to have the

strong monotonicity property when A € R?*x2,



In Chapter 3 we derive results specializing to the Lyapunov, Stein and
double-sided multiplication transformation. We prove the equivalence of the
strong monotonicity property and the Pa-property for L4 when A is positive
definite. When A is normal, the equivalence of the P-property and the strong

monotonicity property was already established for the transformations L4
and S4. This result is false for M4 even if we assume A to be normal.

However, we show the equivalence of the P-property and the strong
monotonicity property for M4 by assuming A to be symmetric matrix. This
is the best result one can hope to get on the equivalence of the P-, P,- and
the strong monotonicity property for M4.

We also show that if A is symmetric, L4 or L_4 has the GUS-property
if and only if M4 has the GUS-property. In this chapter, we also give a set
of sufficient conditions for M4 to have the strong monotonicity property.

It is known that for Lyapunov and Stein transformations, the P-property
= the Q-property. We consider this problem for double-sided multiplication
transformation, My, in Chapter 4. We prove an interesting negative result
of independent interest, which identifies a class of the map M4, that do not

enjoy the Q-property. Using this, we could prove that the Q-property =



the P-property, for M4 when A = A®. Also we could show this equivalence
when A € R?*2, In general, it is not known whether the Q-property will
imply the P-property for M.

In Chapter 5 we indicate some open problems relating to SDLCP.



Chapter 1

Introduction

1.1 Variational Inequality Problem

Let f be a continuous function from real n-dimensional space R" into itself

and K be a closed convex set of R". The variational inequality problem is to

find a vector z* € R"™ such that
z* € K and (f(z*),z-z")>0Vze K. (1.1)

We denote the above problem as VI(f, K). It finds extensive applica-
tion in optimization, economics, traffic equilibrium points, etc. Refer Harker
and Pang [14]. This problem has also been studied well in infinite dimen-
sional setting with applications in differential equations, mechanics, etc. Re-

fer Kinderlehrer and Stampacchia [18]. When K is closed convex cone, (1.1)



becomes thé problem of finding an z* € K such that
f(z*) € K* and (z*, f(z*)) =0 (1.2)

where K* is the dual cone of K and defined as {y € R*: {z,y) >0, Vz €
K}. This problem is known as cone complementarity problem. This has
applications in optimization, bi-matrix games, mechanics, economics, etc.
Refer Isac [16], Ferris and Pang [6], Ferris, Mangasarian and Pang [5], Murty
[22], Pang [24] and Song [30] for more details.

One can see that if K = R} (= nonnegative orthant) and if f is affine,
then the problem becomes a linear complementarity problem. See Cottle,

Pang and Stone [4].

1.2 Semidefinite Linear Complementarity Prob-
lem

Let S™ be the space of all symmetric and real n X n matrices and ST be
the space of symmetric and real n X n positive semidefinite matrices. Given
a linear transformation L : S® — S™ and Q € S™, the semidefinite linear

complementarity problem, SDLCP(L, @), is the problem of finding a matrix



X € S™ such that
X € SY, Y=L(X)+Q€Sf|‘_, and (X,Y) :=tr(XY) =0 (1.3)

where ’tr’ denotes the trace of a matrix. Gowda and Song [9] introduced
SDLCP in the above form.

Let K = S% and let f(X) := L(X)+@ be a linear function from S® — S*,
where, L is also a linear function from S™ — S™ and @Q € S™. Then, VI(f, K)
defined in (1.1), becomes SDLCP(L, Q).

This problem was originally introduced by Kojima, Shindoh and Hara
19] in a slightly different form. The Semidefinite Linear Complementarity
Problem (SDLCP) can be considered as a generalization of the linear com-

plementarity problem (LCP), Cottle, Pang and Stone [4].

1.3 Examples of SDLCP

To show the unifying nature of SDCLP, we provide two examples. They are:

1. The standard linear complementarity problem and

2. Geometric SDLCP



1.3.1 The standard linear complementarity problem

Given M € R™*" and q € R"®, the linear complementarity problem, LCP(M, q),

is to find a vector £ € R™ such that

z€R}, y=Mz+qgeR} and (z,y)=0 (1.4)

where (z,y) is the usual inner product in R".

See Cottle, Pang and Stone [4], Ferris, Mangasarian and Pang (5], Murty
[22] and Ferris and Pang [6] for more detailed discussion. Standard linear
complementarity problem can be shown as a special case of semidefinite linear
complementarity problem as follows (see Song [30]):

Given a standard linear complementarity problem LCP(M, q) as given in
(1.4), consider the semidefinite linear complementarity problem, SDLCP(M,

Diag(q)) where the linear transformation M : S* — S™ is defined by
M(X) := Diag(Mdiag(X))

where diag(X) is a vector whose entries are diagonal entries of the matrix X
and Diag(u) is a diagonal matrix whose diagonal is the vector u.

The above SDLCP(M, Diag(q)) is the problem of finding X € S™ such



that

X eS8 Y :=M(X)+Diag(q) € S}, (X,Y)=0.

If X solves SDLCP(M, Diag(q)), then diag(X) solves LCP(M,¢q). Con-
versely, if = is a solution of LCP(M,q), then Diag(z) solves SDLCP(M,
Diag(q)) and hence these two complementarity problems are equivalent. The

following example illustrates the above transformation.

Example 1.3.1 Let M € R33 and q € R? be given. The linear transfor-
mation M is as follows:
i) M1t 0 0
M(X) = 0 Y i1 MaiLis 0 :
0 0 i1 MaiTi
Remark 1.3.1 LCP results do not carry over to SDLCP because of two

magor reasons: (1) The cone S% is not polyhedral (where as in LCP, the

cone R} (= nonnegative orthant) is polyhedral) and (2) the matriz product

18 not commutative.

1.3.2 Geometric SDLCP

Kojima, Shindoh and Hara [19] introduced the notion of semidefinite linear

complementarity problem as a model unifying semidefinite linear programs



and problems arising from system and control theory and combinatorial op-
timization. For more details, see Overton and Wolkowicz [23], Boyd, Ghaoui,
Feron and Balakrishnan [3], Wolkowicz, Saigal and Vandenberghe [33] and

Vandenberghe and Boyd [32].

The geometric SDLCP(F) is to find a pair
(X,Y) e FN(S} x S}) such that (X,Y) =0

where F be an affine subspace of S™ x S™ of dimension @ One can easily
see that SDLCP(L, Q) is a geometric SDLCP(F). (Since SDLCP(L, Q) is
given, we can define F as {(X,Y) : Y = L(X) + Q}. It is clear that F is an
affine space). To see the converse, we borrow the ideas from Song [30].
Consider the geometric SDLCP(F), where F be an affine subspace of

S™ x S™ of dimension @. JF can be written as:
{(X,Y)e " x 8" : [h(X) + Ly(X) = B}

where L; and L, are linear transformations from S™ to itself and B € S™.

Define L : §3"* — 53" and Q € S°" by

X * % Y 0 0
LI|* Y *[|]=]0 Li(X)+ L(Y) 0 ,
¥ x 7 0 0 —L(X) — La(Y)

10



0 0 O
0 —-B 0
0 0 B

Q=

X *
We can verify that if W =| * Y solves SDLCP(L, @), then (X,Y)
* %

*
*
Z
solves the geometric SDLCP(F). Conversely, if (X,Y) is a solution to geo-

X 00
0 Y O
0 0 O

solving one problem we can solve the other.

metric SDLCP(F), then W = solves SDL.CP(L, Q). Hence, by

1.4 Preliminaries

1.4.1 Notations

In this section, we summarize the notations that we use repeatedly through-
out this thesis. There are some notations, which we have used in this thesis
but not mentioned here. They are described at the relevant places.

Spaces: We denote a real n-dimensional Euclidean space by R". One-
dimensional space, the real line, is denoted by R. The space of all n X n
real matrices is denoted by R™*". R denotes the nonnegative orthant of
R". The set of all real n x n symmetric matrices is denoted by 5™ and the

space of real and symmetric n X n positive semidefinite matrices is denoted

by S%

11



Vectors: Vectors are usually denoted by lowercase letter such as z in this
thesis. A vector z € R"™ is considered to be a column vector. The notation
z°* means the transpose of z. The inequality £ > 0 means every component
of z is nonnegative and z < 0 means —z > 0. The inner product of vectors,
z,y in R"™ is either denoted by z*y or (z,y).

Matrix Theory: A matrix A with a;; as elements is denoted by A = (a;;).
Identity matrix is denoted by I. Determinant of a matrix A is represented
by |A|. When all the entries of a matrix A are nonnegative (positive) we
represent it by A > 0 (A > 0). If a square matrix X is symmetric and
positive semidefinite (positive definite) we represent it by X > 0 (X > 0).
The notation X < 0 means the matrix —X > 0. Trace of a matrix X is
denoted by tr(X). Transpose of a matrix A is denoted by A®. The Kronecker
product of two matrices, A = (a;;) of size m x n and B = (b;;) of size p X ¢

1s denoted by the symbol A ® B and is defined to be the mp X ng matrix,

anB apB -+ a1,B
a1B axpB - aB

amlB a'm2B =S a'rrmB

Fanctions: A mapping f with domain D and range R is denoted by f : D —

R. Let A € R™™, In this thesis, the following three linear transformations

12



from S™ — S™ relating to SDLCP are considered:
1. Lyapunov transformation L,, is defined by L4(X) = AX + X At
2. Stein transformation S,, is defined by S4(X) = X — AX A"

3. Double-sided multiplication transformation Mg, is defined by M4(X) =

AXA'

The motivations for studying these transformations are given in Chapter 3.

1.4.2 Matrix Theory

We recall the following definitions.
Definition 1.4.1 Let the mairiz A belong to R™*™.
1. The trace of A is the sum of all diagonal elements of A.

2. A is positive semidefinite (definite) if the quadratic form z*Az > 0
(> 0) for all x € R™ (nonzero x € R™). A is negative semidefinite

(definite) if —A is positive semidefinite (definite).
8. A is said to be copositive if z* Az > 0 for all x € RT.

4. A is positive stable if every eigenvalue of A has positive real part.

13



5. A is orthogonal if AA* = I = A'A, where I is the n x n identity matriz.
6. A is normal if AA* = A*A.
7. A is said to be a P-matriz if all its principal minors are positive.

8. A diagonal matriz S is said to be a signature matriz if its diagonal

elements are either -1 or +1.

Let A, B € R**". Then, tr(AB) = tr(BA). The notation (A4, B) is used

to denote the trace of (AB).

We list below some well known matrix theoretic properties. For more

details, see Cottle, Pang and Stone [4].

Definition 1.4.2 A matriz A € R™" is said to reverse the sign of a vector

2€ R" if z(Az); <0 foralli=1,...,n.

Theorem 1.4.1 Let A € R**"*. Then, the following statements are equiva-

lent:
(i) A is a P-matriz.

(ii) A reverses the sign of no monzero vector that is z(Az); < 0 for all
t=1,...,n=>2=0.

14



(iii) All real eigenvalues of A and principal submatrices of A are positive.

For a detailed discussion on P-matrix and related topics see Parthasarathy

25].

Theorem 1.4.2 Let A € S™. Then, A is positive semidefinite if and only if

there exists an orthogonal matriz U such that
A =UDiag(A, A2, ..., AU
where X\; are nonnegative.

Theorem 1.4.3 Let A € ST. Then, there exists B such that B* = A.

For a proof of Theorem 1.4.2 and Theorem 1.4.3 see Zhang [34].

Since A is real and positive semidefinite, by Theorem 1.4.2, A can be writ-

ten as U'Diag(\1, A2, . . ., An)U. Now take B = U'Diag(v/ A1, VA2, -+, VAr)U.
B is called as square root of A and is denoted by v/A.

In the following theorem, we give some of the important properties of

positive semidefinite matrices.

Theorem 1.4.4 Let the real square matrices X,Y be symmetric. Then, the

following results hold:

15



(i) X = 0= PXP"* >0 for any nonsingular matriz P.

(ii) X = 0,Y = 0= tr(XY) 5 0.

(iii) When X = 0,Y = 0 then tn(XY) =0 if and only if XY =0=Y X.
(iv) X e S"and ti(XY) >0 forallY 0= X = 0.

(v) Given X,Y € R" with XY =Y X, there ezists an orthogonal matriz U,

diagonal matrices D and E such that X =UDU* and Y = UEU".

(vi) A matriz A € R™" is positive definite if and only if the diagonal of

UtAU is nonnegative for every orthogonal U.

Proof: For proofs of (i), (ii), (iii) and (v) see Song [30]. For completeness
sake, we present proof of (iii) here. If XY = YX = 0, then tr(XY) = 0.
Now we prove that if tr(XY) = 0, then XY = 0. Since X and Y are positive
definite matrices, we can write by appealing to Theorem 1.4.3 that, tr(XY)
= tr(\/)—(x/)_(\/}—’\/?) — tr(\/)_{\/?\/?\/f) = tr(AA*), where A = vXVY.
Since X,Y > 0, tr(XY) = tr(AA*) = 0 if and only if A = 0. This shows that
VXY = 0 which in turn implies that, XY = 0. Proofs of (iv) and (vi) are

elementary and are omitted. H

16



Remark 1.4.1 Because of (i) of Theorem 1.4.4, the SDLCP(L, Q) defined

in (1.8) can be restated as:
XeS;, Y=LX)+Q€S5,, and XY =0 (1.5)

Theorem 1.4.5 Let X > 0 and Y be positive semidefinite (not necessarily

symmetric). Then, ti(XY) > 0.

Proof: Since X is symmetric and positive semidefinite, it has a square
root, v/ X, see Theorem 1.4.3, which is positive semidefinite. So, tr(XY)

== tr(\/f YVX ) > 0 because, Y is positive semidefinite.

Theorem 1.4.6 (Theorem 3, Gowda, Song and Ravindran [9]) Suppose A €

R™*™ is-normal. Then, A is positive stable if and only if A is positive definite.

1.4.3 Basic definitions of linear transformation L

Definition 1.4.3 Some important definitions (ezcepting for the Ps-property)
pertaining to the linear transformation L : S® — S™ are restated below from

Gowda and Song [9] and Gowda and Parthasarathy [8]. Definition 1.4.8 say

that,

17



1. L has the Q-property if SDLCP(L, ()) has at least one solution for every

Q € S".
2. L has the P-property if XL(X) X 0= X = 0.

3. L has the Pi-property if for any X, the matric XL(X) is negative

semidefinite = X = 0.

4. L has the GUS-property (Globally Uniquely Solvable-property) if

for every Q € S™, SDLCP(L, Q) has a unique solution.

5. L has the Pa-property if X = 0 and Y > 0 and the matriz (X —

Y)L(X-Y)(X+Y) 0= X=Y.

6. L has the Ps-property (the P2- in the wider sense) if X = 0,Y > 0 and

the matriz (X =Y )L(X -Y)(X+Y) is negative semidefinite=> X =Y.
7. L has the Ro-property if the zero matriz is the only solution of SDLCP(L,0).

8. L has the monotonicity property if (L(X),X) = 0 for all nonzero

X e S,

9. L has the strict monotonicity property if i(XL(X)) > 0 for all

nonzero X € S™.

18



10. L has the strict semimonotone property if X > 0 and X and L(X)

commute, XL(X) 0= X =0.

11. L has the strong monotonicity property if there is an a > 0 such

that t( X L(X)) > atr(X?) for all 0 # X € S™.

12. L has the cross commutative property if for every Q € S™ and

solutions X; and Xs of SDLCP(L,Q), the following holds:
X 1Yo=Y2X; and XY =YX,

where Y; = L(X;)+Q, i=1,2.

Remark 1.4.2 The statements below follow from the above definitions.
1. The P1-property implies the P-property.

2. In general, the P-property does not imply the P;-property, see Example

1.4.1 given below.
3. The Pg-property implies the P2-property.

4. The converse of the above result is not true. That is, the Po-property

need not imply the Pgs-property as shown in the following Ezample

1.4.2.

19



5. The Pq-property implies the GUS-property, see Remark 6, Gowda and

Song [9/.

6. For a linear transformation L, strong monotonicity and strict monotonic-

ity properties are equivalent, see page 21 of Song [30].

7. Song [80] (Theorem 21) shows that the strong monotonicity property
implies the GUS-property. We give an ezample to show the converse

s not true in general.

Example 1.4.1 Define L : S° — S? where L(X) := ( * ; Y , _T_ . ) with

X = ( :; z ) We will show that, the map defined as above, has the P-
property but does not have the Pq-property. Define X = ( (1) (1) ) Then,

L(X) = ( _(1) (1) ) Clearly, XL(X) = ( _(1) (1) ) is negative semidefinite

but X # 0. This shows that the map L does not have the Py-property. We

now show that L has the P-property. Suppose XL(X) = L(X)X < 0. We

need to show that X = 0. QObserve that,

2 2 4 .2
[z y T—Y Z - T T+ Y +yz
A A] = ( Yy Z ) ( T Z+4+Y ) - ( rz+ 2y —y° 2y + 2%+ yz )
Since X L(X) is a symmetric negative semidefinite matriz, we have z = 0,

and this implies, 22 +yz < 0 and y? +yz = —y? (obtained by equating the off-

20



diagonal entries) or 2y®> = —yz. Ify =0, then clearly z = 0; that is X = 0.
So assume that y # 0. Then, we get 2y = —z. That i3, 2° + yz = -'*'-;— <0.
This implies that z = 0 or y = 0 and this leads to a contradiction. That

is, X = 0. This shows that L has the P-property but does not have the

P, -property.

We give below an example of a linear map L : S2 — 52 having the

P2-property but not the Pg-property.

Example 1.4.2 Let A = ( _; i’ ) Let us consider the double-sided mul-
tiplication transformation My(X) = AXA'. Write X = _(2) —g ) Then,

-20 -16 2 -2 2 0
XMu(X) = ( 04 _20). Define X; = (_2 2), Xo = (0 2).

-20 -16 4 -2
Then, (X1 — Xz)MA(X]_ = Xg)(.Xl -I-X2) = ( 04 —90 ) ( 9 4 ) =
—8 =24\t ds, XM(X)(X, + X3) is negative definite. Since
136 -128
X1—Xo =X #£0, it follows that the map M, defined as above does not have
the Pg-property. We will show in the next chapter (see Theorem 2.3.2) that

this map has the Pa-property.

We state below some results that we need in the sequel. The following
result of Karamardian [17] (Theorem 3.1), specialized to positive semidefinite

21



cone, guarantees a solution to SDLCP(L, @) for every @ € R".

Theorem 1.4.7 (Theorem 2, Gowda and Song [9]) Consider a linear trans-
formation L : S™ — S™. If the problems SDLCP(L,0) and SDLCP(L, F),
for some positive definite E € S™, have unique solutions (namely X = 0 is

the -only solution), then for all @ € 8™, SDLCP(L, Q) has a solution.

Theorem 1.4.8 (Theorem 4, Gowda and Song [9]) If L has the P-property,

then L has the Q-property.
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Chapter 2

Strong monotonicity property
and the Po-property

2.1 Introduction

Let LCP(M, q) denote the standard linear complementarity problem. It is
known that M is a P-matrix if and only if M has the sign reversal property,
see Parthasarathy [25]. Gowda and Song [9] have extended the notion of
sign reversal property in the SDLCP setup through the P-property or the
P,-property. Now the following question arises naturally: If L : ™ — S™ has
the P-property or the Ps-property, does it imply SDLCP(L, Q) has a unique
solution for all ()7 The P,-property can be considered as a generalization of

the P-matrix condition of the LCP(M, ¢q) since the following two conditions

23



are equivalent for a matrix M:
zER" 2% (M2)<0=>2=0

and

z220,y20,(z—y)*(Mz-My)x(z+y)<0=>z=y.

The notation 2 * (M z) denotes the componentwise product of the vectors z
and Mz and the inequality is defined componentwise. It is known that the P-
property may not imply the GUS-property. However, it can be shown that
the Pa-property implies the GUS-property. We will also give an example to
show the GUS-property need not imply the P2-property.

Recall that a map L : S® — S™ has the strong monotonicity property if
trace of (X L(X)) is positive for all nonzero X € S™. Gowda and Song [9]
have raised the following question: Does the strong monotonicity property
imply the Pa-property? We answer this question affirmatively. We also
give a counterexample to show the Pj-property need not imply the strong

monotonicity property. In this chapter we study the relationship between

Py, GUS and the strong monotonicity properties.

24



2.2 Ps-property versus GUS-property

In this section, we show the Pa-property implies the GUS-property and
the strong monotonicity property also implies the GUS-property. We also

present an example to show that the GUS-property need not imply the

P.-property.

Theorem 2.2.1 (Remark 6, Gowda and Song [9/) Consider a linear trans-

formation L : S™ — S™. Then, the Py-property implies the GUS-property.

We need the following theorem to prove the above Theorem 2.2.1.

Theorem 2.2.2 (Theorem 7, Gowda and Song [9]) Given a linear transfor-

mation L : S™ — S", the following are equivalent:

(i) For all @ € S®, SDLCP(L,Q) has at most one solution.
(ii) L has the P and the cross commutative properties.

(iii) L has the GUS-property.

Proof of Theorem 2.2.1: For the sake of completeness, we provide a
proof. Assume the Pa-property of L. In view of Theorem 2.2.2, it is enough
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to show that for any Q € S™, SDLCP(L, @) has at most one solution. Let
@ be arbitrary and let X; and X; be two solutions of SDLCP(L, Q). Now
letting Y; := L(X;) + @ for i = 1,2, and using complementarity conditions,

we get
(X1 — X2)|L(X1) — L(X2))(X1 + X2) = (Xh = Xa) (Y1 — Y2) (X1 + X3)

= —(Xliff;;Xl + XZKXZ)

Since X;'s and Y;’s are symmetric and positive semidefinite, we see that
X1Ya X, XoY1 X, are symmetric and positive semidefinite. Therefore, by the
P.-property, X; = X3, and thus proves uniqueness.

Converse of the above Theorem 2.2.1 is not always true as illustrated
by the following Example 2.2.1. We need the following lemma to show the

converse is not true.

Lemma 2.2.1 (Theorem 9, Gowda and Song, [9]) For a matriz A € R™*®,
consider the Lyapunov transformation Ls. Then the following statements

are equivalent:

(i) L4 has the GUS-property.

(if) A is positive stable and positive semidefinite.
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2 3

Example 2.2.1 For A = [ 19

] , consider the Lyapunov transformation

L4. Since A s positive semidefinite and positive stable, L4 has the GUS-
. 2 -2 1 -1
property by Lemma 2.2.1. Now let X = _9 9 and Y = 1 1l
Then, X =0, Y =0 and (X = Y)Ls( X -Y)X +Y) = 0. Since X #7,
L4 does not satisfy the Pa-property. Hence, the GUS-property need not
imply in general the Py-property. This ezample is taken from Parthasarathy,

Sampangi Raman and Sriparna [26].

Next we prove that the strong monotonicity property of a linear trans-

formation always implies the GUS-property.

Theorem 2.2.3 (Theorem 21, Song [30]) Let the linear transformation L :

S® — S™ be given. Assume L has the strong monotonicity property. Then,

L has the GUS-property.

Proof: For completeness sake we provide the proof here. Suppose L has
the strong monotonicity property. That is, tr(XL (X )) > 0 for all nonzero
X € R*. We will show that L has the GUS-property. Let us prove this
by contradiction. Let X # Z be two solutions to SDLCP(L, (). Since

X, Z are two different solutions there exists ¥ > 0, W > 0 such that
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Y=LX)+Q =0, W=L(Z)+Q =0, XY =0 and WZ = 0. Now
consider the difference, Y — W, which is L(X — Z). Since X and Z are two
different solutions, X —Z # 0. Then, (X-Z)(Y-W) = (X-2Z)(L(X—2Z) or
—XW-=2Y = (X-2Z)L(X —-Z). Taking traces on both sides, -tr(XW+ZY)
= tr(X — Z)L(X — Z). Since, by hypothesis L has the strong monotonicity
property, the right side is positive as (X # Z) and the left side is negative

leading to a contradiction. This terminates the proof of Theorem 2.2.3. B

2.3 Strong monotonicity property implies the
Ps-property

It is obvious from the definition that the strong monotonicity property implies

the P-property. Below we prove a stronger result.

Theorem 2.3.1 (Theorem 4, Parthasarathy, Sampangi Raman and Sriparna
[27]) If a linear transformation L : S™ — S™ has the strong monotonicity

property, then it has the Pa-property.

Proof: We will prove this by contradiction. Suppose there exists an X > 0
and Y > O such that (X -Y)L(X -Y)(X+Y) 2X0. Assume X #Y. We

see that X +Y # 0. Then, there exists an orthogonal matrix U, positive
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numbers A1, Az,...,Ar (1 < r < n) with

I, 0
W(X+Y)U=D[O O]D

where D = diag(v/Ay,...,v/2An1,...,1) and I, is the identity matrix of size
rxr. Les A= (D)"'U*XUD™! and B = (D)~'U*YUD!. Then, A and

B are symmetric positive semidefinite with

A
avn =[5 0]

It follows that

and

=7 0]

where A, and B, are r Xr matrices. Now pre multiplying and post multiplying
(X-Y)L(X-Y)(X+Y) by D"'U* and UD™! respectively, and introducing
appropriate matrices between the three factors of (X -Y)L(X -Y)(X +Y),

we get

(A - B)|L(4) - L(B)[(A+ B) % 0,
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where L(Z) = DUL(UDZDU')UD. Note that L is a strongly monotone

linear transformation on S™. Writing

£(4) - £(B) = [5 g],

we get

tr([A*aB" 8} [gt g])=(E(A—-B),A—B)>0,

ie, tr((A, — B,)P) > 0. On the other hand,
(A- B)[L(A) - L(B)|(A+ B) < 0

gives (after simplification), tr((A, —~ B,)P) < 0 leading to a contradiction.

Hence, we must have X =Y giving us the P5-property.
Theorem 2.3.1 is false if the transformation is just monotone, see Example

2.2.1. However, one can prove the following proposition.

Proposition 2.3.1 Let L : S — S™ be monotone. Suppose L has the

following property:
X>0,Y>0, (X-Y)LX-Y)(X+Y) =0=>X=Y.

Then L has the Pa-property.
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The proof is similar to that of Theorem 2.3.1 and is omitted. This propo-
sition is motivated by Example 2.2.1. In the next section we give a counter
example to show that Pa-property need not imply strong monotonicity prop-
erty. In the next chapter, we show that for the Lyapunov transformation and
for double-sided multiplication transformation M4, when A is symmetric, the
strong monotonicity property and the Pa-property are equivalent. Note that

in Example 2.2.1, A is positive semidefinite and we have shown that L 4 does

not satisty the Po-property.

2.3.1 A counter example

We have seen some relationship between the Pa-property and the strong
monotonicity property. In particular we have shown that in Theorem 2.3.1,
for linear maps, the strong monotonicity property implies the Pa-property.
We will show in the next chapter that the converse is also true for some
special linear transformations (see also Parthasarathy, Sampangl Raman and
Sriparna [27]). Now we give an example of a linear map L : S — S? which
has the P,-property but does not have the strong monotonicity property.
We need the following theorem to work out the example. First we state

and prove a lemma.
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Lemma 2.3.1 Let X > 0 and Y > 0. Then, there exists a matriz P,
(|P| # 0 and P € R™*™), such that P’XP and P*Y P are diagonal matrices

with nonnegative entries.

Proof: Since X > 0Oand Y > 0, X +Y > 0. Hence, there exists an

orthogonal matrix U such that

t 10 0 .-« 0
U'X+Y)U = 0 0 0 ..o 0 (2.1)
0 . 0 0 --- 0

where A;, ¢ = 1, -, r are the eigenvalues of X +Y with rank(X+Y) =r.

We can write RHS of (2.1) as

Vb=VB(§ VD (2

L O Q & a8 w

0 - 00 -+ 0
where VD = diag(v/1,:**, VA, 1,+++,1). Since X +Y is positive semi-

definite, the eigenvalues, \;’s are positive for all z. From the above equations
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we can write,

(VD)UY X +Y)U(VD)"!

( g' g ) (2.3)
where (v D)™! = diag( e, +, <k=, 1,4, 1),

Since, X > 0,

By = 0 and By; = 0. This implies that B;; > 0. Hence, there exists an

orthogonal vector T' such that T"B;,T is a diagonal matrix will all entries

nonnegative.

T 0

Now define P = U(v/D)™! ( 0 I

). Notice that P is real and non-

singular. Then, by simple computations we see

Pt(X+Y)P=(g' 8).

That is, P*(X + Y)P is a diagonal matrix with all entries nonnegative.

P'XP = ( T*BuT 0 )

0 0

is also a diagonal matrix with all entries nonnegative. Finally, we see that,
P'YP=P{X + Y)P - P!XP is also a diagonal matrix with nonnegative
entries as Y > 0. u
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Theorem 2.3.2 (Theorem 1, Parthasarathy, Sampangi Raman and Sriparne

[28]) Let A € R**? and consider Ms(X) = AXAt for X € S2. Then the

following two statements are equivalent:
(i) A is positive definite or negative definite.

(ii) M4 has the Pa-property.

Proof: First we prove (ii) implies (i). Suppose A is neither positive definite
nor negative definite, then there exists a nonzero vector £ € R? such that
z'Az = 0. Now write X; = zz'. Note that X; > 0 and X; # 0. Write
Xo = 0. Then, (X; = X2)A(X; — X0)AH X, + X3) = X1AX At X, =0 and
X 18 & nonzero positive semidefinite matrix with X3 # X5. This contradicts
the Py-property of the map My. Thus, (ii) implies (i).

We now prove (i) implies (ii). We assume A is positive definite (otherwise
take —A which is positive definite). Suppose the P5-property does not hold
for the map M4. This means, there exists X > 0, X2 > 0, (X — X3)A(X; -
X2)A(X14+X5) %0 and X; # X;. Since, X; =0 and X; > 0, by Lemma
2.3.1, there exists a nonsingular matrix P such that X; = P*D;P and X, =
P'D,P, where D, and D; are diagonal matrices with nonnegative diagonal
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entries. It follows that,
PY(D; - D,)B(D, — Dy)BY(Dy + D,)P <0

where B = PAP*. Note B is positive definite as A is positive definite. In

other words we have,
(D1 = D2)B(Dy — D3)B¥(D; + D3) < 0. (2.4)
Recall that D, Do, B are 2 X 2 matrices. Now we consider two cases:
(a) Dy — D, is a nonnegative or nonpositive diagonal matrix.
(b) D; — D, contains one positive and one negative diagonal entry.

First we dispose off case (a). If Dy — Dy = 0, trivially, X; = X5. So
assume Dy — Dy > 0 and D; — Dy # 0. From (2.4), it follows tr(D? —
D3)B(D, — D3)Bt < 0. Since, D? — D? = 0 and B(D; — D5)B! > 0, it
follows that (D? — D2)B(D; — D;)Bt = 0 or (D? — D2)B(D; — D) = 0
(where B is nonsingular). If the rank of D; — D, = 2, we get a contradiction.
So assume rank of D; — D, = 1. Without loss of generality (WLOG) assume
that the second diagonal entry of D; — D, is positive. Now one can easily
verify that the second diagonal entry of (D? — D3)B(D; — Dy) will be positive
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and this leads to a contradiction. Similarly, we can dispose off when D; — D,
is nonpositive. Now we continue the proof for the case (b). That is, we
assume one diagonal entry is positive and other entries are negative. Write

(D1 — Dy) = diagonal (A, —p) where A > 0,4 > 0. Write (D; + Dg) =
bur  byo
bar  bop

Aby,  —ub a1biy  ob
Di—D)B(D;—D>)BY Dy+1D5) = 11 U012 21011 Q2012 | 4
(Dx=Da)B(D1-Da)B (Dt Ds) = | ot e | [ oab oaba |

diagonal(ay, a2) and B = [ ] . Recall that B is positive definite.

This implies, A0 b%; < anAub?, and op%b2, < cpAub?,. That is, Ab?, <
ub}, and pbs, < AbJ, (Note A, u and oy, cq are positive numbers). Thus,
b3 b3, < bi,b2,. Since B is positive definite, byybsy > byobs;. Hence, we
conclude that b;9b0; is negative. Now we are going to utilize the symmetry of
the matrix (Dy — D) B(D,— D;)B*(D;+ Ds) to arrive at a contradiction. By
symmetry, the two off diagonal entries of (Dy — Dy)B(D, — D3)B*(D; + D,)
should be equal. That is, Aabi1b2; — Apcigbiabag = —Apabi1bg; + 2oy basbis
or byybo1 [AN%ay + Apa] = bagbio[p?0n + Auag)]. Since biobs; < O either byp >
Oand by; < Oor by < 0 and by > 0. If b2 > 0 and by; < 0, then
bi1da1 [0 + Apcry] < 0 and bgobig[u?ay + Aua] > 0 and this contradicts the
fact that these two expressions are equal. Similar contradiction will arise if
bi2 < 0 and by; > 0. Thus, the Py-property must hold when A is positive
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definite (or negative definite). This proves that (i) imply (ii). _

Remark 2.3.1 We have the following observations on this section.
1. Gowda, Song and Ravindran [13] prove Theorem 2.8.2 for any n.

2. It is easy to see that (i) implies (i) for every n and the proof is the

same as given here.

3. If A € R?*? or A € R33, then My has the P3-property if and only if
M, has the GUS-property. Also when A € R™*™" is symmelric, then
M, has the GUS-property if and only if M4 has the Po-property, see

Theorem 6, Parthasarathy, Sampangi Raman and Sriparna [27].

We now present an example where M4 has the Pa-property but M4 does

not have the strong monotonicity property.

Example 2.3.1 Let A = [ __; ? ] . Observe, A is positive definite. From
Theorem 2.8.2, we conclude that the map Ma(X) = AXA® has the Pj-
property. Let X = [_g _g ] Then, AXA'X = [:?g _gg ] . This

implies that tr(AXA*X) = —40 < 0. Thus, the map M, does not have the

strong monotonicity property.
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We will now show that (in this ezample) the map M4 does not have

2 —2 2 0
the Pg-property. Let X; = [ -9 9 ] and Xg = [ 0 2 l . Then, (X3 —
Xo)L(Xy — X3)(X1 + X3) is (not symmetric but) negative semidefinite with
X; # X2. The same example also shows that My has the P-property but M4

does not have the P1-property.

By Theorem 2.3.1, we know that if a linear transformation L : S® — S™
has the strong monotonicity property, then it has the P,-property. The
converse of this is not always true as shown in Example 2.3.1. The following
results lead to a set of necessary and sufficient conditions for M4 to have the
strong monotonicity property in S°.

2.4 Necessary and sufficient conditions for My

to have the strong monotonicity property
when A € R?*?

Motivated by the discussions in the earlier section, we derive necessary and
sufficient conditions for the double-sided multiplication transformation M4

to have the strong monotonicity property when A € R?*2,

a b

Proposition 2.4.1 Let A = ( c d

). Suppose 2ad > b% + c2. Then, A is
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either positive definite or negative definite.

Proof: We have by hypothesis, 2ad > b%+c?. This implies that signs of a and
d are same. Also we have b2+¢? > 2bc and hence 4ad > b?+c2+2bc = (b+c¢)*.
Thus, ad > (91'21’)2 That is, determinant of A 4+ A* is positive. Depending

upon the signs of a and d, A is either positive or negative definite. B

Proposition 2.4.2 Suppose M4 has the Po-property. Further assume that

2ad < b® + c. Then, M4 does not have the strong monotonicity property.

Proof: Given A = (‘;‘ 3) Let X = (; g) We will prove the

result by contradiction. That is, we will assume that M4 has the strong

monotonicity property. Let X = ( Z z ) be such that X # 0. Then,

tr(AX A*X) is given by

tr(Ma(X)X) = az®+2(ad+bc)y’+d? 2% +2azy(b+c)+2yzd(b+c)+z2(b%+c*)
(2.5)
is positive for all X # 0. Now in particular let y = 1 and 2 = 0 in the

expression given in (2.5). We get

tr(AX A'X) = a®z® + 2az(b + ¢) + 2(ad + bc) (2.6)
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which is a quadratic expression in = and it should be positive for all
z. Since (2.6) is positive (because of our assumption that M, has strong
monotonicity property), the discriminant A; = 4a?(b + ¢)? — 8(ad + bc)a? is
negative. That is,

b + ¢ < 2ad.

This contradicts the assumption 2ad < b2 + ¢? and we conclude that My

does not have the strong monotonicity property. |

Proposition 2.4.3 Suppose that 2ad > b* + c®. Then, M4 has the strong

monotonicity property.

Proof: Since 2ad > b?+ c?, and because of Proportion 2.4.1, A is either pos-
itive definite or negative definite. Appealing to Theorem 2.3.2, we conclude

M, has the P,-property. Now we will show that, tr(AXA*X) > 0 for all

nonzero X. Write X = ( ; z ), X # 0. From (2.5) we have tr(M4(X)X)

as
a’z? + 2(ad + be)y? + d22% + 2azy(b + ) + 2yzd(b + ¢) + zz(b* + ).

Now three cases arise. They are zz < 0, zz = 0 and 2z > 0. We will consider
the case zz = 0 first. For this case, three sub cases are possible. They are,
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(z=0,2 #0), (£#0,2=0) and (z =0, 2 = 0). We consider all these cases

below.

Case: zz = 0; sub case: £ =0,z = 0 From (2.5), we get tr(AX A*X) = 2(ad+

bc)y®. Since X # 0, and z = 0,z = 0 implies y # 0. We have
2ad > b% + ¢? by hypothesis. Notice that b2 + ¢ > |bc| which implies

2(ad + bc)y? > 0. Hence, M, has the strong monotonicity property.

Case: zz = 0; sub case: z = 0, z # 0 Now the expression (2.5) becomes

tr(AXA*X) = 2(ad + bc)y? + d22% + 2yzd(b + ¢).

Observe that the above trace is quadratic in y. The discriminant A,, is

422d%(b + c)? — 82%d?*(ad + be)

AU
422d*(b® + & — 2ad).

Clearly, 42°d?(b* + ¢ — 2ad) < 0 as z > 0 and d > 0. Since A,

1S negative, it keeps the sign. When the above trace is evaluated for
y = 0 becomes d?z%. Since this quantity is positive, the trace is positive

for all ¥ proving that M4 has the strong monotonicity property.

Case: £z = 0; sub case: z # 0,z = 0 Like the previous case, this case also

can be dealt and can be shown that M4 has the strong monotonicity
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property.

Case: zz < 0 The expression for tr(M4(X)X) as given in (2.5) is denoted

by (x), and can be written as,
(%) > (az + (b + c)y + dz)* + zz(b* + ¢® — 2ad).

Since 2z < 0, (b* + ¢? — 2ad) < 0, z2(b® + ¢? — 2ad) > 0. Also the first
term of the above inequality is nonzero. Hence, (%) > 0. This implies

that M4 has the strong monotonicity property.

Case: 2z > 0 Now treating the tr(M4(X)X) as given in (2.5) as a polyno-
mial in y, its discriminant is A, = 4(b+c)*(az+dz)? - 8(ad+be){zz(b*+
c®) +a’z? + d°2%} = —4(2ad — b% — ¢?)(a%x? + d*2% — 2bczz). Observing
that a®z? + d%2% — 2bczz > 2adzz — 2bczz (because arithmetic mean of
positive values is greater than geometric mean). Also since zz > 0 and
(ad - bc) > 0, A, < 0. The polynomial keeps the sign. Since the trace
(as polynomial) is positive for y = 0, tr(AXA*X) > 0 for all y. This

implies that M4 has the strong monotonicity property. N

By propositions 2.4.2 and 2.4.3 we formulate the following theorem.
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Theorem 2.4.1. Let A € R**2. Let M4(X) = AXA*. Then, the following

are equivalent:
(i) 2ad > b* + .

(ii) M4 has the strong monotonicity property.

Remark 2.4.1 Gowda observes that the above result can be generalized to
any A € R™*™. We present below an alternate proof of Theorem 2.4.1 also
due to him for the 2x2 case. The symmetric matriz X € R™*™ can be written
as @ vector in R* through an appropriate mairiz E and a vector u € R3 as

shown below:

(z, ¥, ¥, 2)' = EBu=

QO = = O
O O O

T
N8
~—

O O

We can easily check that,
INXAXA) =<u,E'(A® A)Eu > .
This can be written as,

UN(XAXAY) =< u,(B+ B)u >
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where B = E*(A® A)E. It follows that, M4 is strongly monotone if and
only if the leading principal minors of (B + B?) are positive and this yields

Theorem 2.4.1.



Chapter 3

Lyapunov, Stein and
double-sided multiplication
transformations

3.1 Introduction

In the previous chapter we have studied some properties of linear transforma-
tion. In this chapter we will derive results specializing to the following linear
transformations, which have been introduced earlier. Let A € R"**™. In the

context of SDLCP, we will consider the following three linear transformations

from S™ into S™:
1. Lay(X) = AX + X A% called the Lyapunov transformation.

2. Sp(X) =X - AX A% called the Stein transformation.
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3. Ma(X) = AX A" called the double-sided multiplication transforma-

tion.

Remark 3.1.1 The motivation for studying the Lyapunov transformations
as given above comes from the stability analysis of dynamical systems. That
is, the dynamical system % = —Az(t) is asymptotically stable (all trajec-
tories converge to zero as t goes to oo) if and only if there ezists a positive
definite matriz X such that, AX + X A® is negative definite. See Bellman [1]
and Lyapunov [20]. Similarly, the motivation for studying the Stein transfor-

mation comes from the stability analysis of discrete dynamical systems. See
Stein [31].

For the Lyapunov transformation L4, Gowda and Song (Theorem 5, [9])
have shown the equivalence of the P-property, the Q-property and A being
positive stable. Gowda and Parthasarathy (Theorem 11, [8]) show that the
P and Q-properties are equivalent for Stein’s transformation.

In Section 3.2, we show that the strong monotonicity property and the
P,-property are equivalent in the case of Lyapunov transformation. This
result is not true for any general linear transformation. This can be seen

from the Example 2.3.1. We also show that if A is symmetric, L4 or L_4 has
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the GUS-property if and only if M4 has the GUS-property. Section 3.3 of
this chapter deals with the equivalence of the P, GUS and Ps-properties of
double-sided multiplication transformation for any arbitrary A. When A is
normal, the equivalence of the P-property and the strong monotonicity prop-
erty was established for the transformations L4 and S4 by Gowda, Song and
Ravindran [13] and Song [30]. This result is false for M4 even if we assume
A to be normal. However, we show the equivalence of the P-property and
the strong monotonicity property for M4 by assuming A to be a symmetric
matrix. This is the best result one can hope for the equivalence of the P-
property with the strong monotonicity property for M4. In Section 3.4, we
show when SAS is copositive for every signature matrix § and A symmet-
ric, then double-sided multiplication transformation M, will have the strong

monotonicity property.

3.2 Properties of Lyapunov, double-sided mul-
tiplication and Stein transformations

In this section, we derive some properties of Lyapunov and double-sided

multiplication transformations. We also state some results relating Lyapunov
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and Stein transformation.

Theorem 3.2.1 (Theorem 5, Parthasarathy, Sampangi Raman and Sriparna
[27]) The following statements are equivalent for a Lyapunov transformation

La:

(i) A is positive definile.
(ii) LA has the stmng monotonicity PTOPETt‘y.

(iii) L4 has the Pa-property.

Proof: To show (i)= (ii): Suppose A is positive definite. If X is a nonzero
matrix in S™ with columns z;, 2, ..., %y, then tr(La(X)X) = 2tr(XAX) =
230, z*Ax; > 0. This proves (ii).

(ii) = (iii) has already been established in Theorem 2.3.1.

(iii) = (i): If L4 satisfies P, then it has the GUS-property, by Theorem
2.2.1. By invoking Lemma. 2.2.1, we get that A is positive stable and positive
semidefinite. If A is not positive definite, then there exists an £ # 0 such

that 2°Az = 0. Take X = zz* so that X is symmetric and XL4(X)X =

gga;t( Aa;g;t -+ agzt At)mxt — 0 Bllt since LA satisﬁes P2 ) thiS implies X = 0,
that is z = 0, which is a contradiction. Thus, A is positive definite. i
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Remark 3.2.1 Note that if we take L, to be monotone instead of strongly
monotone, then it is clear from Example 2.2.1 that the above theorem does
not hold good. While the Py and the GUS properties are not equivalent in

general, they are so for Ly when (A + A) is nonsingular.

Corollary 3.2.1 If det(A + A*) # 0, then the following are equivalent for

the Lyapunov transformation L, :

(i) La has the GUS-property.

(ii) La satisfies the Pa-property.

Proof: (ii) = (i): Follows from Theorem 2.2.1.

We now show (i) = (é). Since L4 has the GUS-property, A is positive
semidefinite from Lemma 2.2.1. Also |JA+ A*| # 0. Thus, (A + A°) is positive
definite or A is positive definite. Now the result follows from Theorem 3.2.1
above. _

The following theorem due to Gowda, Song and Ravindran [13], show the

relation between Lyapunov and Stein transformations.

Theorem 3.2.2 (Theorem 6, Gowda, Song and Ravindran (13]) Let A, B €
R™™ with A+ B+ AB = I. Consider the following statements:
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(i) Lp is strictly monotone.

(ii) Lp has the GUS-property.

(iii) Sa has the P-property and is monotone.

(iv) Sa has the GUS-property.

(v) S4 has the P-property.

Then (i) = (i) = (1i1) = (iv) = (v). When A is normal the reverse
implications hold.

In the case of Lyapunov transformation, the GUS-property need not

0 1

imply A to be positive definite. Take A = [ 1 1

]. Note A is positive
stable and positive semidefinite. Then, from Lemma 2.2.1, L4 has the GUS-
property but A is not positive definite. However, M4 has the GUS-property

if and only if A is positive definite or negative definite (see Theorem 3.3.2

given below).

Lemma 3.2.1 If A is symmelric and positive stable, then A is positive déf-

nite.

The above result follows from Theorem 1.4.6.
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Theorem 3.2.3 Suppose A is symmetric. Then, L4 or L_4 has the GUS-

property if and only if M4 has the GUS-property.

Proof: Assume M, has the GUS-property. Then, by Theorem 3.3.2 (proved
in the. next section), A is either positive definite or negative definite. If A
is positive definite L4 has the GUS-property from Theorem 3.2.1. If A is
negative definite, then —A is positive definite and hence L_4 has the GUS-
property. Conversely, assume L4 has the GUS-property. Then, by Lemma
2.2.1, A is positive stable and positive semidefinite. Since A is symmetric, by
appealing to the above Lemma 3.2.1, we see that A is positive definite. From

Theorem 3.3.2, it follows that M4 has the GUS-property. Similarly, one can

prove when L_4 has the GUS-property, then M4 has the GUS-property. B

3.3 The equivalence of the P-, GUS and P5-
properties for My,

It is known (when A is normal) through the results of Gowda, Song and
Ravindran [13] that for Lyapunov and Stein transformations, the P-property
= GUS-property = strong monotonicity property. However, this result is

false for the double-sided multiplication transformation M4, see Example
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3.3.1. By assuming the symmetry of A, we show in the following theorem

the equivalence of the strong monotonicity property with the P-property for

My.

Theorem 3.3.1 When A is symmetric, the following statements are equiv-

alent for the double-sided multiplication transformation M.
(i) A is positive stable or negative stable.

(ii) A is posilive definite or negative definite.

(iii) M4 has the strong monotonicity property.

(iv) M4 has the Pa-property.

(v) M4 has the GUS-property.

(vi) M4 has the P-property.

Proof: (i) & (i¢): Follows from Theorem 1.4.6 since A is symmetric.
(i) = (é%4): Since My = M_4, WLOG we assume A to be positive definite.
Suppose tr(M4(X)X) < 0 for some nonzero X € S™ Then, tr(AXAX) <

0. Since A is symmetric and positive definite, tr(AXAX) > 0 (since XAX
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ig also positive semidefinite). Thus, tr(AXAX ) =0= AXAX = 0, (from
Theorem 1.4.4) => XAX = 0 = X = 0 (because A is a positive definite),
which is a contradiction. Thus, M4 has the strong monotonicity property.
(#i) = (iv): Follows from Theorem 2.3.1. The proof of the rest of the
implications is similar to the one given for Theorem 3.3.2. H
We can obtain the following theorem, when A is not necessarily a sym-

metric or normal matrix.

Theorem 3.3.2 Let A € R™™. Then, for the double-sided multiplication

transformation My the following are equivalent:
(i) A is positive definite or negative definite.
(ii) M4 has the Py-property,.

(ili) M, has the GUS-property.

(iv) M4 has the P-property.

(v) My has the Rg-property.

Proof: (i) implies (ii) follows from Corollary 15 of Gowda, Song and Ravin-
dran [13]. (ii) implies (iii) follows from Theorem 2.2.1. (iii) implies (iv)
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follows from Gowda and Song [9]. (iv) implies (i) can be proved by contra-
diction: Suppose A is neither positive definite nor negative definite. Then,
there exists £ 7% 0 such that 2°Az = 0. Write X = zz*. Now X > 0. Since
z'Az = 0, we can write zz*Azz* = (. This implies X AX = 0, which can be
written as XAX A" = 0 or XM4(X) = 0. Since X s 0, M, does not have
the P-property. This proves that (iv) imply (i). (iv) implies (v) is trivial. (v)
implies (i) is as follows: Suppose M4 has the Ry-property. If n (the order of
A) is one, then the result is trivial. So assume A € R*** n > 2. Suppose A
is neither positive definite nor negative definite. There exists 2 # 0 such that
z*Az = 0. Define X = 2z £ 0. Then, X > 0, AXA* > 0 and XAXA=0.

This implies, by (v), X = 0 leading to a contradiction. N

Remark 3.3.1 When A is not symmetric, we can only conclude (for M,)
that, the P-property = GUS-property = Pa-property. In general, we may not
be able to conclude, the Po-property = the strong monotonicity property, un-

less A is symmetric for the double-sided multiplication transformation, M.

Remark 3.8.2 The equivalence of (i), (i) and (iv) was also obtained inde-

pendently by Bhimasankaram et al. [2).
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Remark 3.3.3 When A is normal A, is positive stable or negative stable, if

and only if any one of the five statements hold in Theorem 3.3.2.

The following example shows that M4 need not have the strong monotonic-

ity property in general, even if A is normal and positive definite.

1 2 o 0
-2 1 0 &

So A is normal. Also A is positive definite and from Theorem 2.8.2 it follows

Example 3.3.1 Let A = [ ] Observe that AA® = [ ] = A'A.

that M4 has the Pa-property. But tn(XMa(X)) <0, when X = [ _i :i ],

that is, M4 is not even monotone.

e 1 0

Exawmple 3.3.2 (Parthasarathy, [25/) Define N = ( 0 ¢ 1 ), where € €
1 0 €

R. Note that N is not symmetric but it is normal. The eigenvalues of N are
146€ €— -;7 + \/? and € — % — \/ﬁ——"” . We can see that N is positive stable
if € > -% , negative stable if € < —1 and neither positive stable nor negative
stable if € € [-1,3]. By a remark on Theorem 3.3.2 it follows that My has
the Pa-property if and only if € >  or e < —1. The transformation does not
have the Py-property if € € [-1,3]. We also note that N is a P-matriz for

all ¢ > 0.
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It is known that for Lyapunov and Stein transformations, P-property =
Q-property. We take up this problem for the double-sided multiplication
transformation in the next chapter. We could show that for M4, P-property
= Q-property, when A is symmetric or in R2*2, Also we could show this
result when A € R**?, In general, it is not known whether the Q-property

will imply the P-property for M4.

3.4 Sufficient conditions for M, to have the
strong monotonicity property

In this section, we derive a set of sufficient conditions for the double-sided

multiplication transformation M4 to have the strong monotonicity property.

Theorem 3.4.1 Let A € R™™. Suppose SAS is a copositive mairiz for
every signature matriz S and |A| # 0. Further assume A = A:. Then, My

15 strongly monotone.

Outline of proof: First we provide the outline of the proof and give

detailed arguments for each of the points in the outline.

(a) We show that My is strictly semimonotone.

(b) Then, we show that the map M, has the Ry-property.
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(c) We invoke a theorem due to Bhimasankaram et al. [2] that if M, has

the Ro-property, then A is positive definite or negative definite.

(d) Finally, we will appeal to Theorem 3.3.1 to conclude that M is strongly

monotone.

Proof of (a): Suppose there exists X = 0, X # 0 and M4(X)X < 0.
Since X # 0, we assume that there exists a nonzero row. WLOG we assume

that to be the first row and we will denote it by, P = ($11, T12,« - - ,931“).. If

z* is not a nonzero vector, there exists a signature matrix § such that Sz is
a nonnegative vector. Since AXAX =< 0 with X > 0, tr(AXAX) < 0. Since
A is symmetric and X = 0, AXA > 0, tr(AXAX) > 0. Thus, tr(AXAX)
= 0. By appealing to Theorem 1.4.4, we see that, AXAX = ( implies
XAX =0 (because |A| # 0) and XSSASSX = 0. The first diagonal entry
of XSSASSX is equal to z*SSASSz. Write u = Sz. Then, u!SASu =
0. Since SAS is copositive, symmetric and u > 0 it follows from & known
result of Gowda (7] that SASu = 0. That is, ASu = 0 or Av’ = 0, where
u' = Su # 0. This contradicts the fact that A is nonsingular. This proves
(8).

Proof of (b): Follows from (a).
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Proof of (c): Suppose M, has the Ro-property. If the order of n is one,

then the result is trivial. So assume AIE RY™ n > 2. Suppose A is neither
positive definite nor negative definite. Then there exists z # 0 such that
*Az = 0. Define X = zz° # 0. Then, XAXA = 0 and this implies that
X =0 from (b), and this leads to a contradiction.

Proof of (d): We know from (c) that A is positive definite or negative
definite. Since A is copositive, it follows that A is positive definite. By
appealing to Theorem 3.3.1,‘ we see that M4 has the strong monotonicity

property. ‘ | | N

Remark 3.4.1 Symmeiry is essential to conclude A is positive definite in

the above result as the following example illustrates.

1 -2
0 1

signature matriz S € R**2. But A is not positive definite as A + A* =

Example 3.4.1 Let A = ( ) Then, SAS s copositive for every

( __g _g ) 1$ a singular positive semidefinite matriz.
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Chapter 4

Equivalence of the P- and
Q-properties for M4

4.1 Introduction

If a linear transformation L has the P-property, then L also has the Q-
property; this is a consequence of Theorem 1.4.7, due to Karamardian [17].
In general, the converse of the above result need not be true. That is, if L
has the Q-property, then L need not posses the P-property. However, for
the Lyapunov transformation L4 and for the Stein transformation S4, the
P-property is equivalent to the Q-property, see Gowda and Parthasarathy
8] and Gowda and Song [9]. In this chapter, we want to address the fol-
lowing question for the transformation M,4: For the transformation My, can

we assert the P-property is equivalent to the Q-property? We answer this
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question partia.liy in the affirmative, in two cases: (i) when A is symmetric
and (ii) when A € R?*2?, In section 4.2, we introduce a class of M, for
which the Q-property fails. In section 4.3, we prove that for double-sided
multiplication transformation M4, the P-property and the Q-property are
equivalent when A is symmetric. In section 4.4, we show the equivalence of
the P and Q-properties for My for arbitrary A € R?*2, In general, it is not
known whether the Q-property will imply the P-property for M.

4.2 A class of double-sided transformations
not enjoying the Q-property

In this section, we prove a very interesting result. That is, we identify a class
of the map, M4, which does not admit the Q-property. Though we use this

result in the subsequent sections, we note that this is of independent interest.

Example 4.2.1 Let Mg(X) = SXS where S = ( _(1) (1) ) We will show
that this map does not have the Q-property. Take Q = ( _(1) _(1) ) Now

we will show that SDLCP(Ms,Q) does not have a solution. Assume the

contrary. That is, there exists X = ( ; Z) =0 and SXS + Q = 0 with

X(SXS+Q)=0. (4.1)
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(4.1) can be written as

-y’ —y —zy+yz—2
(wy__yz__z iy =0 (4.2)

From the main diagonals of the above matriz we get

22— =y =22 — 2

This implies, T° = 2° = £ =z as X > 0. Substituting = 2z in any one of
the off diagonal entries of the matriz in (4.2) we get, x = 0. Since z = z,
z2=0. Consequently, z=0,2=0 and X = 0 impliesy =0 or X = 0. Note
that by our assumption X is a solution. That is, SXS + Q > 0. But for
X =0, weget SXS+Q=Q %0, contradicting our assumption that X is a

solution. Thus, the map Mg does not have the Q-property.

Taking a clue from the above example, we derive the following result.

Theorem 4.2.1 Let S be a signature matriz of order n. Assume S # +I.

Then, Mg(X) = SXS does not enjoy the Q-property.

Proof: Since S # &I, it must contain both negative and positive diagonal

entries. WLOG assume S is of the form diag[—1,-1,-1,1,..., 1] where the
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first &k diagonal entries are -1 and the remaining n — k diagonal entries are

+1. (Note 1 <k <n). Let

11 ... Tk Ti1kt1 -+ Zin
X = Tkl o Tkk Tk k+1 o 56 LTkn
Te+11 -+ Thtlk Thtlk+l --- Thiln
Inl v Tpk Tnk+l -+ Tnn
Then
L11 o L1k —Z1k+1 --- —&in
$ v 4 0 m _:B " & B -x
SXS = k1l kk k k+1 kn
~Tk+11 -+ “Zip1k T+l k+1 --- Tkl n
""'m-n]_ * 0w _wnk xﬂ, k+1 ¢ s mun
Define .
0 0 O 0
Q _ 0 " & 9 0 —1 * % W 0
0 ® B 8 _1 0 ® & % 0

0 ... 0 0 ..0

That is, take @ as gx x+1 = —1 = qr4+1 & and g;; = 0 otherwise. Claim:
SDLCP(Ms, @) has no solution for the @ defined as above. We will prove

this by contradiction. Suppose there is a solution. Then, there exists X = 0
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such that SXS + Q > 0 and X(SXS + @) =0. Then,

11 ... ik L1 k4l o+ LIn
X ‘e a H 1 &L 5 b T
X(SXS+Q)= . kl kk k k+1 kn >

k+11 -+o Tkl k Thtl ktl oo« Thtl n
23“1 v eon xnk mn k+1 «a e :Bnn

xll * B mlk _wl k+l 2 % B _xln

Tkl ¢ o T Lk Tk k+1 — 1 ... —ZLkn =0

~Trk411 oor —Thyrk—1 D1 k41 - Tyl n
—Tn1 > ~ZLnk In k+1 5% Tnn

Let us consider the following two entries of the above product:

(k, k+ 1)th element:

~ZTr1T1 k41 -+« — Tk (Tk k41 +1) + 2k k418041 ka1 + - - -+ TknTn k41 = 0 (4.3)

(k+1, k)th element:

Tkt 181 k+ -+ Thi1 kTk & — Tkt k+1(Thp1 6 +1) — .o . = Zt1 nZn k=0 (4.4)
Adding the equations (4.3) and (4.4) we get
—~Tkk — Tk+l k+1 = 0. (4.5)

This implies, that Zxx = Tg41 k41 = 0. Since X is symmetric and positive
semidefinite, all the principal submatrices of X are positive semidefinite. In
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L kk Lk k+1

is symmetric and
Thtl & Th+1 k+1

particular, the principal submatrix (

positive semidefinite. Since Tix = ZTxy1 k1 = 0, we have, Zx x11 = Zip1 & =

0. As X = 0 is a solution to SDLCP(Mg, @), SXS+Q > 0. The 2 x 2 prin-

cipal submatrix of SXS + @ with elements from k,k 4 1 rows and &,k + 1

columns, ( hk ! ~Tk k1~ 1 ), should also be positive semidefi-
~Tk+l k T+l k+1

nite. Since, Tgx = Ti41 k+1 = 0 = Tk k41 = Try1 &, the above 2 X 2 ma-

trix is not positive semidefinite. Hence, X can not be a solution. That is,

SDLCP(Mg, Q) does not have a solution. N

4.3 'The equivalence of the P- and Q-properties
of M4 when A is symmetric

We need the following lemmas to show the equivalence of the P- and Q-

properties of M4 when A is symmetric.

Lemma 4.3.1 Let M4(X) = AXA'. Then, the following statements are

equivalent:
(i) A is positive definite or negative definite.

(ii) M4 has the Ro-property.
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(iii) For every orthogonal U, diagonal entries of UAU" are different from

ZETO0,

Proof: (i) < (i%): Follows from Theorem 3.3.2.

(¢) = (444): Follows from hypothesis that A is positive definite or negative

definite.
(4%2) = (i): Assume that the matrix A is neither positive definite nor negative
definite. Then, there exists a vector z # 0 such that z*Az = 0. WLOG

assume that ||z|| = 1 and construct an orthogonal matrix U = (z, %, - -, %).

Then, (U*AU)11 = 2’ Az = 0. Contradicts (i4z). _

Lemma 4.3.2 Let D = diag[d,,dy,...,d,] where d; # 0 for all i. Write
D = D, S where Dy = diag[|d|,|dy|,--.,|dn|] and S the corresponding sig-

nature matriz S. If Mp has the Q-property, then Mg has the Q-property.

Proof: To show that for every @ € S™, SDLCP(Mg, @) has a solution. Given
dl 0 ... O

_ 0 dy| ... 0O
Q, define Q@ = /D, Q+/D,. where /D, = . - , .

0 0 ... y|d]

65



Let X be a solution to SDLCP(Mp, Q). Then, there exists Z = Mp(X) +Q

such that XZ = 0. We have,

Z=D,SXSD, + \/D.,.Q\/DJ,. (4.6)

Pre and post multiplying (4.6) by D5 = we get,
vD: 'ZyDy ' = /DySXS5y/D; +Q

= SvD;X/DiS+Q.
Define Y = /D, X /D, and W = SYS + Q. Clearly, Y > 0 and W > 0.

Note W = Dy ZvDy ' and YW = D;Xv/Dy/D; 2Dy " =

VD;XZ/D; ' =0as XZ =0 and hence the lemma. B

Lemma 4.3.3 The linear map M4 has the Q-property if and only if the map

My aye has the Q-property.

Proof: If part: Assume that M, has the Q-property. Fix an orthogonal
matrix U. We will show that My 4y has the Q-property. In particular, fix
a matrix Q € S™. Consider Q = U'QU. The problem SDLCP(Mg4, Q) has a
solution X, that is, X > 0, AXA*+ Q = 0 and X(AXA* + Q) = 0. Define
X = UXU". Then, we see that X solves SDLCP(My ay:, Q).

Only if part: Is obvious if we let U = I. Hence, the lemma. |
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Lemma 4.3.4 If the linear map M4 has the Q-property, then |A| # 0.

Proof: Since M4 has the Q-property, SDLCP(M4, @) has a solution for all

Q. Take @ to be any negative definite matrix and let X be a solution. That
is,

AXA*+Q >0 (4.7)

-Q >0 (4.8)

Adding (4.7) and (4.8) we get AXA® = 0. This implies that |A| 5 0. |

Theorem 4.3.1 Let M4 = AXA® with A = A°. Then, the following state-

ments are equivalent:
(1) M4 has the Q-property.
(ii) M, has the P-property.

(iii) A is positive definite or negative definite.

Proof: (ii) & (#it): Follows from Theorem 3.3.2.

(i4) = (¢): Follows from (Karamardian result) Theorem 1.4.8.

To prove (i) = (#4¢): Since A is symmetric, there exists orthogonal U such
that A = UDU* where D = diag[d;,ds,...,ds], di # 0 for all 2 and are
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eigenvalues of A. Since M, has the Q-property, My 4+ has the Q-property

by Lemma 4.3.3 and consequently Mp has the Q-property. From Lemma
4.34, |D| # 0. Note that d; # Q implies d; > 0 for all % or d; < 0 for all
¢t or ¢; < 0 for some 7 and &; > 0 for the remaining i’s. If d; > 0 for all
¢, then A is positive definite and hence the theorem. If d; < 0 for all 4,
then A is negative definite and hence the theorem. If d; < 0 for some i and
d; > 0 for the remaining #’s, we have to arrive at a contradiction. M, has
the Q-property implies that Mp has the Q-property which in turn implies
that Ms has the Q-property by Lemma 4.3.2. But our hypothesis is that
S # *I and Theorem 4.2.1 says that if S # %I, then Mg does not have the

Q-property, which leads to a contradiction. Thus, A is positive definite or

negative definite. |

Remark 4.3.1 (i) When A is symmetric, and if M, has the Q-property,

then M4: has the Q-property.

(ii) If Mayas has the Q-property, then M, has the Q-property.
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4.4 'The equivalence of the P- and Q-properties
of M, when A € R%%2

In this section, we will bé proving that the Q-property of M4 is equivalent

to the P-property when A € R**%, Here, A need not be a symmetric matrix.

First we explain the ideas behind the proof.

Ideas behind the proof: Assume M4 has the Q-property. We show
that the diagonals of A and UAU® are different from zero. Then, Lemma
4.3.1 implies, A is positive definite or negative definite and consequently M4
has the P-property. To be precise, we show that if any one of the diagonals

of A is zero then M4 does not have the Q-property.

Lemma 4.4.1 If M4 has the Q-property, then M4 also has the Q-property

for any nonzero A € R.

Proof of the above Lemma is straightforward and we omit it.

0 &

Lemma 4.4.2 Let A = (
¢ (

) and assume |A| # 0. Then, M4 does not

have the Q-property.

Proof: By contradiction. Assume M4 has the Q-property. Since |A| # 0,

it implies that bc # 0. If b = ¢, then A is a symmetric matrix with the Q-
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property and from Theorem 4.3.1, A is positive definite or negative definite

and this leads to a contradiction.

We now give the proof when b = —¢c. WLOG assume A = ( _(1} [1) ) . Let

Q° = ( _2 _(1) ) We will prove SDLCP(M_4, @°) does not have a solution.

Suppose X 1s a solution. Write X = ( Z g ) Then, X(Ma(X) + Q°) =

0. That is ( Ty )( g —y-1 ) = 0. From this, it follows that
Yy z -y -1 z

—z(1+y) + zy = 0 implies z = 0 and yz + z(—y — 1) = 0 implies z = 0 and

consequently X = () leading to a contradiction.

We now consider the case b # £c. If M4 has the Q-property, then there

exists X = 0, AXA*+ Q° = 0 with X(AXA*+Q°) = 0. Let X = (; z )

Then,

b’rz + bey® — y bc:z;y—a:+cmy
f oy __
X(AXA +Q)_(bzyz+bcyz—z bey? — y + c*zz =0. (4.9)

From the diagonals we get,
b’zz 4+ bey? —y =0 = bey? — y + c*z=.

This implies that, (b — ¢?)zz = 0. Since b # ¢ it implies zz = 0. Now

zz = (0 implies z = 0orz2=0. If z = 0, then y = 0, as X is positive
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semidefinite. Now let us compute with 2 =0, y =0

b’z  bey — 1 b2z -1
t o __ Y _
wea v = (57 91) < (P 1) o

This is a contradiction as AX A + @)° is positive semidefinite. This implies
z # 0. Similarly, we can show z # 0. It is easy to show that rank(X) = 1.

So zz = y*. Hence we have y # 0. From (4.9) we have, bczy + c?zy = z or

1

YZ b+ o) (4.10)

Also from (4.9) we have b*zz + bey? =y or (b + be)y® =y or
_ ! (4.11)

V= b+ 0 |

From (4.10) and (4.11) we get
R
= blb+c) c(b+c)

This implies, b = ¢ and this leads to a contradiction. N

We have essentially shown that when A € R?*? and when M4 has the

Q-property atleast one diagonal entry of A must b different from zero. Now
we show both the diagonal entries of A must be different from zero when M4

has the Q-property.
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1 &

Lemma 4.4.83 Let A = (
¢c (

) where bc # 0. Then M, does not enjoy

the Q-property.

Proof: We prove this result by contradiction. There are two cases to be
analysed. i) bc < 0 and ii) bc > 0. Case i). If b = ¢ then Lemma 4.3.1
gives the necessary contradiction. So we assume that b # ¢. WLOG assume

¢ < b (if ¢ > b a similar proof can be given). Let Q° = ( 0 =1 ) and X

-1 0
= ( Z z ) be a solution to SDLCP(M4,Q°). Then, X(Ma(X) + Q°) = 0.
That is, |
z y\[z+2y+b2 cx+bey—-1Y\
(y z)( cz+by—1  cz =0 —

It is easy to check that rank of X is one. That is zz = y%. If z = 0,

* —1
1 0

a contradiction. So z # 0. We will now show that z # 0. Since X # 0,

then y = 0. This means M4(X) + Q°=( : ) 7 0 and this leads to

T cT — 1

|M4(X) + @°] = 0. Suppose z = 0. Then, cr—1 er

= (. That is,

cz?—(cx—1)2=00r2cz—1=00rz= a=. Since ¢ < 0, z is negative and
this leads to a contradiction. That is z 20 and z# 0. Thus, z #0, 2 # 0

and y # 0. From (4.12) we have, z2 + 2bzy + b%zz = c%zz or

z+2by + (b° —c*)z =0 (4.13)
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and cz? + bezy—z+czy=00rcx+bcy+c’y=1or
1
a:+by+cy=-£ (4.14)

Since ¢ < 0, it follows that by + cy # 0 or b+ ¢ # 0. Subtracting (4.14) from

(4.13) we get, y(b—c) + (B* = c*)z= =2 or

PN

b+c c(b?—c?)
Note b # —c. If b = —c, then from (4.14) z = 2 < 0 leading to a contra-
diction, Also from (4.14) we get z = 1 — y(b+ ¢). We also know, zz = y°.
(Because of rank of X is one.) Now substituting for = and z in zz = y* we

get,

P =22 = - 40+ 5o - )

After simplification we get, y = 5z and from (4.14) we get = = 1 b;c =<3

< ( and this leads to a contradiction.

Case ii) bc > 0. We assume WLOG b<0,c<0and c<b. (If b and c are
positive we will look at Mgag where S is a signature matrix with diagonal

entries +1 and -1 instead of M4). Now we repeat the proof as in Case i),

except that the case b = —c can not occur when bc > 0.
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a b

Theorem 4.4.1 Let A = ( PR

) with |A| #£ 0. Then, M, does not enjoy

the Q-property.

oOf o

Proof: Define A = %A = ( ), a # 0. By Lemma 4.4.3, A does

20 jud

not enjoy the Q-property. Hence, we can restate the above theorem as: if

A= ( ‘1: 3 ) with bc # 0, then My does not enjoy the Q-property. |

Theorem 4.4.2 Let A € R**%. Then, the following two statements are

equivalent:

(i) M4 has the Q-property.
(ii) M4 has the P-property,.

Proof: (ii) = (i) : Follows from Theorem 1.4.8.
(i) = (ii) : If M4 has the Q-property, then Myay¢« has the Q-property for
all orthogonal matrices U € R?*2 by Lemma 4.3.3. By Theorem 4.4.1, the
diagonal elements of U AU* should be nonzero. Hence, by Lemma 4.3.1, A is
positive or negative definite and thus M4 has the P-property. |
We end this section with the following open problem: Suppose A is normal
matrix of order n. Could we then assert the Q-property of M4 will imply
the P-property of M47

74



Chapter 5

Open Problems

5.1 Introduction

In this chapter, we pose a few interesting problems, which had arisen natu-

rally, during the course of this thesis work.

5.2 Problems

1. Suppose the double-sided multiplication transformation, My, has the
strong monotonicity property. Does this imply that A is symmetric?
Or, if A is not symmetric will it imply that M4 does not have the

strong monotonicity property?

2. For any linear transformation L, the P-property of L implies the Q-

property which follows from a result due to Karamardian [17]. For
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Lyapunov and Stein transformations, P-property = Q-property, see
Gowda and Parthasarathy (8] and Gowda and Song [9]. In the case
of the double-sided multiplication transformation, we could prove the
equivalence of these two properties only when i) A is symmetric (The-
orem 4.3.1) and ii) A € R**? (Theorem 4.4.2). In general, it is not

known whether the Q-property of M4 will imply the P-property for

M,. In fact, the answer is not known even when A is a normal matrix.

Note added:

We answer Problem 1 by means of the following counter example.

0 1 y z
=24+ 20y + 2 + 2+ 224+ 202 = (G + VY + 5P+ 5 + L. Tt is easy to

Example 5.2.1 Let A = ( A e ) and let X = ( k4 ) Then tn( X M4(X))

see that (X Ma(X)) > 0V X # 0. Note that A is not a symmetric matriz.

Strong monotonicity of M4 can also be seen from Theorem 2.4.1.
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