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PREPFPACE

There are many important statistical problems of the
following kind, The family of probability measures ( is
parametrized by a vector parameter 17 varying in a2 g-dimen-
sional domain, (J’ can be represented as an exponential
family of probability distributions with k canonical para-
meters where k is greater than ¢q. The canonical parameters
do not vary in a domain in Rk, but are restricted by polyno-
mial or analytic equations, They vary on a curved surface
defined by the polynomial or analytic equations within the
natural parameter space of the exponential family, The present
work is concerned with the problem of point estimation of para-
metric functions in such statistical problems, This work is

done in the spirit of R, A, Wijsman, Ju, V, Linnik and

A, M, Kagan,

In Chapter 1 we present the basic facts of the theory

of exponential families, Several examples are given to indi-
cate the importance of the kind of exponential families we

study.

In Chapter 2 we prove & theorem of A,M, Kagan and

V.P, Palamodov characterizing the c¢lass of uniformly minimum



variance unbiased estimators in an exponential family.
dominated by the lebesgue measure when the canonical para-
meters are restricited by polynomial equations, The proof

we give brings about substantial simplifications in the
original proof of Kagan and Palamodov, We use this theorem

t0o prove two conjectures of J, K, Ghosh,

In Chapter 3 the variance components models, under
the normality assumption, are treated as exponential families
to characterize the uwniformly minimum variance unbiased esti-
mators, We consider this as a very important application of
the theorem of Kagan and Palamodov, Explicit likelihood

equations are also derived,

In Chapter 4 we extend and strengthen a result of
A M, Kagan on the inadmissibility of certain estimators which
are functions of the minimal sufficient statistic, This result

has an important application to a special type of location
parameter family,

In Chapter 5 we prove an interesting theorem charac-
terizing the uniformly minimum variance unbiased estimators in

a family of normal distributions with an unknown integer mean,



1ii

As a corollary, the mean itself is shown to have no uniformly

mininmum variance unbiased eSTiMATOY, .. s i mmicsrmorimmam—————

In Chapter 6 we discuss the problem of unbiaged esti-

mation in a2 censored gamma family of distributions,
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CHAPTER O

PRELIMINARIES

A statistical model is & triplet (X, 03, ¢# ) where X

is a set, (@ a o-algebra of subsets of X and ( a family
of probability measures on (X, @ ), We shall be concerned only
with Buclidean statistical models, i.e,, X is a Borel subset
of an N-dimensional real Euclidean space R' and (3 is the
Borel o-algebra of X, A k-vector statistic 4 = (t4,..., %)
is a @B-measurable mapping X -> Rk. The mean or expectation
(vector) and variance-covariance (matrix) of + wlth respect

to Pe ( will be denoted by EP‘I; and th respectively.

If @& is a subset of a Euclidean space Rk and 1f 1

is a one-one mepping from & onto & then 1n is said to be
a parametrization of . The value of nn at Q¢ @ is
denoted by P, and thus £ = {PQ ¢ 0e¢ ®} . In this case
the mean and variance-vovariance of the statistic + will be

denoted by : O't and Vo'b, rather than by EPQt . and V'pgt.

Iet (X, ®, ¢ ) be a fixed statistical model with =
fixed parametrization $ = {PO P! Q¢ @} The set @
is called the set of parameters for the model (with respect to



the given parametrization), A real valued function of the para-

meter (parametric function) g is said to be (unbiasedly) esti-
mable If there is a statistic G ¢ X -> R such that EOG =z g(0)

for all 9 in @ and in this case we call G an unbiased

estimater of g, We shall denote by U‘g the set of all unbiased

estimators of the parametric function g, For the case g(0) = 0,
Uy will be the set of all unbiased estlmators of zero,

Ge U, 1s a locally minimum variance unbiased (L, M,V.U,)

estimator of g(Q) at the point O, ¢ @ 1ff for all Gy s Uy

we have VQOG < VQOG.,, or equivalently, E,%G2 < EOOG%.

If G e Ug is an LM.V,U, estimator of g(@) <for each

Q in @ , then G 1is called the uniformly minimum variance
unbliased (UM.V.,U.) estimatcr of g(90).

The following well-known lemma will be used in the sequel,
Its proof can be found in C,R, Rao (1965) p.257.

2

Lemma 0,1, An estimator G e U, such that Ej G <=
O

g
is LM V.U, at o, e @ iff EOO(G F) = Os for each F e U,

such that EO F2 € oo, V/4
v,

Vectors are row or column vectors, The r-th coordinate

of a vector x will be denoted by x,. For a matrix A, At



is its transpose, <X, ¥ 1is the notation for the inner pro-
duct of the vectors x and y, C 1is the complex field,

For two measures K, and K,, H; & K, means Ky
is dominated by bh,, A relation holds except un a H-null set
is denoted by writing [#] after the relation, Mostly the
repetitiows use of [X] is omitted without mention,

The Laplace transform of a probability measure P on
Rk is

0.1) g® = J &P p

RS

which is defined on the set dom g ={O > Rk s g(Q) « w} .

If @ 4is the interior of this set then g can be extended as

k

an analytic function to the domain in C— defined by

(0.2) — {E:E=°+in’°3 @ ] neRk}
If £(t) is a function on Rk, its Iaplace transform is
(0.3) £ = §  2(t) 9P at

k
R
defined on the set of 0O ¢ Rk for which the integrol on the

right hand side of (0.,3) exists, If @& is the interior



of this set, then f£(¥) 1is an analytic function on the domain
@ in ¢  where ® 1is as in (0,2),

~/

If P(z) = P(z4y..., z) is a polynomial with complex

coefficients in the k wvariables Zqreees % then the corres-

ponding partial differential operator P(D) = P(Diyeces ch) is

obtained by substituting D for zfi- whore D::']' £(ty0aay By

= (ai/at;) f(t.,,.....,, ‘hk). This gives a one-one corrgspondence
between polynomials with complex coefficients and partial diffe-
rential operators with conmplex constant coefficients,

The generalized Leibniz formula 1s given by

(0.4) POD) [u(t) v(t)] = £ [D%()] (a2)™) EP(“)(D) v(t) ]
&

where a = (a,, ..., ¢) is a multiindex and

&
‘.Du - D11 oo ’ D::k
p(®) (z) = D°P(z)
ﬁ: = G"l: o0 uk:

For a proof, see Hormander (1963) p.10,

In (0,4) when u(t) = e(g"‘t>



p(D) [ ¥ v(1)] 2 p® <9t (a)=1 p(%) (p) w()

SO 5 g% B(*) () w(t) (a)]
a
From Taylor's expansion for polynomials

P(D +0) = & o° P(“) (D) (ﬂ:)'1
Thus -

0.5 PO [ O w()] = 9P [0+ 0 v®)].

We shall need some elementary resulis from the theory of
Schwartz distributions, See Donoghue, Jr., (1969),

The support of a function £ 1is the closure of the set
k

of points for which f is nonzero., For an open set U in R,
C': (U) is the set of all functions on Rk supported by some
compact set contained in U and whose partial derivatives of

all orders exist, PFor IT(t) ¢ C‘: (Rk),

0.6)  § pe») 2] OP at = 20 2@

The above result is easily proved by integrating by
parts for P(D) = D and then by induction for P(D) = DX,
Now, for a general P(D), the result fullows from the linearity

of an integral transformation,



We shall say that the sequence fn(t) in C’: (Rk)
converges in Cﬂ;(Rk) to 0 iff (1) +there is one compact set
K such that £ (%) =0 forall t K and (2) £,(¥) and
its partial derivatives of all orders converge uniformly to O,

A distribution G on Rk is a linear functional on the
vector space G°; (Rk) such that if fn > 0 in Ct (Rk) then
G(fn) -~> 0,

A locally integrable function G(t) on Rk, i,e., a

function G(t) which is integrable on any compact subset of

Rk, defines a distribution as

(0.1 &® = Je@ 2t at, £ &,

When G 1is an arbitracy distribution it is customary to
write G(f) symbolically as in the right hand side of (0,7)
even though there may not be a locally integrable function G(t)
corresponding to the distribution G, We shall follow this

custom,

The Dirac's &-function 6(x) and its translate
§,(x) = &(x~a) are the symbolic functions corresponding to
the distributions defined by

(0.8) 5(£) = § 6(x) £(x) ax = £(0)



(0.9) 5.(8) = §6(xa) 2(x) ax = 2(a)

Notice that 6(x) and &(x-a) are the symbolic
densities of the one-point mass at O and a respectively

with respect to the ILebesgue measure,

The partial differential operator P(D) applied to the
distribution G is defined by

(0.10) [2(D) €]2 = e¢[P(-D) £], £eC (RY

Lemma 0,2, Iet G bDe a distribution on R such

that (d3/dt) ¢ = 0, Then G is a constant,

Proof, Of course, the statement of the lemma means

that G is the distribution defined by G(£f) = j k £(t) 4t

for some constant k.

For each £ in Cz (R) we have
j G (af/dat) = O

Now, h e C (R) is the derivative of another function

feCT (R) iff § h(t) dt = O,

Iet g e C: (R) such that 5 g(t) at =1, for f ¢ C‘:(R)

£(t) = [£(¥) - If(x) dx, g(t)] + Jf(x) dx, g(t).



Since £(t) - {£(x) ax. g(t) 1s in 7 ®) eand its integral

vanishes, it is the derivative of same function in GZ(R) .
Therefcre,

G(f) = S £(x) dx, G(g).

Thus G corresponds to the constant G(g).

The following lemma is immediate from the preceding
result,

Lemma 0,3, If (a¥74atP)¢ = 0 for a dtstribution G

on R, then G is a polynomial of degree less than p., //

Iemma 0.4, If G(t4y..4y §) is a locally integ-

rable function ¢n Rk and (6/61;1)(} = 0 in the sense of dist-

ributions on Rk, then G is independent of t,.

Proof, Let €(f;,...y %)) Dbe a locally integrable
function and let for each £(t) ¢ €7 (RS

jn" G(try oeey b -55%-1 £ (35, sees B) = O

Now from the abuve, and also from Fubini's theorenm,

jin'1 [jR G‘(t‘l,---’ tk) (5/5"31) f(t‘l! coeoe)d tk) dt1] X

h(ta’ilif tk) dtz s e dtk = O



for any h(t2, coey tk) & c: (Rk-1)-

This implies that for any fixed 3, ..., t, and for
each f(t) e 0: (%)

0O C o o _
SR G(tyy to, euey B (6/6%)) £(ty, 13 ... tQ) dty = O

0 0
Now from Lemma 0,2, we conclude G(ty, t5, «.. )

is a constant,
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CHAPTER 1,

THE EXPONENTIAL FAMILIES

In this chapter we present the basic facts of exponen-
tial families, Information on exponential families can be
found in Iehmann (1959), Linnik (1968), Chentsov (1966) and
Barndorff-Nielsen (1970), We define algebraic and analytic
exponential families and give some examples to indicate their
importence, Apart from this, we follow Barndorff-Nielsen,

1.1. The Basic Facts

et (X, 03,0 ) be a fixed (Euclidean) statistical

model.,

Definition 1.1, § is said to be an exponential
family provided there exists a o-finite measure 4 on (X a3 )
a positive integer k, real valued functions c, 0,4, ..., O
on (P and real valued measurable functions h, Tys eees B
on X such that h> 0, ( « 4 and for every Pe (¥

(1.1) (@B/ap) (x) = o(P) h(x) eCE@HT(X> + My

where b = (‘01!111! ok) and t= (t1’ e el tk) *



In this case (1,1) 1is called an exponential represen-

tation of the densities of (¥ with respect to &,

The probability measures in an exponential family
are mutually equivalent, Let P_ ¢ (P. Then for all P e &,

(1 .2) dP/dPO - | Ec (P)/c (PO)] e<0(P) —Q(PO) ’ t© C&jj

Wwhen (P 4is exponential then to any o-~finite measure
¢4 dominating @’ s there exists a representation of the form
(1.1), For each dominating &4, let k(#) denote the smallest
integer such that the densities of the probability measures
in & with respect to 4 are representadble as in (1,1).
k(#) 1s an integer which is independent of 4, This integer
is called the order of the exponential family (’, 4An expon-
ential family whose order is k is also called a k-variate
exponential family, Any representation (1,1) where k is

the order of ¢ ‘is said to be a minimal representation,
For proofs of the following theorems 1,2 through 1.5,

See Barncorff-Nielsen (1970) or the references cited there,
Theorem 1,2, Let ( be an exponential family of
order k with (1.1) as a minimal representation, Jet



¥ %* * *
(ap/du) (x) = c(P) hix) e<o(P)’ t(x)> [v]

be another representation, Then there exist two linear tran-

sformations A and A apd vectors a and 2 such that

At + a = ¢
— 2% pa—
AQ + a = @
and — T
A A = Liwi
Theoren 1,3, The representation (1,1) is minimal

iff both of the following conditions are satisfied,

(1 1, 01, coos Ok are linearly independent functions
on .

(2) 1, t,, ..., t, are linearly independent functions

on X,

Theorem 1.4, If (1,1) 4is a minimal representation
then + 1is a2 minimal sufficient statistic,

Theorem 1.5. et

@P/aP. ) (x) = o(0) <00t
o/ 9Bg_

Then the family of induced di stributions of t, 01; = {Pg}
i1s also an exponential family with order of G’t order of § ,
and



LW

d Pg / a P:g = ¢(0) e<0-90,‘b>
O

For an exponential family ® , consider the represent-

etion (1,1) end let @, = {o(®) :Pe ®}. The mapping

QP ~>0Q(®) from & into ®a is one-one and onto, i.e.,
0"'1 is a parametrization of & .,

Definition 1,6, A parametrization of the exponential
family § sy Tepresented as in (1,1), by 0"'1 is called a
canonical parametrization of G) and & is called the canocnical

parameter of the representation (1,1)., This parametrization
is called minimal canonical if (1,1) 4is minimal and in this
case O 1is called the minimal canonical parameter, The stat-

istic t occuring in the various possible representations (1.1)

are called canonical statistics, t 1is said to be minimal

canonical if it occurs in a minimal representation,

Iet € have an exponential representation with respect

to a o-finite measure 4, Consider a minimal canonical param-

etrization of £ = fp 1 0e¢ @ } where ®, C E-.
We shall denote by p, & chosen version of the density of
PO with respect to K., We have

(1.3) p(x) = c(@ eSS py



If the Iaplace transform

g(Q) = je<g’ $(x)> h(x) au
is finite for © ¢ RS, ‘then py in (1.3) is a probability
density with c(Q) = Eg(OI] "'1_ Thus for @ & @ = dom g,
Py as defined in (1.3) 4is a probability density,
Definition 1.7. The set @ as defined above is
called the natural parameter space (of the minimal canonical

parameter) in the representation (1.,3) of the exponential

family & .

The natural parameter space & of (¢ should be
distinguished from its set of minimal canonical parameters @

Theorenm 1,8, The natural parameter space of an expon-

ential family is a convex set,
For a proof of the above theorem, see ILehmann (1959) p.51.

The statistical models of importance in exponential fami-
lies are of the following three types,

(1) Canonical Models, The set of minimal canonical

parameters @ o coincides with the natural parameter space ® .



(2) Convex Models, @0 is a convex subset of @.
(3) Curved Models, @0 is a smooth connected

manifold contained in @®).

If q 1is the dimension of the manifold @ o ‘then §
is called a q-dimensional exponential family, Notice that

in canonical and convex models the order and dimension of an

exponential family coincide,

The curved models arise in the following way, IlLet a

statistical model be specified as (X, 3, PJ\) AEA\ where the

family of probability measures is parameirized by an open conn-
ected set A in R, ILet the family ® = {P. : re A}

be an exponential family, Suppose in a minimal canonlcal para-
metrization 0“1, the functions 01()\), ceey 01{(?\) are smooth
with differentials of full rank at each point, Now the set of
minimal canonical parameters ®o = O(#) has the structure
of a g-~dimensional smooth manifold embedded in the k-dimensional

Buclidean space,

We mention in passing that Effron (1970) has made use
of one-dimensional curved exponential families in defining the

curvature of a statistical problem,



Definition 1,9, Aset N C” ck is called an alge-

braic set in Ck if it is the set of common zeroes of a finite

number of polynomials with complex coefficients in k variables

k

An analytic set in C° is a gset of the form .

U M {z e c° . £,(z) =0,..., fr(Z) = 0}

k

where U is an open set in €~ and f£,(2),..., £.(2) are

analytic at least on U,

Pefinition 1,10, A k-variate exponential family §-
is called an algebraic (analytic) exponential family if the
set of minimal canonical parameters of (¢’ is of the form

& 0 = @ 1 () § where M 1is an algebraic (analytic) set

in Ck and @ 1 is an open set in Rk contained in the

natural parameter space of £ .

Lemma 1,11, Let ¢ have an exponential family of

densities

po(t) = (@ & P nt)

with respect to the Iebesgue measure on Rk. We assume that
h(t) > 0 for all t in some open set S in Rk. Then if
the canonical parameters satisfy a nontrivial polynomial equa-

tion  P(Q) avey §) = O then t is not a complete stat-
istic,



. o

Proof, We can find f£(t) € c‘: (S) such that
P(~D) £(t)/ h(%) , t e S

- |
0 : t £ S

is nontrivial, Now

EgF = C(®) g’ P(-D) £(¥) % ¥ at

= C(Q) P(0) £(&
which vanishes for all canonical parameters @,
It follows that t 1s not a complete statistic, //

The technique used to construct a nontrivial unbiased
estimater of zero in the above lemma is known as Wijsman's
D-method, See Wijsman (1958), where he uses this method to
construct test functions satisfying the property of similarity
in some important problems, Wijsman's D-method will find
applications in the sequel.
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1.2, Examples of Algebraic and
Analytic Exponential Families

Example 1,12, Sampling from a normal distribution

with a known coefficient of wvariation, Iet Xqy...9 Xy D€
independent and indentically distributed (i.i, d,) random var-
jables and let x; A~r N4, 0'2), i.e., x; has a normal dis-
tribution with mean X4 and variance 02. We assume that the
coefficient of wvariation r = KLU/o is known but o 1s
unknown, The family of joint distributions of the sample
(Xy5ee0y Xy), parametrized by o > 0, is an exponential family.

It has 2 minimal representation with respect to the Iebesgue

measure K on RN, given by

N
(1.4) p (x) = (2= 02)" V2 exp [=(1/2 o°) = (xi-u)zj
=1
, . N
= (21 02)" V2 oxpti?/2 ¢2) exp [(~1/26°) E1x§_
i=
we® = x,]
+ c L X
i=1 T
The minimal canonical parameters are &4 = -1/202,
N
02 = #/0'2 ;nd the minimal canonical statistics are t.l = I xi
i=1

and t, = 121 X;, The exponential family (1.4) is a two-variate
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exponential family of dimension 1, The natural parameter space
of (1.4) is @ = <{(0;, &) ¢ 0, <0, O, ¢ R} and the
set of minimal canonical parameters is @ o = ® () M where
M = {(21, 22): Z4s %o ¢ C and z§+2r221=0}. Thus
the family (1.,4) 1is an algebraic exponential family,

The minimal canonical statistic t = (t;, t;) has the
density

(1,5) po(t) = o) e W h(t)

with respect to the Iebesgue measure on R2, where

2\N/2 = 1 2

(1.6) (4, t,) {m "t ’ e
h(t =

¢ 1* 72 2

Example 1,13, The Behrens -~ Fisher Problen,

let Xiyeoes xN1 and Yiyeees yN2 be two independent

sets of repeated samples from N(u, o ) and N(u, o ) respe-~

ctively where the unknown parameters are K and 02, K e R

and o° > O, The joint density of the sample (x, y), with

respect to the Iebesgue measure on RN‘I N2 , 1s

N
.7 » 2 (x, y) = (27 )~ (Nq+N2)/2 exp E—(1/2a ) & 1(;:1-#)2
#391292 X, =1
"(1/2‘72) E (yi—ﬂ') ]

i=1



(1.7) is a minimal representation with minimal canonical
2
parameters Q; = -(1/2 a?), 0, = (u/ cf), 95 = -(1/2 a3),
04 = (#/crg) and minimal canonical statistics ‘I:1 = 3 xg ’
2

meter space of the family (1,7) is
® = {Q: e, <0, o, ¢ R, 03<0, 0433} .

The minimal canonical parameters of (1.,7) satisfy the polyno-

mial equation
(1.8) %y Zy ~ %y 23 = O

so that (1.7) is an algebraic exponential family with parame-

ter @ = @M M where M 1is the algebraic set defined

by the equation (1.8)., In this example we have a four-variate

exponential family of dimension <three,



Exanple 1,14, Multinomial distributions with cell
probabilities as functions c¢f a parameter,

In genetics it is assumed that under random mating
conditions an off-spring belongs to the genotypes AA, Aa o
aa with probabilities 132, 2rq, q_2, where O < 15' < 1 and

p+tqgq = 1,

In a fixed number N of individuals the probability
that r, is AA, r, is Aa and ry is aa, is given by

E N: / 1'11 1‘21 I‘3I:| (Dz)r1 (2Pq)r2 (qz)rz'. Consider the
family of probability distributions on the set of triplets of
rositive integers (r,, r,, r3), ry *Ty *+r; =N, generated
by varying p. The family has an exponential representation
with respect to the counting measure J on the set of triplets

of positive integers, A minimal representation is given by the

densities

2
(1.9 £, = (N / 71 7yl rgl) o 196 221 Ty(1og P -log Zpa)

2
w oTr3€l0og ¢~ - log 2pq)

with respect to J , since the functions 1, 1log pz - log 2pq,

log q2 ~ log 2pq are linearly independent and 1, r,, T; ave



@ O

linearly independent, The family is of order 2 and dimension 1,
The ninimal canonical parameters are given by 01 = log 92-106 2pq.
02 = log q2 - log 2pq and the minimal canonical statistics arse
Ty and Toe

o 2
o We have e = p°/ 2pq = p/ 2(1-p) and
e ° = (1-p)/ 2p = (1/4) e 1 . The natural parameter space of

the exponential fanily (1.9) is 112 and the minimal canonical

parameters form the set (01, 92) € Rz . e02 - (1/74) 3'01 = 0

so that the random mating model is an analytic exponential
family
Exanple 1,15, Location parameter exponential families,

A location parameter exponential family of distributions
on R 1is dominated by the Iebesgue measure #, with respect to
which, it has a density of the form

(1.10) f(x, @) = exp

Nt

1 exp D’i(xi‘O)] p; (x-0)

where e.,..,,, @ are complex numbers and DPq,..., P, are

m
polynomials with complex coefficients, Naturally if f£(x) is
to be a probability density then the complex constants in (1,10)

must Be chosen so that the function f£(x) is real, positive and



satisfies the condition { £(x) dx = 1, Under these conditions,
conversely, formula (1,10) is the density of an exponential
family of distributions in a location parameter 0., Soo
Perguson (1962), It is a univariate exponential family iff it
is a fanmily of the type N(O, o> , )), 4introduced by Ferguson,
for some fixed positive &2 and real number ), Otherwise,
it is a nultivariate exponential family of dimension 1 with

the minimal canonical parameters varying over the curve

QL —> (exp(—ﬁ.'O)Q, exp(-a.lO)Oz, eee 3 exp(-2,0)0; ... )

When (1,10) is of the form exp [P(x-0)] for a poly-
nomial P +then we have an algebraic exponential family with

Tthe minimal canonical parameters satisfying the equations

2  _
. k _
Qk = 01 = 0



CHAPTER 2,

UNBIASED ESTIMATION
IN ALGEBRAIC EXPONENTIAL FAMILIES

In this chapter we prove a theorem due to A M, Kagan .
and V.P., Palamodov characterizing the class of uniformly mini-
mum variance unbiased estimators in an algebraic exponential
family dominated by the ILebesgue measure, The main arguments
in our proof arec based entirely on the ideas of A, M, Kagan
and V.P, Palamoccvy bDut at the same time we bring about subs-
tantial simplifications in the details of the proof, See
Kagan and Palamocevr (1968), A point worth mentioning is that
we completely avoid the use of some difficult results of H,
Whitney and J. P, Serre in algebraic and analytic geometry
which are used by Kagan and Palamodov, As a result, the proof

given in this chapter should be mc;»2 easily accessible to

gtatisticians,

In 2.1, we prove the necessary results on polynomials
of several variables which are needed for the proof of the
main theorem, The results in this section also seem t0 be
of independent interest, Given a set of polynomial constrai-

nts on Ck we show how to obtain the maximal subspace of



¢* where these constraints do not apply. We obtain the equa-
tions defining this subspace in terms of the ideal of all poly-
nomials vanishing cn the set of points satisfying the constr-

aints,.

In 2,2, we state and prove the main theorem, The
gtatenent is slightly changed from +that of Kagan and Palanm-
odov to make it suitable for direct applications,

In 2,3, the theorem is applied to prove two conjec-
tures of J,K, Ghosh, namely, in the Behrens -~ Fisher problem
and in the problem of normal samples with a known coefficient
of variation the uniformly minimum variance unbiased estimators
are trivial, An application of the theorem to variance compon-

ents models is given in the mext chapter,

2,1, Some Resuvlis on Polynomials

of Several Variables

Polynomials in k variables with complex coefficients

form a ring 21: wnder the usual addition and multiplication of

polynomials,
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Definition 2,1, An ideal in the ring of polyno-
mials B, is a set of polynomials I ( B, which has the

properties

(2) PelI ReP => RP e I

Definition 2,2, A C 31: is a set of generators

containing the set A, We denote this fact by I = id A,

for the ideal I in B if I is the smallest ideal in B,

Note that 1id A is the set of all finite sums of the
form X Pi Qi where Pi € Ek and Qi € A,

The following two theorems in algebra are well-known.

Theoren 2.3, (Hilbert), Every ideal in P, has

a finite set of generators, //

k

Let N bDe an algebraic set in € defined as the set

i -k

of common zeroes of the set of polynomials A, This is deno-

ted by N = V(4), Notice N = V(id A),

Theorem 2,4, (Hilbert's Nullstellensatz) Let
-N-. - V(A)g A C gk. Suppose P e Bk vanishes on N‘

“hen foor some positive integer n, Pt e id A, //
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The ideal of 2ll polynomials vanishing on & set
N C ©* will be denoted by id N.

Theorem 2,5, Tet N be an algebraic set in Ck

end I = id N, ILet

21 I, = d{P(z+x): P(z)el, ¢gek

0 -
and
(2,2) L = V(I)).
Then L is a linear subspace of Ck. It is the lar-
gest subspace of dk such that
(2,3) L + N C N.
Proof, Let
Igo = {P(z + E,O) : P(z) e I}
Then V(I,L ) = N~ ¢t_.. Therefore
o - O
(2,4) L = V(IO) = () ¥-¢
- geN

Mo show T is closed under addition , Iet £qs Eo

be in N, Por arbitrary ¢ ¢ N, from (2,4), we can find

N4y My ¢ N such that &4 =7y ~-¢ and ny =1y - 14,
Therefore, ¢, + €&y =My =& ¢ L



To show L 1is closed under scalar multiplication;

PFix ¢ in % , Prom the previous part of the proof, for

each positive integer n, n¢ e L, For P e I, consider
the polynomial in one complex variable @, P,(a) = P(ag),
Since P, vanishes at all positive integers, P4 = O, 1.e,,

P(eg) = O for each complex ¢, It follows that a g ¢ L

for each @ ¢ C,

Now, from (2,4) we have, for each ¢ in N

oxr
Thus

On ‘the other hand, if M is a subspace of Ck such that
M+N ( N, then obviously M is contained in N - ¢ Zor

each ¢ in N, Thus M C (—b’r N -¢ =1L, Thus the
- = >

theoren is proved., //

Jee

Let N be a fixed algebraic set in €%, Iet I, I,

1 be as before, We shall assume that we are working with

k
an orthonormal dbasis (e.l,,.., €9 Cppqrecer ek) for C~ 8o

that (eq9e. ey er) is a basis for _];" and (er+1,..., ek)
is a basig for & . We shall identify sz = Zy € * e.ot 2y, O



with the ordered r-tuple (z4,..., 2,) and so on,

Iet ¥ = I N K Iz (2, ..., 2 ¢ N, then,
from (2,3), (z?, coos z;) e V and for arbitrary
zr+1l LR X zk’ (Z?, oo ey Z;, zr.‘.‘]’ e Zk) € E- This Bhows

that N can be identified with the cylinder V X L,

let P(z4y o.ey 2y) e I, Then the polynomial in

Zis eves Zony P(Z1’ eeer Zmy Oy euey 0) will vanish on V,
It is also clear that such polynomials form the ideal 1', in
B, of all polynomials vanishing on V, To see this, consider
P(z1, cons zr) e I' as a polynomial in 31: with gero coeffic-
ients for Zpsqr *oey Dy Then obviously P wvanishes on

V X1 and consequently it is in I, 1In fact, I1I' is noth-
ing but the set of all polynomials in 21y eeey Z which are

T
in 1,

Lerma 2,6, I' generates I in _If_k.
Proof, First, consider P(zqy ..., zr+1) e I,
We can put
(2'5) P(z1*“"zr+1) = QO(Z-I; i--,Zr) * Zr+1P1(Z1!---’Zr+1)

Putting z,,, = O, we see that Q, ¢ I'. It follows that



/ P, e I. Now for any z° e N such that zgﬂ # 0O

r+1
P, nust vanish, If z_ 0, let 2z =

r+l
From (2,3), z(n) e N, Since z(n) P

Thus P‘l e I,

Decompose P, as in (2.5) Continuing +this process,
finally, we obtain

(2-6) P(z‘l’ ce o zI..|.‘|) = QO(Z‘I’ eo e zr) + zr+1Q1(z1’--i!zr)+'
Il
cee  * Zo1 Q24 aaey Z..)
where Qi € I', i = 1’ ec e n,

Thus P 1is in the ideal generated by I1' in PJ,.

Now, by induction on the number of variables, we obtain

the result, [/

Iet

(2,7) IB = 1id {P(z +¢) 2 P(2) el', ¢ e _T{}.

In the above definition of I}, since P(z) is a polynomial

in iy eoey Z only, we can replace ¢ €V by ¢ eV X1 =N,

T
Arguing as in the proof of theorem 2,5,, V(I;) is a subspace

of I which is contained in V - ¢ for each ¢, ¢ N and hence



contained in L , It follows that V(I!) = 0 . It is also

clear that Ié generates the ideal IQ in P.

Lerma 2,7, The set of wvectors

spans I

Proof, Suppose a # 0 1is in L and for each
Pell, a 1 (s2/ 6Z4y seey 6P/ Gzr)o. Then for P ¢ 1' and
t eV, the directional derivative D, P(r) = 0, This shows
Da P e 1', Repeating the above argument for Da Pel', etc,,
finally we have for ¢ e V, Dz P(¢g) = O for each positive
integer n., This implies that I(') vanishes on the wvector space
generated by the vector a, This is a contradiction, //

Theoren 2,8, I is the ideal of all polynomials

vanishing on L,

0

Proof, It is enough to show that the polynomials

Z-"’ See) Zr are in IB-

From Iemma 2,7, we can choose Py, ..., P, in I}

S0 that the inverse function theorem can be appilied to odbtain

an analytic isomorphism
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(Zgreearz) < =>  (Pgyeney B

in a neighbourhood of gero, Iet

(2,8) zq = F(P1, cee Pr)

in a neighbourhood of zero, where

(2,9) PP P) = I oa Pi1 Pir
- & 1" a0 09 T 11'.‘11. 1 oo T

If we expand the righthand side of (2.,9) as a power Series in

Z4s eeey Z,, then the coefficient of each form (monomial)

i 1.

Z1r eee 9 %, nust vanish, except that of Zqe

From Hilbert's Nullstellemnsatz, we can find m such

that if a form in Z13 eeey Zn

it is in I1,. Also, except for a finite number of indices, all
11 ir
other a P, ... P is a finite sum of forms in
i‘l#i-ir 1 Ir
Z1r eeey 2Z,, Of degree at least equal to m. Iet the sum
11 i,
Lt as § F1 ... P correspond to these finite number
1.--

o
of indices, In this sum, +the coefficients of each form, other

lg of degree at least n then

than z,, whose degree is less then m nust vanish, So we have

11 ir
z' ai1 ceo 1r ?1 *ee PI' - Z-' * A(Z1’ili’zr)



vhere  A(z,, ..., z,) 1s a finite sum of forms in Zgyesey Zy

of degree at least m, So A(Zqy ey zr) is in I!, It
follows that Zq E Ig. V/4

2,2, Unifornly Mininmun Variance Unbiased Estination
in Algebraic Exponential Families dominated
by ‘the lIebesgue Measure,

et (X, 8, #) bve a statistical model where X is
a Borel subset of R and & an algebraic exponentisl family

doninated by the Lebesgue measure IJN « In the canonical para-

netrization 0"1 suppose § has a nminimal representation

(2,10) po(x) = ¢(9) e <O t(x)> h1(x), Q € @0

with respect to MN.

Clearly, in the problem of unbiased estimation, we need
consider only estimators which are functions of the sufficient
statistic ¢ = ('I:1, coo 3 tk). Suppose the statistics Tireeasty
are continuously differentiable and functionally independent,
Then the induced family of joint distributions of the statistic
t is an exponential family.and has densities



(2.11) po(t) = ¢(9) <@ ¥ h(t), 0 @,

with respect to ﬂk.

In the rest of this section we assune

(1) t = ('b1,..., tk) has a fanily of densities of the

form (2,11) where the set of canocical parameters

®o = @1 M M, @1 is an open set in RS contained
in the natural parameter space @ and M is an algebraic
set in C¥,

(2) 1 {"b * h(t) > 0} = Mk(S) where S is the
interior of the set {t : h(t) > 0}.

(3) h(t) is bounded sway from zero on every conpact

subset of &,

If h(t) is a continuous function then assunmptions (2)
and (3) are +trivially satisfied,

The problen is to characterize the class of UM,V,U,
estinators in the fanily {(2,.11). Without loss of generality

we assune all estinmators vanish outside S,

Iet K be any compact subset of S, Fron assunption (3),

we can find 8 > O such that h(t) ¢® ® at > & for all +



in K, Now

© ﬁf leCt) | het) <% ¥ ay > 5 Kj 16(t) | at.

Thus G is alocally integrable function smd as in (0,7)

G can be considered as a distribution,

Lerina 2,9, Iet G(t) be an L .M, V.U, estinator for

its expectation at -the point O e & o Then G(t) satisfies
the partial differential equations (in the sense of distri-
butions )

(2,12) PO +0))¢ = 0

for any polynomial P(2iy...s zk) (with conplex coefficients)
which vanishes on @& o

Proof, Iet P(z) e any polynomial vanishing on

®,. Take £(t) ¢ € (S) and put

F(t) = P(-D) £(t)/ h(¥) , teS

Since

{ P(¥) n(t) oo B gy § B(-D) £(3) <O P ay
S s
P(Q) 2£(9),

F(t) 1is an unbiased estimator of zero, i.e., F(t) ¢ U,
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Since h(t) 1is bounded away from zero on compact subsets of

K, B, F2 { » foreach Q0 in H

OI

Now let G(t) be LM, V.U, at Q,. Fron Iemma O,1.
we have for each (&) ¢ C: (S)

0 = § o) [ £(t)] %P0 ® 44
= J [P0+ o) c®)] £(t) efor® a4

The second part of the above equality follows from (0,5) and
the definition of differential operator on distributions, Since
£(t) > £(t) e“®or ¥ 33 one-one onto Cﬂ; (8) and G(t) =0

outside S,
P(D+OO)G = 0, V/4

Theoren 2,10, (A.M. Kagan and V,P, Palanodov), Let
N be the snmallest algebraic set in ¢ containing ® o and
let L be the largest linear subspace of RE such that
L + NCN.  Anestimator G(t), E,G° < « for all
O in @ _, isa UMYV, U, estimator for its expectation iff
G(t) 1is a function of s only whewe s is the projection of

t into 1,

Proof, (1) Sufficiency. Let

t = »r + g, re L, se L



Q@ = P+ 1, Pe L, ne L

Consider an estimator G(s) such that ]E‘.QG2 { o for

2 ®o'

all & in @ .. Iet P(¥) e U, and EF <, Oce

Fix O =P  +n  in ®o' Let U, be a neighbour-
hood of ﬂo in I.'-'L' and U, & neighbourhood of N in L

such that U,~X U, C @1.' Since

B, X L C N

we have

O

Since N 1s the smallest algebraic set containing

&, N M, vhere M is an algebraic set, it is clear that

@, "y = @, "M = @, mus B X T, C @,

e

Put
Fy (s8) = S F(r, s) e<Po, > h(r, s) dr

L.L

Since P € Uo' we have

IF.I (s) e™ 52 g5 = 0
for all n e U2. This inmplies

F, (s) = 0



Therefore, for all 0 in @0,

BalL G P(x) ] = O

which shows G is a UM,V .U, estimator for its expection,

from Ierma O,1,

P . | 2
(2) Necessity., BSuppose G(t), E5 G < = for

all 0 in @ _, isa U.M.V.U, estimator for its expectation,

Consider a fixed polynonial P vanishing on N and a
fixed £(%) ¢ € (8). Now

£ PO +2) 6] E@) at = 36(t) [(-D + 2) £(t)] at

is a polynomial in gz which, from ZILemma 2,9.,, vanishes on @
and consequently on N, Thus, for all ¢ in N,

O

(2-13) P(D + g) G = 0O

Now, let I ©be the ideal of all polynonmials vanishing
on N and

Io = jid {P(z +¢g) ¢ P(z) eI, g € y_}

Then, fron (2,13), for all P e I,

(2.14) P(D)G = O
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Let
L

V(I,)

L

L N R

where we assume we are working with an orthonormal basis

(€45 «eer €) s0 that (e4y <.., €,) forns a basis for
i

L
L = L N R and PP ek) a basis for L, Fron
Theoren 2,8, +the polynonials T4y eeey 2

5G/ 61."1 S Opeanes 6G/ S‘br = 0,

» & I . Now fronm (2.14)

This.shows that G is independent of T4s eeey .. The
theoren is provead, /4

Remark 2.11. If L= {0}, then the only U.M.V.U.
estinators are constants,

Renmark 2,12, The fact that the set of minimal canon-
ical parameters @ . is of the form H M is used in

O 1 —

the sufficiency part of the proof, If ® o 18 any set and
N <the smallest algebraic set containing @& o then the neceg-

sity part of the theoren is trve,

2.7, Examples

Extnple 2,13, In the prodlen of N independent samples

fron a normal distributions N(x, 02) with a fixed standardized



nean, considered in Exanple 1,12,, we have
®1 M M = {(01’ 92) . 01 < 0, 02 e R, Og + 2r201 = 0}

If =0, then L= {(0;, 0,) : 0, ¢ R, 0,=0} and

UMV, U estinators are functions of Tse
Case r # 0, For any fixed (B4, B,) such that
2 2
fp +2r" B, =0, B,<0, BPB,eR and for (0, O,) ¢ L we

2 2 2. 0n 2
have (Qp + By)™ + 2r°(0, + By) = 0, i,e,, 0,+20,B,+2r°0, = O,

since r # 0O, the ak%ove equality is true for any arbi-
trary P, ¢ R, But then if 0, # O this equation deternines
P, uniquely, So &, = 0 and consequently 0, = 0, It
follows that I = {0}, So constants are the only U.M.V.U.

egstinators,

Exanple 2,14, The Behrens-Fisher problen,
See Exanple 1,13, We have

For @ ¢ 1, we have

(0 + B, + By) - (0 + B (03 + B5) = 0



where P,, B,, 53, 54 are any nunbers such that B, < O, ﬂ3 < 0,

arbitrary B, < O and 53 < 0,

For a fixed (0, O,, 05, §,) ¢ L, the equation holds

for arbitrary £, < O and 33 < 0,

Since O e M, O is a linit point of @ _  and so O e N,

Thus, for O ¢ I,

So, for arbitrary B, <0, 53 < 0, we have

0401 - 0203 = 0,

This implies 04 = 0, 0o, =0,

Now, arguing as before, we can show 0, =0, 05 =0,

It follows that the only U,M,V,U., estinators in the

Behrens-~Fisher problen are constants,

The same result is true also for the multivariate

b e SRS SR RN S B g Y L T R e S pgeapeeagy e e e B e Y LR e R o an g, *- By fllsden A Gty (s i eyt A o C T e TN PO

analogue of the Behrens-Fisher problem which can be proved

e s U

by similar methods.



CHAPTER 3,

ESTIMATION IN VARIANCE COMPONENTS MODELS

Iet y .be a2 randon p-vector with a nultivariate nornal
distribution NP(O, G) where G is unknown but is assumed to
bein & fixed convex cone of positive definite (p.d.) matrices,
Let Yqs eees Iy be N independent observations of y., N
may be one, We give a representation of the joint densities
0f (¥4seees ¥) @8 an algebraic expomential family, Making
use of this fact, an elegant characterization of the class of
UM, V.U, estimators is obtained, The sane point of view also
leads to an interesting derivation of the explicit likelihood

equation,

The models we consider arise from the variance conponent
models x ~» N (XB, T n, V;) when we are interested in estin-
ators which are invariant under +translation by XP, ILet
Yy =Px where P 1is the projection of y on the orthogonal
conplenent of the colurm space of X, Then y is a nmaximal
invariant for the group of translations by XB and y ~» NP(O’ PGPT).
In traditional variance conponents models N is one, but repli-
et ey b, S acblb i e i, ¥ AN W it AR 310 AR AR AN T L SR S s s et

cated models are also studied under the name linear covariance

models and they are of interest in some problenms in psychonetry
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and econonetrics, These models occur also in the study of

autoregressive processes with noving average residuals,

The literature on wvariance conponents models is extensive,
¢.R. Rao (1971) has characterized the class of quadratic esti-
nators which are of unifornm nininun variance in the class of
quadratic estimators, It turns out that for quadratic estina-
tors uniforn nininum variance in the class of all estimators is
equivalent to uniform mininum veriance in the class of quadratic
estinmators, U,M,V,U. estimators are functions of UM,V,U,
quadratic estinators, For UM.V,U, quadratic estimators our
oriterion reduces to the condition given by Rao, The likeli-
hood equation we derive resembles the one given by Herbach(1959)
for the two way classification randon effects model, The like-
1lihood equation for the model is also derived by Srivastava(1966)
for the case when all the covariance matrices are simultaneously
diagonalizable, and by Anderson (1969) in the more general
case, Our likelihood equation is explicit in the sense that
the equation does not contain the inverse of the unknown matrix,
One of the advantages of this is that an itecrative solution by
substitution is possible in our case whereas one has to resort

to more difficult techihiques to solve Anderson's equation,

Our use of Jordan algebra in the problem is influenced by



Seely (1975)., Also, our technigues have something in common
with those of* Srivastava (1966),

3.1, Jordan Algebras of Matrices

Ierme 5,1, Iet A be a real linear space of p X p

netrices with real entries, The following conditions on 4
are all equivalent,

(1) Ge A =D sté

(3) For each positive integer n,

Ged => G ef

Definition 3,2, A real linear space A of matrices
satisfying any of the conditions given in Iemma 3,1, is

said to form a (real) Jordan algebra of matrices,

Remark 3,5, In fact, such a linear space of matrices
fornms a Jordan algebra under the usual definition of a Jordan

algebra with the usual matrix addition and tte mult:l.p]:lca'bion

T e £ % ekl T 0y M I Py

it = g NebDmn  WE g A I e

g T e P

0 defined by A OB = (AB + BA)/2




In the rest of this section we shall denote by A a

fixed Jordan algebra of p X p symmetric natrices containing
the Fdentity matrix I,

Lerma 3.4. If Ge4 and G is p.d. then G ¢ 4.
Proof, Ilet Ge 4 and G be p.d, For suffici-

ently small <« > O

a[I - (T - el

'_IEI + (I -a@) + (I - “G)z * oase :‘

(3.1) tad

For each positive integer k, (I - ag)¥ ¢ A, Since §
is a finite dimensional linear space, it is closed, Therefore,

¢~ e a. //

A linear space of symnetric matrices ¢an be made into
an inner product space by the immer product <A,B> = tr AB, Iet

(Gip weay G)) De an orthonormal basis with respect to this inner

product, Now we can identify R® and § by the isometry

(3.2) n = (Tl1_r ceoy 'fln) S 2 G’.n = & “iGi

Iet & Dbe the convex cone in Rnl defined by
A A D e AL el o S O Ui Hirit - rtecionditiebin-werea ot DO DI i

(3.3) ® = {ne®*: @ c4, € 1is p.a.}



For ne¢ @, from Terma 3.4., we have a unique 0 ¢ @
such that

Go

y=T
(3.4) (G,n)

Iet U °  —> @& bve the nap

(3.5) T(n) = 0
It is clear that U°> 4is the identity map on ®.

Theoren 3.5, Iet U Dbe the map defined in (3.5).
Then U 1is a rational map, i.e.,, each coordinate of @ 1is
given by
(3.6) Qi = Ui(n-l, e o9 nn)

where Ui is a well-defined ratiorel function of Nseces Ty

on @,

Proof, We shall assune (G;) i=1,..., n disan

orthonorsal basis for § and G, = (1/{p)I . The nodifica~-

tion in the form of Uj_ when this is not the case is clear.

We have'

(3.7} 1 = (GoC, * G, G)/2

e e o

il 0y, -1

For a .p,d, G ¢ 4, if Gyec 4 satisfies (3.7) then it can
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be easlily shown that

-1
Gy = (Gn)

Now, the equation (3,7), can be written as

(3.8) I = iGi I:g- ny(GyGy + GJGi)/Zj

In terms of the coordinates with respect to the basis ( Gy, )
this becomes

(3.9) 1 = i 0, [g ny tr (6365 + G;G;)/2p]

k - 2 "W K n#
0 = i 0y L‘_g ny ¢ (G30; + G4G;) G, /2], ’eoos

The equation (3,9) can be put in matrix form as

where the (k, i)th element of the matrix A(n) is

(3.10) A(W). 0 = (

Oeee Omd

+ = 29 e ey
(3.11) 2 (M) = (1/2) sz ny tr [(6640.6)a ], k n

8,4(n) = (1/29)§ N4 tr E(Gj,Gj+GjGj_)j



For ne¢ ®, from Lemma 3.4,, equation (3,10) has a

unique solution 0O e @ ., From Cramer's rule for the solution

of linear equations

(3-12) Oi = Ui(n‘pa---' Tln) = lﬂu(‘n)l/lﬂ(‘n”.

Obviously [44;(n)] and [A(n)| are polynomials in
Nis eee) Ty and for ne ®), lA(n)| # O,

This proves the theorem, /4

2.2, The Minimal Exponential Representation

in the following S denotes a convex cone of p X p
P.d, matrices, Y = {G"1 e G= §} . let S, and Y  den-

ote the affine spaces generated by 2 and Y respectively,

Since § 1is a convex cone the affine spaces are actually seen

to be linear spaces, Unless otherwise stated, we shall assume
§ Iisopenin §, and § contains the identity matrix I,
In the sequel § will denote the smallest Jordan algebra of

Symmetric matrices which contains § 0

Lemma 3,6, S5, C L, C 4 8,=Y, iff §_ =4

Proof, Clearly ¥, C 4. For ¢> 0 and Ge §,



I +aG isin §, ©Now, for ¢ > 0 small enough,

(I +a®)~! = 1 - ag+a’6® - ...

which is in ¥Y_ .. Therefore,

-0
-0F + 62(}2 o g ‘go
or,
G - GG2 * eee € IO

Now letting & —> O we obtain G¢e ¥,. Thus § C ¥, C 4.

From the same argument we also have, for Ge g, G e Y.
For G4, Gy € € we have G, + G, ¢ S, and consequently,
(G1 + G‘2)2 € EO' ThllS, fOJ‘.‘ G’dl, G’2 € §_’ G1Gz + G2G1 € _ol
This implies that for any G ¢ g 2

8§, G e ¥,.. Thus if 3, =¥,
then §, is a Jordan algebra.

On the other hand, if §, dis a Jordan algebra, then from
Lemma 3,2,, ¥, C §, and consequently ¥ =8.. /

We £ix an orthonormal basis (G1,...,Gm,...,Gk,..,,Gn)
for A so that (G1"“’Gm.) is a basis for §, and (G1,...,Gk)

is a basis for [,. We shall find it very convenient to iden-
tify 6. and n via the isometry (3,2) Under this identif-

N
ication S, = Rn, ¥, = Rk end 4 = R® with, of course, ‘the

O



embeddings RT C BE C Rr".

Iet M be the algebraic set defined dy the polynomial

equations

(3113) IA.]i(Z-l, see9P Zk, 0,0 *"O)I = 0’ i = m+1, se0? ni
where A‘Ii is as in (3,12),

The set of p X p p.d, matrices is open in the set
of all p X p matrices with the usual topology. The Euclidean
topology on A 1is the relative topology inherited from the

topology on the set of p X p matrices, Therefore, we can
conclude that @ , the set of p,d, matrices in 4 , is

an open set in J.

Now, consider the map @ 21> @ defined in (3.5).

It is a rational map and hence bicontinuous, We also have
(3.14) ® N g <> @N N

Since § is open in §_, and § C ®~ §, § is

- -
also open in ®H M {_-30, Therefore, U(g) isopenin ® O M,

Now @& O M C RS= T. Thus ® ,=U(S) is of the form

=0
(3.15) @, = ;N N
vhere ®& 1 is an open set in k.




Lemna 3,7, The functions 1, U.(n), ..., Up(n) are
linearly independent functions on 8.

Proof, Suppose, for all n e § and some constant e,

we have

k
2 e, U.(n) =¢
1= 2

X is any constant > 0, This implies that for arbitrary e« > O

Since § 1s a convex cone, for 7, ¢ §, K n,e§ where

Thus ¢ = 0, But the set of vectors
{(U1(ﬂ), eev 9 Uk(ﬂ))= ne §-}
spans §, = Rk. This implies a; = o0 1=1,..., k. //

Temma 3,8, 1, yT G1 Vs eees yT Gk y are linearly
independent functions on RP,

Proof, Suppose, for all y ¢ Rp and for sonme
constant ¢
X T
111 %Y G-i y = ¢

or

yT(z:aiGi)y s ¢



This implies
¥ o] Gi = 0
since  (G;) , _ 1,..., k ©o¥e linearly indepcndent we have °
¢, =0, 1i=1, ..., k. //
Theoren 3,9. Iet y ~a NP(O’ (:r,n), G, = . Iet

V410009 Yy Dbe independent samples from y. Then the family of

Joint distributions of (y4y..., ¥y has minimal exponential
representation with respect to the lebesgue measure in RPN

(3.16) Po(y’.l, ecey yN) - O(Q) e<9’ t(;?"l,..."YN))
where
(3.17) ti(y"’ es o) yN) = N tr(GiC)/2’ 1 = 1,.-" k
N o
C = 31 yiyi /N

and the canonical parametrization is by

(3.18) o, = U, (n), G, ¢ S

The canonical parameter © veries in the set ®@_ = @, N M
defined in (3,15).

*$ 4is a complete statistic iff 20 = 4,



-y, .

Proof,
_(/2) 5 T = N to¢e=! 0)/2
=1 yi T yi T n
k -

where O, = Ui(n).

The minimality of the exponential representation follows

k
from Iemmas 3,7 and 3,8, Notice = as 'l;r(GiC) = ¢ for
i=1
k
all Viseees Ty implies, in particular, = as yli]]!Gi yi = C.

i=1
The set of minimal canonical parameters @ , 1s of the

form (3,15) 1is clear.

If §,=4 then @, contains an open set in R"

and therefore Tt 1is a complete statistic,

If § # 4 then § # Y. In this case the mininal
canonical parameters span Rk but they are zeros of the non-
trivial polynomials in (3.13), Now, from Iemma 1,11, it
follows that the minimal sufficient statistic +t is incomplete.

Remark 3,10, Suppose ¥y A2 NP(O, G)y G e §*% where
IZg*%; Pix Ve g* and look at



1 1
S = {V-?GV-? . ng*}

Then it is easily seen that the above theorem is true with the
set of minimal celaonical parameters V- 1/2 ® o v1/2 \nere

%)) o 1s as before,

Example 3,11, We shall obtain the minimal canonical
exponential representation of the two way balanced random eff-
ects model as an illustration of the method of this section.
Herbach (1959) has obtained the same by simultaneously diago-
nalizing the covariance matrices, The unbalanced case can
also be treated by our method but the Jordan algebra generated
by the covariance matrices will depend upon the unbalanced

nodel we consider,

The following model i.ussuned for a. two way classification

with K, observations per cell,

_ A, B, AB
(5.19) Vige = H T 61T T ey T Cagk
=100 I, 3=Tey 355 k=100, K, where yiq

is the k th observation on the (i, j) th cell, The

main effect & is assumed to be a constant and the components

ei . e? ’ eﬁ y Oyg BT assumed to be iledep:nden: normal

2
variables with mean zero and varlances 901 % %aps °e



mﬁﬂ],. h a Wﬂ EXDIABNE
can be writtien as

oy mhﬁxmtﬂm. &m

(3.20) Y = egasWercvr

Put Gj=w!t 52"7!. %'W!. The ptrioss I, Sy, O &
do not genevete 2 Jurdea 2lgciwe, We love

€Sy = ©F = &y
vhere G, 1s the metrix with all its exiviss wity. W love
G = GG & - L & - LYy
€ G, = 68 = K8 EF;=&F =K
€6, = 6y = U K )6 €5 =65 =N%
€6y = 65, = (LK I8 &%y = G =55
so that €y, Gy, Gy CpI wem & Jordm adgsve, Lt
IR - LRl Al
r1 - o v af v Ok, ¢ O ¢ O

Then we hege



(3.21) L

Put

Then we have

Also we have

=56~

N 02001 &, Eag * "o*Ko"i d Ko“ﬁb]
+ 5 [0, + K 0,116, (0, [o2 + I,.K 05 + Kooy ]
+ oy [0, * K051 )a5(05 (o, + K 0o d
"94_(04[“9 + J Kcz + 1 Ka'%*K 2
+ X Eo + 01cr§] )

o = 9%

M T Tyt TguK, g * Ky gy

np = oo ¢ I,.K, 0y * Ky ogy

L T "2 * K, Uib

ng = og-t-J Koo‘i + 1,.K, % K, “g.b

the following linear relation

Mg = M T 273

2 _
o, = M,
2

oo = (M3 = MoK,



=56

. 2 ~ 2 2 2
(3.21) I = 0,01 +& (0 [of + I .Ko, + Ko, ]
-u.-oz[___g + K Q. N+G, {0 Ea IKG "’Kﬂ'-b]
a o 0 33 2872 a
» 0‘2[0 + K O, 1 )G, (O Ecrz +K62b}"' 02 2
b="0o 0 3:‘ G3 3 =g o a ab o')
| 2 2 2 2
*G4(94 Ece ¥ JO'Ko“a ¥ Ic'Koa'b ¥ Kooa.'bj
2 - 2
$ Ky [og9 ™+ 0pop1)
Put
2
My = e
= o2 +J_K o° + K q°
™ € 0* 0 & o ab
i
My = 95 *1,.K, 0123 *+ K, "s.b
_ 2 2
T3 = % * K, %y
N = §+J Koa§+IO‘KO °‘§+Ko ag.'b

Then we have the following linear relation

Mg = N+ =73

Also we have



)

o' P

(ng - 1')3)/]:0.1{0 = (n4 - 711)/10-1{0

Now, from the equation (3,21) we obtain

00 = 1/110
Ozn, + 02 8 = 0
53 ab "o

or >

O3 = =93p 9%/ s = -('ﬂ3 - M)/ Koo

1, =1 -
.K; ('ﬁ} o nO )t

0, * K, 03 = ";1 * (ﬂ§1 - TI;1) = Tl§1

02(00 * K0 = (g - ng)/T K ng
Therefore,

o, = .....(n1 - ﬂ3)/JO-K@ N N3 = (Jo....il'tt_,)"""l ('rf:i"l - ﬂ'3'1)
Similarly,

& + K (0'20 + 0,0
44 0\ a2 1
Solving the above equation,

0p = (T dg k7 g! + 3! w3l - 7T



For the time being let us assume 4 = 0, We shall eval-

uate the quadratic form JT 8-1 y. First observe

yTG1y = 3 (yi. ] )2

i
T. . | 2
Y6y = 2 (y.,)
2 J Ijl
T | 2
YGy = 2 (y.:. )
’ 1,3 -
veg = g )°

Now, 4
y =ly = .vTEBO 0,61y
r-"-"-'

=y [ng(T- K5la5) + 071 €0 .k )" e, - (1,.9 k) ey
+ n"2’1((10.1{0)"1c;2 ~ (IO.JO.KO)"1G4)
=10 =1 -1 ~1
* g ((B))7 63 = (J K )76 - (I,K )G,
+ (1K 3076 * 7 ((T,.3,.K.) 16T y

= (Sofno) * (31/711) * (32/'02) * (33/'”3) + (34/1]4)

So = YTY - L (yj_:]_)z/Ko

= @00k )Ty )2

- -1
81 (JO'KO) Z (yi‘ .

Sp = (LK™ 3 (7407 - (1,.0,k) (p )2



S5 = K3' 3 (333 )° - (G .k)" Tz (5, )P
(T, K™ 2 (y 4 0%+ (1.3,.k)"" (v )P
= -1 2
5, = (IO.JO.KO) (y_”)

Thus we have an exponential family with the minimal cano-
nical statistics Sr and minimal canonical parameters n;1 with

the non-linear relation (for n;1)

Mg = Mg T Mo - T3
resiricting the parameters, The family is incomplete,

Now let 4 be unknown in (e, =), Then replacing ¥i ik
by Vi = ¥, obviously Si (i =0,1,2,3) remain the same,

- 2 -
34 = (IO.JO.KO) 1 (y"_ - IO.JO.KO.#) . The minimal canonical

pParameters are n;1, nfl'1, n'2'1 ’ n;1, nf, 4/n, and the din-
imal canonical statistics are S, Sqy So 53, (y )2, Y

* e o9

The ninimal canonical statistic is not a 'proper! minimal suff-

lcient statistic since ¥y 2 is a function of N The

ninimal sufficient statistic can be shown to be conplete in

Spite of the non-linear relation restricting the paramcters,

See ‘Gautschi (1959).



3.3, Uniformly Minimum Variance Unbiased Estimation

Theorem 3,12, Ilet ¥y A= NP(O, G) , GegP

vhere 8 1is a convex cone of p X p p,d., matrices conte-,

ining the identity matrix. DSuppose y45..., ¥y 8TC N indep-

endent observations of y., Ilet

(3.22) L, = {G € 8,¢ AGA e § 6 for all A ¢ §0}

= {G € SO‘ :GiGGj -+ GjGGj. € SO’ i=1"ll, m}

Suppose R4y e.ey Rr is basis for the vector space L,. Then
the class of U M.V,U. estimators,with finite variance, is the

same as ‘the class of estimators, with finite variance, which are

functions of (tr (B:C), ..., tr (R,.C) ).

Proof, Since § 1is a convex cone the interior of
§ in §, is denmse in §., Therefore we assume, without loss
of generality,that § is open in §_. In the minimal exponen-

tial representation (3.17) the minimal canonical statistics
45 «.sp t,. has an induced family of distributions which has an

exponential representation with.respect to the lebesgue measure

ue

po(t) = c(@ &% ¥, 0 ®,= ®, N M
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h(t) is continuous.

Sauppose N is the smallest algebraic set containing. @ ,
and let I be the largest subspace of Rk such that L + N = N,

L 1-

Now, appealing to the theorem of Kagan and Palamodov,

we are done if we show I = L.,

To show L C L,. Suppose Ge L, Take Fe @,
Now, fron the property of L, P + aG ¢ N, But since @4
is open, for small enough & we have, P + oG ¢ @ ;. Therefore,

F+GGG®1H§= @101_‘!""' ®o
Again, for small enough ¢,

(P + a(})"1 = EF(I + U-F"1G)_-_|_1
= (1I-arlg+?rlerle~,.) ]
= F-1 - ﬂF-1 G-F"1 + '5"'2]5“"1 GF-1 G-F_1 - oo

Since F + aG e @-0, (F+GG)'13§. Also F‘1e§. It
follows that

Flor! - o leraF ¢+ ... e

Now, letting ¢© > 0O,



F 'GF e §
Thus, for each Ae g

GeL ==> AGA e §,

Since § 1s a convex cone, the above implies that AGA e g

for all A e §0.

To show I, C L. Iet GeIL,, Take Fe @NMN
Now, we can find @5 such that |of ¢ ep implies

F+ e = Floarler!  frlalor! - L.,

F e @, = Fl e S,

F~l e g, = F! g e [,

But we also have

-1

FloF!, g, GeL == F FIGF e §,.

=0

end so on, To see the above, notice

GELO ===z (Avl-B) G(A + B) ¢ §O

==> AGB * BGA e g,



Thus we have

(P + ﬂG)"1 e 8

Also, for la| < % a

(F + ag)~! ¢ &

where @ is, as before, the set of p.d, matrices in the

Jordan algebra generated by §,. Thus for |[e] < ag

(F+ae0)”! ¢ ® QA §,.
It follows that
F+ac ¢ @ GO M

and, since for fe| < ep, F+eG isin @-p

F+aG e @101_11, |a|(aF

or
F+aeG e N, |la] <€ a

But, since N is an algebraic set, the above implies that

for each 1real a

T + af e E

Thus we have shown that for each real =«



®, M ¢+ a¢ C X

—

@1 (™) M C N - aG
and since N - aG Is also an algebraic set

N C N - aG

or
N « a¢g C N
Thus G e I or L, C 1. //
Remark 3,13. If I¢ g, then from Remark 3,10, it 1is

easily seen that the change in the definition of L, should
be the following,

e

av-lavr-a e S

2, for all A ¢ §0}

= {eeg s oviovile, + 67 eviey ¢ § ]

where V is any fixed matrix in §. //

The parametric functions of most interest are the linear

functions on §, . Notice the linear functions on R, are

of the form *%r(AG), A e §  or in terms of the coordinates
Ngs eees Mo i PsNy where p; = tr AGi. The simplest esti-
mators for the linear parametric functions are the linear func-

tions of the sufficient statistic C which are of the form



05w

tr RC, Since they are the quadratic functions of the observ-

ations they are called quadratic estimators,

Corollary 3,14, tr RC is a2 UM,V, U, estimator for
tr AG, A e 8, 1ff R=A and BAB e §, for all Be §.
tr AG, A e is UM,V.U, estimable by a quadratic estima-

tor iff BAB e S, for all B e §,,

K2

Proof, t*r RC is a UM, V.U, estimator implies,
from Theorem 3,73 R e 8§, and BRBe §, far all B e § ..
Since Re §, and tr RG = tr AG for all G e § , we have
R=4, /

It 1s interesting to note that a quadratic estimator is
UM, V.U, iff it is UM,V.U, within the class of quadratic

estimators,

Theorem 3,185, tr RC is UM V. U, for its expectation

within the class of quadratic estimators iff BRB e g, for

all B e S,.

Proof, tr FC is an unbiased estimator of zero iff

trP¢ = 0 for all Ge §, , i.e., Fe . Now trRC is

UM, V,U, within the class of quadratic estimators iff
cov(tr RC, tr FC) = 0 for all Fe § . But Cov(tr RC, tr FC)



= 2tr PGRG when the covariance matrix of the observation
vector i1s agsumed to be G, Thus tr RG is UM, V.U, within
the class of guadratic estimators iff tr FGRG = 0 for all

@eg§, ondforall Pef , Orforall Geg, GRGe §.,

The above result is obtained by C.R. Rao (1971) by

directly minimizing the variance at a fixed G e §, and then

noting the condition for the estimator to be independent of G,



=l (=

3.4, Maxinum Iikelihood Estination

Iet. us assune that 8§ is the convex cone of 2ll p.d,

natrices in 8 or 8= @®@ M §

2q > 2 e Then from the shape of

the likelihood function it is clear that it attains a maxinun
in 8. A necessary condition for G to be a mexinmun is
that it satisfies the likelihood equation derived beiow,

The logarithnm of the likelihood function is proportional
to

(3.23) (2/N) log L(G) ==p log 2T + logIG"1| - tr ¢'0

where G varies in the set @ ™ §,. Consider the function

as a function of G L (or as a function of 01,.. o9 Ok) where

G""*‘I e ® M M, The necessary condition for a point 3 to be

a maxinum of the above function is that
n

{3.24) 6§ [ [(log L(G) + = B,U. 50, = 0, = 1yecey K
( [(log L( o 1031, 789; J = Tyeeas

v, (@ = 0, i=n+, ..., n

where T, is the function =n, = U;(Q) defined in (3.12) and
Preqreses 6 n &re the lagrgngien multipliers for the conditions

nﬂ'l-"l - 0’ oes b ¢ T]n = 0,



We nake use of the following two well-known formulae,

(3.25) 5 log ]G"1|/GOj = tr a6,
(3,26) 8 G/ﬁOj = = 664G,
Now,

2 = . = . .
(3.27) 5 G/GOJ 5( i nlsi)/sqj :1:- [sul(o)/aoajei.
Therefore,

(3.28) 5 Ui(O)/'SOj = - tr 66,06,
Iet Aj5 De the matrix whose (r, k)th element is given

by tr [(6,6:6 + 66,6067, Then (3.28) can explicitly

be writien as a quadratic form
_ S T

Now we can write down the likelihood equation (3,24)
explicitly as

y 4
T -
(3.30) :zl: ny tr 6;C, - tr G40 I;ﬂ Bsn Ain=0, J=1,..., n

Ny = o, 1 =m+1,,.., N,

Or in terms of an crthonormal basis Gi



- tr jS - I BinTAijn = Or j = E.""l, ceey I,

We can attempt a solution of (3.31) by iteration by
substitution, Get initial values of Ny (which nay be taken
as tr GjC), J=1,.0., B, Then from the second set of equa-
tions in (3,31) compute B __,,..., P,. Now we can obtain new

n
values of ny from the first set of equations in (3,31).

In an actual computation of the likelihood equation the
following points may be noted, (1) It is not necessary to
compute the matrices Ai,j' At each stage we can compute
tr GGiGG:i direotly., (2) It is not necessary to obtain an
orthonormal basis, (3.30) can be used, (3) If the Jordan
algebra A is not easily recognized, it is not necessary to

find it, We can consider the Jordan algebra of all p X p

symmetric matrices with its natural basis Gi 3 where Gi;j

has its (i,j)th element and (j,i)th element 1 and all

Other elements gzero, In this case S, is the kernel (or

null space) of certain linear equations &S fj(_g') N33 = O in
i,

the algebra of p X p symmetric matrices, So the constrai-

nts Tl = O ese 9 M, =0 wlll be replaced by = {(r)

Ny =
1,3 1 4

0,



Let
n

(3.32) F = - & B, G,.
mel * 3+

Then the equation (3.31) can be put in the matrix form as

(3.33) G + GFG = clg

where Ge S, Fe Q: and CIA denotes the projection of
C into 4. (3.33) can be written as an orthogonal sum

(3.34) I +« FG = @ Cig o

From (3,34) we immediately get

(3.35) tr &1¢ = p

for any solution G of (3.34), a result obtained by
Anderson (1969).

Also, it is clear that the likelihood ratio criterion

for the hypothesis that G ¢ §, versus the unrestricted alte-

rnative is the % N th power of

(3.36) Icl/|8 = |I+GF|
whaere E is the maximum likelihood estimator,

It is interesting to compare our equation (3,31) with
the likelihood equation obtained by Anderson, Anderson's



Ny o P

equation is

- - -1
(3.3  tr[Eng6)7 e, ] = tr [(enge) ™ cn 67 6],

or in matrix form as
(3.38) g = (e ). .
18,

Now putting

P, = clecegt - ¢

we have

G + GF1G = C

for F.l in the orthogonal complement of §0 with respect to

all symmetric p X p matrices whereas we have from our

equation

for F in the orthogonal complement of §  with respect to

&. Thus our equation is of smaller dimension than Anderson's,

Finally the question of uniqueness of the solution of the
likelihood equation leads to the following interesting question,

Let S

8, be a subspace of a Jordan algebra of matrices |,



-] 2

(p.d.) matrices C e A as



CHAPTER 4,

INADMISSIBILITY OF CERTAIN ESTIMATORS WHICH ARE
FUNCTIONS OF THE MINIMAL SUFFICIENT STATISTICS

In this chapter we extend and strengthen a result of
A M, Kagan on the inadmissibility (in the class of unbiased
estimators) of certain estimators which are functions of the
minimal sufficient statistic, This result has an important
application to a special type of location parameter family,

4.1, Introduction

Consider the fanily of exponential densities on Rk, with

respect to the Lebesgue measure uk on Rk

(4.1)  py(t) = (@ P n), o0e @,

We assune

(1) h(%) is a continuous function of ¢,
(2) The set of canonical parameters @@ o 1s a subset

of the algebraic set M in Ck, defined by the polynomial

equations



P1 (Z) = 22 - 5? = 0
(4.2) : .
_ Tk _
Pk_.l(z)- Z, - 2z = 0

ﬁnder the assumption that @ o 1s a bounded set,
AM, Kagan (1968)-p, 86-89 shows that any nonconstant polyn-
onial estimator Q(t,,..., %), which is independent of t.,
1s inadmissible in the class of unbiased estimators of EQ.

We extend the result of Kagan from polynomial estimators
to continuously differentiable estimators, But what is more
important is that we discard the ummatural assumption of the
boundedness of the parameter space @0 .

An exponential family with the canonical parameters sati-
sfying the equations (4,2) appears, for example, when a sample
X{s Xoseees Xy is taken from an m-dinensional population whose
probability density with respect to the Lebesgue measure in R
is of the form

c K. (x)+r_ (x)
- (x)+n rz(x)+...+n k(x r (x

(4.3) £(x, 0 = c(n) e sy MNER,

k
In the canonical parametrization, we have 0y = M., & = 1.
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Our main theorem has a very interesting consequence to
a gpecial case of the family (4.3), Ilet

2k
(4,4) f(x, ) = ¢ e"(x"")

vhere X ¢ R, neR is a location parameter, and, k 2 2
is an integer, ©For a sample of size N, where N 1is at least
2k, the theoren implies that none of the sample moments 1s an
adnissible estimator for the corresponding population moment,
except one (which is in fact admissible),

4,2, An Elenentary Temma on Adnissibility

Let (%, 8, & ) be a statistical model and

P={PO: O« ®o}

Definition 4.1. We say G 1is an inadmissible unbia-
sed estimator of g(0) (in the clags of unbiased estinators Ug)
i G¢U,  and there is some G; ¢ U, such that EQG$ L Ean

for 211 @ in @ ,. with strict inequality for some 0, e ® o
G is adnissible if it is not inadmissible,

Lemna 4,2, G e Ug is inadmissible in the class of

unbiased estinmators of g(Q) iff there exists an unbiased esti-

nator of wero F and a constant r > 0 such that



- Qe

EGF 2 T E0F2 for all 0 1n @0

(4.5) )
EOOGF > EooF for some O, in ® ,.

Proof, (1) ©Suppose G ¢ I:Ig is inadmissible, Then we have

sorne

where F ¢ Uo and for all Q@ ixn @o

. 2 2
Eq(G -~ F)” & EgG

i.e.,

2
-2 E, GF + EygF ¢ 0

oxr-

1 2

For sone O, ¢ @ all the above inequalities must be

gtrict,

0

(2) Suppose that for some x > O, EQGF 2T }E}QF‘2
for all Q¢ @, with strict inequality at G, ¢ ® ,. Notice
that this inplies Eon > 0O,

For > 0, put £ = F/a, Then we have
EGf > ar Ef°
0 2 of

Now shoosing o > 1/2r, Egf > =% Egf°, and hence
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2 2
EQ(G - P) { EgC

vith strict inequality, of course, at 0=9_.. /

4.3, The Main Theoren

Theoren 4,2, In the exponential family (4.1)
satisfying the assumptions (1) and (2), a continuously diff-

erentiable estimator G(tyye.., %), where G e U, and G

is a function of only the statistics Toseees tk, is inadniss-
ible in the class of unbiased estimators of g(P) wunless G

is a constant,

Proof, Suppose G(t5y... 'I:k) € IIg is admissible in

the class of unbiased estimators of g(Q). ILet S be the
open set

s = {'beRk: h(t) > o}.

Without loss of generality, we assume G(t) = 0 for + £ S,
26 show

sa(t)/6t, = O,

If possible, let (8G/6t,)(t*) > O for some t* e 5, We
can find an open neighbourhood U of +t* contained in S



such that for all + ¢ U, SG(‘b)/6t2 > 0.

Iet V be an open sphere of radius ¢ with centre at t¥
such that the closure of VvV, VCU. Tet forall te ¥V,

(4.6) (6G/5t,)(t) 2 y > 0O
h(t) > ¢ > O

Now, for the polynomial P, as in (4.2) and for a

fixed Qe @, we have

ByD + 96 = [(8/6t, + 0,) - (8/6%; + 0)%] .
Since (8/6t4)G¢ = O and P, (6;, ) = 0, we have
(4.7 P, (D +0) ¢ = 56/6%,.

Now, we shall find a function F e U, and a constant

>0 such that BGF > r EF° for all & in @ ., which
will be a contradiction to the assunmption that G is edmissible

For f ¢ C: (Rk), support of £ (C V, we have

P(t) = P,(-D) £(t)/h(%t)

isin U and



(4.8) EGF = fo(t) [ (-D) 2(©)] %™ at

[, @ + D6()] 2(1) % at
[from (0.5)]

= f(aa/atz)f(t) e Ot a4 [from (4.7)]

since  EgF° = [ [, (D) 2(0)Fmw)} @ at, 1t is enough
to choose £(t) v and > 0 such that

(4,9) (66/8t5) (1) £() h(t) > [P (D) 2 for te v,
or because of (4,6), for some constant ry > 0

(4,10) 2(8) > =z, [P (-D) £2()F  te.

Now ashoose

O/l 1D
£(t) =

0 , tg V.

For any polynomial P(Q), clearly, P(~D) f£(t) is of
the form f£(t) Q(t) where Q(t) is a ratiomal function, Also,
£(t) Qg(t) —> 0 as |jt-t*]| —> a, i.e., we can choose
5 > 0 such that

(4,11) 1 > x, £(t) Q°(4)



so that ry can be chosen to satisfy (4.10)._

If GG/Gtz C O for some t* € S, take

£(t) = --<=:""c"2/(":‘2 = [Jt=t* |9

in the above argunent,
Thus , it follows that &G/6t, = O,
As before, we can show that
P;(D + Q)G = 6G6/6%; , 1=2,..., k.
The same kind of argument as before will show
66/6t; = O, i=2,,.., k,
This shows G is a constant, The theorem is proved, [/

Corollary 4.3, For the location paraneter exponential
family (4.4), for a sample of size N > 2k +the sample moments
By Doy eeey Moy o5y Moy Mopyqr ees are inadmissible esti-
mators of the corresponding moments Hgy Hoyeeay For o ”2k’
Hor+qs ese Iin the class of unbiased estimators of these
population noments,



Proof, Por a sample of size N > 2k, the canonical

statistics of the fanily

2k _ 2k-2 =
-|;1=z:xi . tz-i‘-xi ?y eoco 9 t2k-1"zxi

have a joint distribution of the type (4.1), satisfying the
assunptions, So from our theorem, the sanple noments,

n, = B x$, q=1,..., k-2 are inadmissible, The sam-
ple moments Doty Bojeqr eee  2TE inadmissible because they

are not functions of the sufficient statistics 1t,,. "’t21:-1'
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CHAPTER 5,

UNBIASED ESTIMATION IN A NORMAL DISTRIBUTION
WITH AN UNKNOWN INTEGER MEAN AND A KNOWN VARIANCE

In Chapter 2 we have secen that in an aigebriac exponen-
tial fanily, doninated by the lebesgue neasure, the UM, V.U,
estinators form a o-algebra in the sense that there is a sub=-
c-a2lgebra of the Borel o-algebra of the sanple space with the
propexrty that the estimators measurable with respect to this
c-algebra are exactly the UM, V.U, estimators, In an analytic
exponential fanily, dominated by the lebesgue measure, the
UMV, U, estimators may not form a o¢-algebra, However, one
nay expect, that the UM, V.U, estinators will be a nmathena-
tically interesting class of functions,

In this chapter we characterige the UM, V.U, estina-
tors in the case of a normal distribution N(#, 1) on R with
an unknown Iinteger mean # and variance 1, As a corxollary,
we show that the paranetric function # has no UM, V.U,
estinator,

Notation, By a 2n i-periodic function we shall nean
8 periodic entire Tfunction of period 2xl, The set of ints-

g€ers will be denoted by 2.
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Theoren 5,1, For the family WN(u, 1), # e 7, the

class of UM, V,U, estinators coincide with the class of 2n i-

periodic functions G(x), E,G° < « for 4 e 2, of the form

co 2
6(x) = = Cn el /2 e’  where the function of the complex

00

variable 4 defined by E() = = 9, e is uniformly conve-

a0

ergent on conpacts, We have E#G = B(u),

Proof, Tet G(x) be a fixed UM,V.U, estimator, Let
B(#) = E,G, Then

2 2
(5.1} Ew) = 1/ 2=n) e /2 fo(x) e=% /2 e“* ax

E(¥) is en entire function, We shall show that it isa 2T7ji-

periodic function,

We know
2 2
(5.2) [ =X /2 eﬂx - r—z.n e”' /2.-
Therefore,
2 2
(5.3) j e2Tix X /2 X o Zm g(#2T1)7/2
Thus, we have for M4 e 2
2
(5.4) E“E e " 92“1::_1.] = 2 ¥ L1 = 0
This shows
2
(5.5) (e= " 2TX 1) e U,e



Therefore, since G is UM, V,U,, we have for M4 e 3
2 . .

(5.6) B, o). (*® 271X _ 1] = o

It follows that

(5.7 EG= et g

o peony & SEW ¢ 2%ni), #eiZ,

Now, to show that E(#) = E(4 + 2n i) for all complex &,
it is enough to show that for each positive integer n

(5.8) a® BE(u)y au® = a B+ 2%m1)/au", 6e g

Iet us suppose that we have shown (5.8) for positive
integers less than or equal %o n-1, From (0,5) we have

8 _ 2,5
(5.9) i A W Co + 2712 " /2:] o2 " 14
- Now,

2
(5.10) [[e2T

2 2 IX | (xs2ni)P] e"xa/ 2 &% ax

=8 { e2 7 e2 tix e-x2/2 HX ax ]
~(D + 2n1)"[ 13“12/2 e"* dax ]

. B[ (TRF /2 T

2
-+ 2x1)® (Tx e /2 )
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2
=[( +2n3)2 (J2m e /2)] 32 nip
2
-+ 21 (TR /P

2
= (2T DJZR (D + 2 n1)(” /2).

Thus we have,

2
(5.11) [e2 R 92 mix _ (x+27m1)] ¢ U,

Therefore, again we have for #4 ¢ 3,

2 2
(5.12) § G(x%) [92 " e e2 Tix _ (x + 27n1)0 ] e~ /e e,u,x dx

= 0

That is,

2 2
27X X/Z x4y

(5.13) " [ fo(x) 2 ™
= (D + 21t'i)nfG(x)e“x2/2 eHX dx, M e Z
(5.14)  d°[ J.ﬁe“zfz * 2T gy e 2my) )
= (D + 2n 1) [ T e“‘e/z B , wues3,
But we have

"
(5.15) Rl H /22T pey s ang) ]

2
= R (g)[DrE(ﬂ + 2mg) ][ pPT (¥ /2 * 2T 1Ky
T
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2
=3 (D IDB( » 27 1) J{ (D + 2n )T /2] 27 14
N iy

2
(5.16) (D + 21ti)n[ e /2 E() ]

2
= I (Irl)[DrE(H) I{@+2n)™T FH /2]

Now from the induction hypothesis that (5.8) 1is true
for positive integers less than n, it follows that (5.8) is

true for n also,

Thus we have shown that E(#) is a 2mi-periodic func-
tion,

Since E(#) 1is an entire periodic function of period
2nti, it has the {(complex) Fourier expansion

(5.17) E(W) = ¢ e, ™,

where the series converges uniformly on conpact sets,

2 2
(5.18) I 6 eX*/21e¥% gx = 7 e /2 5(ap).
Since E(i#) 1is bounded,

> 2
(5.19) 6(x) e* /2 = 1JTx Je* /2 gran) 14X gu

oo 2
= 1/JZr, & fe* /2 o lTH o-lix dx,

-0 n

It follows that



o 2
(5;20) G(x) o= ) e-n /2 enx

-0 n

and G(x) satisfies the conditions stated in the theoren,

On. the other hand if G(x) satisfies the conditions
stated in the theoren, it is clearly UM.V,U. /4

Corollary 5.2,  In the fanily N(4, 1), K e Z, the

paranetric function g(#) = 4 has no UM, V.U, estinator,

Pxoof, If possible, let G(x) be a UM,V,U,
estinmator for 4,

It is easy to see that in N(4, 1), for any estimator R(x),

(5,21) E, R(x+1) = E

ueq R(XD).

Thus we have

G1(x) = G{x + 1) = 1

Ga(x) = G(x -~ 1) + 1

both are unbiased for # and therefore for KL e Z

2 2 2
(5.22) ByGy = E 06 -2¢-1 < E, 6
2 2 2
(5.23) EG, = B, ;6 +2#-1 ¢ B, G

* The same result has also been obtained recently by
Professor Morinot4o and a student of his, ‘v \<¢§_ima.,.



But (5.23) can also be written as

2 2
(5.24) E, G + 24 + 1 £ E, 4 C

Now, fron (5,22), for 4 e %

G2

=
G2
"

=

7

Since UM, V.U, estinator 1ls essentially unique we have
G, = & or

(5.25) Gx+1) = Gx) + 1,
However, since G(z) is a periodic entire function, let
|G(z) | < A
for 0 rez £ 1, 0K ing £ 2nl, Thenfor g ¢ C
(5,26) |G(z) | < A+ |zl.

But (5.,26) will force G(z) %o be a polynonial of

degree at most one and we have & contradiction, /4
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CHAPTER 6.

ESTIMATION IN CENSORED GAMMA MODFELS

Consider a censored sample from a gamma distribution
Py A with a known form parameter p > 0 and an unknown
scale parameter A > 0, In this chapter we treat the problem
of unbiased estimation in this family, This generalizes scme

results of E_N, Torgersen,

6,1, Introduction

Suppose our experiment is to observe the time of death
where the observation has a gamma distribution |fp,?d whose

density is

(6.1) G/E) 2 Te™, x>0

We assume p > O is kmown and A > O is unknown, Suppose
our observation is limited to a fixed time interval (O, t).
If death does not occur before time t then the observation
is taken as t, In this case the observation is said to be
censored at time 1, Without loss of generality <+ can be
taken as 1, Such experiments occur in the study of life



testing models, A minimal sufficient statistic for this model
is the total number of deaths recorded together with the sum of
lifelengths of individuals dying before time +t,

For the case p = 1, and the number of observations
¥ > 2 Torgersen (1973) showed that the minimal sufficient
statistic is incomplete, Generalizing this result Unni(1976)
proved that this holds for any integer p > 1, Unni also showed
that when p 1is irrational the minimal sufficient statistic is
complete, Finally Torgersen (1977) completed this result by
showing when p is rational r/s where r and 8 are rela-
tively prime the minimal sufficient statistic is complete iff
the number of observations N £ s, See also Torgersen and Unni

(1978),

For the case of integer p, Unni has also characterized
the class of U.M.V.U, estimators generalizing similar results

of Torgersen,

In this chapter we present the results of Unni (1976),

Notation. In this chapter # and J will denote
the Iebesgue measure on R and the counting measure on the set

of positive integers respectively. §, will denote the one-



point mass at .a or the distribution defined by 6(x-a) where
5(x) is the Dirac's 6-function, fxg denotes the convolution
of the functions £ and g and $£** denotes the k-fold
convolution of £ with itself,

6.2, The Exponential Representation

For a censored observation x, the distribution function

F(x) 4is given by

x
{(?\p/ ﬁ.))of w1 oA gy 0<x<1

(6,2) P(x) =
1 . x =1
1et
1 < 1
(6.3) a(x) = { S
0, x=1

Then the censored observation x has a density with respect

to 4+ 5, given by

(6,4) p () = (/[P x(P=1a(x) =rx 4(x) [y )y 71-2(x)
where

(6,5) AN = f w1 g=A gy

1
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Note that A(A) is the Iaplace transform of v4(x)-vy(x)
vhere
{ el ’ x> 0

(6,6) 71 (x) =
- O . x<0

.

_ 21, b<e¢x<¢t
(6.7) vy(x) = { |

0 ’ otherwise

Clearly A(z) is.an analytic function for re g > &,

A censored sample of size N is a repeated sample
Xy 9 eee 9 Xy from F, The sample has joint density with res-
pect to the measure (4 ¢ 61 )H on RN given by

(6.8) Ph(xv""xn) = (\F/ ﬁ;)N xgp—ﬂd(x-l) .. xl(lp"ﬂd(xN)
X 'e-lT(x‘l’ il "IN) EA(A)]N—D(x‘l’ oo 'IN)
where
N
(6,9) D(Xiseesy Xy) = 1?-=1~ a(x;)
N
T(I1,..., IN) = 121 Ii d(xi)
Since
(6,103 EA(A)JN-D - e(N-D) log A (h)’

the formula (6.8) gives a canonical exponential representation



of the joint distributiormof the censored sample with respect
to the measure (4 + 8,)" on R, Since 1, & =-A and
O, = - log A(A) are linearly independent and 1, D, T are
linearly independent the representation (6.8) is minimal
canonical, It is easily seen that the natural parameter space
of the fomily is ® = {(&,, 0,) 3 0, <0, & s R}

and the minimel ceanonical parameters are @ in @ which
satisfy the analytic equation

(6,11) e - A(-z1) = 0

defined on the set re 2z, < O, z, ¢ C 80 that the family
(6,8) is an analytic exponential family,

6.2 The induced family of distributions of
the minimal canonical statistic

For any statistic R(xyy «.. xN), let PA(R) denote
the induced family of probability distributions of the statistic
R,

Since the probability of the event d(x1) =1 is
[1 - 0P/ [@)AM], D is binomially distributed with the

success parameter 1 - (A’/[p ) AQD), i.e.,
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(6.9 RO =a) = (@ [1-07 DawT B 7 aI-

Now, for D =1,.,,, N, P(2<t, D=4) is given by
2 PK(xi.‘* cse T xid { t’ 111 4 1’ e e ® xid < 1’

all other x; = 1)

where the summation is over all combinations of 4@ elements

1is4009 id from 1, ..., N,
It follows that
P,(T <t D=a) = QP (xy +ouutxy <3, x4 < 1,
ees X3 & 1)....,]?;%(3‘”.I = Tyeeey Xy = 1)
= P(xg + ..otxy < B X<t L00,x5 <1,

Q) 2, (x; < DR, (x5, = T2

or

(6,10) PA(T X< t, P=4) = Pl(x'!"' .o *xg < E] x4 <1,
eees Ty < DR [1-0F7 [ a(0)]1

CGP7 a4

Now, the conditional probability distribution of



X; *ees * X3 glven x; <1, ., x; <1 is the d-fold
convolution of the conditional probability distribution of X4

given x; <1, P, (x,] x; < 1) has the density

(6.11) AP/ B )C-aAP/ )7 o~ M%1

?-l
. LY,
with respect to the wniform measure;on [:0, 1]. Therefore,

Pl(x.]* ves * X3] X, < 1,,.., X3 < 1) has the density
6.12) OB/ B4R a0/ BYR o neca, )

with respect to the ILebesgue measure # on R, where h'(4,t)
is :?12.% fensi‘ty of the d-fold convolution of the uniferm meas-
ure on [0, 1] with respect to 4, For an explicit express-
ion of ht*(d, t), se Feller (1966), We shall only need the

fact that h'(d, t) is supported by the closed interval EO, d].

The conltitional distribution of T given D = 0O 1is

concentrated at the point O,

Now, it is clear, the induced family of distributions of
(D, T) has a density with respect to 6(0,0)* J X 4  where
5(0, 0) is the one-point mass at (0, 0), This density can
be formally written with respect to ) X 4 as

(6.13) p(a, t) = (°/[p N nea, +) Ca 9 ¢
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vhere h(0, t) 4is the Dirac's &-function and for d = 1,,.,,N

(6.14) h@d, ¥) = () h'(d,t)

which is supported by [0, 4]
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6.4 Unbiased Estimators of Zero

Iet g(d,t) be a statistic and for all A > 0 1let
EKIE(ﬁ,'t)l { o, Then we have

_ N A .
6.1 &, [5@, 0] = 0%/ B = A" J g(d, Ve~ Miads
Iet us put

(6,16) Gy(¥) = g(a,t) h(a,t).

Notice Ehlg(d,t)l {eo iff for each 4 Gy(t) is integrable

FPron (6,5), (6.6), (6.7). and from the familiar prop-
erties of the laplace transfornm
-\t
(6.17  E, [g(a,®] = &/ )" f : (v1.v2)*“-d* 6, (M at
Expanding (v,=v,) "0
is easily seen to be applicable looking at the laplace trans-

by the binomial theorem (which

form) and collecting the same convolution powers of w4 in the
sm in (6,17) we obtain

N %
(6.19) E, [a(a, ] = /[ 0 o, 0] M

where

d

(6,19) Ry(®) = T (-1 FHlt-t e,

Notice R,(t) is supported by [0, dJ.



Since we know f V4 e~At at = ﬁ/kp, we have

where
R,() = ] Ry() &M at
Thus we obtain
(6.21) = EE& = g(0,0) + dg_ \Pd 'ﬁd(h) / (I'i:)d.

Iet g(d,t) be an unbiased estimator of zero,

As A —> O, > Dpd / Clp )d] 'ftd(x) -—> 0,
Therefore, from (6,21),
(6.22) g(0, 0) = O,
Thus it is clear that for the case N =1 (D, T) is complete.

Since Ry(t), d =1, ..., N are integrable functions
supported by EO, dj . ﬁd(h) are entire functions,

Now suppose p -1s an integer, Then it is well-known
A~
that hpd Rd(?‘) / Clp )d‘ is the Iaplace transform of the

compactly supported distribution ( |p )~a (dpd/ atP%) ERd('b):l .



To find the most general unbiascd estimators of zero,
take integrable functions Rd(t) supported by [0, d] satis-
fying the differential equation (in the sense of distributions)

(6.23) s (o )~%(aPd/at?) (R, (] = ©

That there exist nontrivial R,(t) , & = 1,,..,N N2 2,

satisfying (6,23) is obvious and in any case exanples are
given in the proof of Theorem 6,2,

The question remains about the case of a noninteger p.
A complete answer to the question of completeness of (D,T) is

given by the following theoren,

Theoren 6.1, let X4y ..oy Xy De 2 repeated san-
ple from a distribution function F, where
X
[ 2/ ) P! g~ru du, 0<x 41
P.(x) = { 0
1 x 2 1

with an unknown parameter A > O and a known parameter p > O,
Then the family of joint distributions of xq,..., Xy 2admits
a complete and sufficient statistic iff it admits a boundedly
complete and sufficient statistic and this is the case iff
either
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(1) p is irrational
or

(2) p is rational = 1r/s where the integers

r and 8 are relatively prime and the number of observations

N < s,

For a proof of the above theoren, see Torgersen and
Unni (1978),

Notice the <fragility of the property of complete-
ness, Although the distributions are strongly continuous in
p, the sitvation when p is rational is entirely different

from the situation when p is irrational,

6,5, Unbiased Estination

Next theorem characterizes the class of U M,V,U.
estimators in the censored gamma families when p 1is an integer.
A similay theorem is true 2lso in the incomplete rational case,

This is proved in Torgersen and Unni.

Theorenm 6,2, ILet Xiseoey Xy » N>1 bea
repeated sample from a censored ganma family with an integex

P. Then an estimator @ with everywhere finite variance
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is a UM, V.U, estimator for its expectation iff ¢ 1is a
function of the minimal sufficient statistic (D,T) of the

forn

p (0, ) = ¢

(6.24) (g, t) = ¢, d=1, eoo 5 N=1
P (N, t) = o, 1<t<N

where © and o, are arbitrary constants and ¢(N, ¥) ,
0t <1, is an arbitrary function satisfying the square
integrability condition

Y
(6.25) 6f ro, 9 tP1 e M at ¢ =
Proof, (1) Sufficiency. Note that for a statistic

¢ of the given form, the existence of variance for each A > O

is equivalent to (6,25) from the fact that O¢(N, t) dis
defined on Xs * oo * Xy < 1 and fron the additivity pro-

perty of the gamma distributions,

If g(d, t) is an unbiased estimator of zero then

from (6,17)

N
d=0
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) ¥N-d

Now, (V1 - Vo " Gd(t) has support in [N - 4, ),

Therefore, we have
(6,27) g(N, t) = 0, O+t <1

Also, fronm
g(0, 0) = O,

Now, let ¢(d, t) be a function of the form (6.24),.

For any unbiased estimator of zero g(4,t), Ekg2 < & for

A > 0,

E,fg = cE,g = 0,

Thus, ¢ is U.M.V.U.

(2) DNecessity. From (6,17), g(d4, t) is an

unbiased estimator of zero iff g(0, 0) = O and
N
Y

= (v, - vz)*N"d % Gg() = 0

Suppose g(d, t) is an unbiased estimator of gzero

"

(U.E,Z.) such that g(d, t) O for 4 #1,2, Then we

have from (6,27)

*¥N- -2
(V.'—V'g) N-1 % G’1 * (V1"V2)*N % G‘2 = 0 and

looking at the Iaplace transform we see
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t-1
- Of (t~u) P G4 (u) du t <2
N 1
- 61- (t-u)P-T G4(u) du t > 2
since G, is supported by [0, 1] . Now, the fact that
G, 1is supported by (0, 2] 4inmplies
{6,.26) jj (t-w)P-? G4(u) du = 0 for all t 2 2
0
or
1
(6,27) { uk G.l(u) du = 0 for k=0 ... y P-1,
Conversely, for G, satisfying (6.27) 3£ we define
G,(t) by (6,25) and g(d, t) = O for d# 1, 2 then

g(@g, t) is a U,BE.Z.

Now, let us suppose that ¢(d, t) is a UM.V,U,
estimator, Again, ¢(d4, t) g(d, t) is a UE.Z, and it
vanishes for a #1, 2, where g(d, t) is any U,E.Z, van-
ishing for 4 # 1,2,

This Inmplies
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1

(6,28) ,({ uk G.l(u) P(1, w) du = 0 for k = 0,,,.,P~1

for any G, satisfying (6.27).

Teke F e CC (0, 1) and put &, = (@°/at®) F(t) .

1

Then we have
1 | 1
(6.29) g o ((aP/au®) P () Jou = (')[ |'_'(-1)pdpuk/dup:]F(u) du

= 0 for k=0, ..., P=1,

Therefore, from (6,28),

1

(6,30) ‘({ ukq)(1, u) EdPF(u)/dtu du

0’ .:-,p"'1-

0, k

‘But (6,30) implies, in the sense of distributions,
(6,31) (@®/aw®) [up¢1, W] =0, k=0,..., p-1

The differential equation (6.,31) shows that uk4)(1, u)
is a polynonmial of degree less than p in the variable u for

k=0, ¢, D=1, It follows that §(1, w) is a constant,say c,

Again, from (6,25), since g(d, t) ¢4, t) is a
U.E.Z.,, for a TU.E.Z. g(d, t) of the above type
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41
(6.32) 6,(t) P2, ¥) = - of (1-w)P e, (W 9(1,u) au
g I

y
= .0 6/ (t-u)P"1 G-1 (w) du

= ~c [~G,(t) .

For any t e (1, 2) we can take G, and G, 80
that G, # 0, Therefore,

0(2, t) = e, te (1, 2),

Now use the same argument replacing G.l by G, and

G, by G;. Then we obtain that ¢(2, t) 1is a constant, This
constant must be the same as (1, t) because for te (1, 2),

oC1, ) = 9(2, t).

Proceeding in the same mamner, the necessity part of
the theorem is proved. V/4

The next theorem characterizes the UM, V.U, estinable

functions,

Theoren 6,3, In the censored gamna family with an
Integer P o.paranetric function g(\) 3s UM,V.,U, estinable
iff it has the form
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(6,33) g(a) = a+d(P /) a0 ¥

where

1
(6.34) of L)1 oM gt ¢

Proof, Suppose g(A) is a UM, V.U, estinadble
function and let ¢(4, t) be a UM, V.U, estinator for g(A).

Now ¢ is necessarily of the form (6.22), So,

(6.35)  E, [a,®] = o ¥/ )N Cac] ¥
1
+e¢ 1-0F/ D) EA(A):IN-(AP/ o N { $1p-14-A%

1
+ (\P/ I-p)N 6[ O(H, $)tVP-1 =M g3

Put a=¢, b=c,~c and £(t) = (¥, t)-c for 0<t <1,
to obtain the form (6,33)

The sufficiency part 1s, now, clearx,
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