Neural Networks 13 (2000) 377-384

Neural
Networks

Contributed article

A connectionist model for convex-hull of a planar set

A. Datta, S. Pal, N.R. Pal*

Computer and Statistical Service Centre, Electronics and Communication Sciences Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta 700 035, India

Received 18 March 1999; accepted 20 January 2000

Abstract

A neural network model is proposed for computation of the convex-hull of a finite planar set. The model is self-organizing in that it adapts
itself to the hull-vertices of the convex-hull in an orderly fashion without any supervision. The proposed network consists of three layers of
processors. The bottom layer computes the activation functions, the outputs of which are passed onto the middle layer. The middle layer is
used for winner selection. These information are passed onto the topmost layer as well as fed back to the bottom layer. The network in the
topmost layer self-organizes by labeling the hull-processors in an orderly fashion so that the final convex-hull is obtained from the topmost
layer. Time complexities of the proposed model are analyzed and are compared with existing models of similar nature.

Keywords: Neural networks; Self-organization; Connectionist model; Planar set; Convex-hull

1. Introduction

In the present paper we deal with a well-known problem,
namely, computation of convex-hull which is a central
problem to the theory and applications of computational
geometry in various fields. In computational geometry, the
problem to compute the convex-hull of a finite number of
points in two-dimension (2D) has been a topic of research
for a long time. The convex-hull of a given set of points is
defined as the smallest convex polygon containing all the
points in the set. The concept of convex-hull of a planar set
can be easily understood with the help of rubber band:
stretch a rubber band to surround the set of points and
then release it to shrink. On equilibrium, the rubber band
defines the convex-hull.

The computation of the convex-hull of a finite set of
points, particularly in the plane, has been studied exten-
sively and has wide applications in pattern recognition,
image processing, cluster analysis, statistics, robust estima-
tion, operations research, computer graphics, robotics and
several other fields (Agarwal, 1994; Akl & Lyons, 1993;
Capoyleas, Rote & Woeginger, 1991; Devijver & Kittler,
1982; Duda & Hart, 1973; Earnshaw, 1988; Edelsbrunner,
Kirkpatrick & Seidel, 1983; Hwang & Ahuja, 1993; Prepar-
ata & Shamos, 1985; Schwartz & Yap, 1987; Toussaint,

1985). Several conventional algorithms are available for
this problem. What we aim at here is to formulate the
convex-hull problem as an artificial neural network
problem. We discuss how an interconnected set of neurons
can iteratively self-organize itself on the basis of the input
signals (points) to finally arrive at the convex-hull of the
input points.

Since the 1970s, the problem of convex-hull computation
has been an interesting area of research. As a result, a
number of algorithms are available in the literature to
solve this problem. These algorithms can broadly be classi-
fied into two categories: computing exact convex-hull (Akl
& Toussaint, 1978; Bentley, Clarkson & Levine, 1993;
Chank & Kapur, 1970; Eddy, 1977; Graham, 1972; Jarvis,
1973; Preparata & Hong, 1977; Wennmyr, 1989); and
computing approximate convex-hull (Bently, Faust &
Preparata, 1982; Bern, Karloff & Schieber, 1992; Guibas,
Salesin & Stolfi, 1993; Leung, Zhang & Xu, 1997). There
can be another classification of these algorithms: sequential
(using single processor) and parallel (using multiple proces-
sors). Again, some of the convex-hull algorithms consider
input vectors of a specific dimension (2D or 3D which are
the most common ones in real life) and some algorithms
deal with higher dimensional input also. While processing,
either all points can be presented together in a batch (the off-
line mode) or they can be presented one by one (the on-line
mode).

The algorithms in Leung et al. (1997) and Wennmyr
(1989) are designed on artificial neural networks. Wennmyr

378 A. Datta et al. / Neural Networks 13 (2000) 377—-384

Fig. 1. Maxnet architecture.

(1989) proposed an exact convex-hull computation algo-
rithm based on a multi-layer perceptron (Lippmann, 1987,
Rumelhart & McClelland, 1986). The author designs a
network that can decide whether a given point is inside a
convex polygon (using the fact that a convex polygon is
always the intersection of half-planes). In this network,
every node at the lowest level has a different decision
boundary. Leung et al. (1997) proposed an algorithm for
the computation of an approximate convex-hull. The
network consists of an input layer and an output layer of
neurons. Similar to the adaptive resonance theory (ART)
(Carpenter & Grossberg, 1987; Serrano-Gotarredona,
Linares-Barranco & Andreou, 1998), the two layers of
neurons can communicate via feedforward as well as feed-
back connections.

In this paper, we propose a self-organizing neural
network model for computation of the convex-hull of a
finite planar set. The term ‘self-organization’ here refers
to the ability to learn from the input without having any
prior supervising information and arrange (or order) the
processors accordingly. It is argued that self-organization
works as a basic principle of sensory paths of the human
visual system. In this case, self-organization means a mean-
ingful ordering of the neurons (processors) in the brain,
where the ‘ordering’ does not mean moving of neurons
physically. A well-known self-organizing neural network
model is Kohonen’s (1989) feature maps.

We also find dynamic versions of Kohonen’s model
proposed by different researchers where the network can
grow in size. Sabourin and Mitiche (1993) proposed a
“selective multi-resolution” approach in the context of
shape classification. Such a dynamic model does not require
a priori knowledge of the number of processors. Another
dynamic version of Kohonen’s model has been suggested by
Fritzke (1991) to model the probability distribution in the
plane. In the context of vector quantization, Choi and Park
(1994) have proposed a dynamic version of Kohonen’s
model.

The present neural network model behaves, as we shall
see in the next section, like a self-organizing network. We
start with a network where every point in the given set is
assigned a processor. The network consists of three layers.

The bottom layer is used for the computation of angles
which are passed onto the middle layer. The middle layer
computes the minimum angles. These information are
passed onto the topmost layer as well as fed back to the
bottom layer. Using these information, the topmost layer
and the bottom layer self-organize, to label the hull-proces-
sors in an orderly fashion. Initially, the model identifies a
small number of points as hull-points. Gradually, the
network self-organizes to identify other processors that
correspond to the rest of the hull-points. These hull-points
are generated in an orderly fashion so that the convex-hull
of the data points can be easily recognized. The learning
takes place without any supervision.

2. The model

Before going into the proposed model, a network to
compute the maximum (or minimum) of » given values
will be discussed as it is used by our model. Such a network,
called ‘maxnet’, is available in existing literature (Mehrotra,
Mohan & Ranka, 1997) but we briefly describe it next for
the sake of completeness.

2.1. Maxnet

The ‘maxnet’ is a recurrent network. It has only one layer
of n nodes (Fig. 1) which compete to determine the node
with the highest initial value. Every node is connected to
every node including itself. The network performs an itera-
tive process where each node receives inhibitory input from
other nodes through /ateral (intra-layer) connections.

All the nodes update their outputs simultaneously (in
parallel). The single node whose value is initially the maxi-
mum eventually prevails as the “winner” node, and the acti-
vation of all other nodes subsides to zero. The activation
function (by which the outputs are computed) of a node is
given by

Oj = maX(O,ZWjixi). (1)
i=1

where x;s (i = 1,2, ..., n) are the inputs to the ith node. The
output of each node at the current iteration is fed as the input
at the next iteration to compute the output of the next itera-
tion. In Fig. 1, the self-excitation weight w; = 6 = 1 and the
inhibition weights wy; (i # j) are € = 1/n.

Thus the ‘maxnet’ allows the parallel computation of the
maximum value from a given set of values where every
computation is local to each node rather than being
controlled by a central processor. It can be seen that the
number of iterations to select the winner node does not
depend on the number of data points 7.

2.2. The proposed model

In the present model, we consider a set of n 2D points

A. Datta et al. / Neural Networks 13 (2000) 377-384 379

.(C)
O3 s o
Th,(B)
(D) ¢
of)
Oy Ol

Fig. 2. Point-processors and hull-processors (circled). The labels in parenth-
eses denote the processor types.

representing the input vectors (the signals)
S= {(xl’yl)s (x2’y2)’ ~--’(xn’yn)} = {PI’PZ’ ""Pn}' (2)

The convex-hull of the planar set S is defined as follows:

Definition 1. The convex-hull of a planar set S is the
smallest convex set containing S. The convex-hull here is
in fact a convex polygon. Each edge of the polygon is a hull
edge and each of its vertices is a hull vertex.

Result 1. It is well known (Preparata & Shamos, 1985)
that every hull edge (of S) partitions the plane into two half-
planes such that one of them contains all the points of S and
the other contains no point of S.

Let m,m, ..., ™, be n processors associated with the
points Py, P,, ..., P,, respectively. The processor m; stores
its location (x;,y;) for i =1,2,...,n as its weight vector.
Also assume that each processor 7; is connected with itself
and all other processors ;. These processors are termed as
point-processors.

Definition 2. A point-processor m7; is called a hull-proces-
sor if P; = (x;,y;) is a hull vertex.

Let m, be a processor such that one of the following
conditions holds:

yk:rniin {yl} = Ymin (3)

X = max {xi} = Xmax (4)
i

Yk = Il‘l;dx {yz} = Vmax (5)

X = Il'l_il’l {xi} = Xmin- 6)
i

Then ;. is a hull-processor.

It can be seen that for » > 1, initially there can be two or
more types of hull-processors out of the four types: 4, B, C
and D depending upon Egs. (3)—(6), respectively (Fig. 2).
Let us assume that all the four types of processors are
present initially (later on we shall see that this assumption
does not restrict us). Suppose, m , m,, 7, and , are the
initial four hull-processors of the types 4, B, C and D,
respectively. We emphasize here that initially when we
assign the processor types, more than one processor can
be of the same type (according to Definition 2). For exam-
ple, there could be several points with the same smallest
value of the y-coordinate resulting in more candidates for
the A-type hull-processors. In such a case, only one of them
(no matter which one) is assigned as a hull-processor of the
respective type and others are assigned as point-processors.
The processor assigned as hull-processor, at this stage, is the
first mother of A-type.

Definition 3. Two processors m; and m; are said to be
equivalent if their weight vectors are the same.

Let us first consider the A-type hull-processor. If proces-
sor 7, is an A-type mother hull-processor then compute the
angles 0;1, i=1,2,...,n, given by

cos ! N M ifv, =
— B n — B Vi _ykl
HA (xz xkl) (yz ykl))
=) — . (i # ky).
27 — cos ify, <y

1
Vo = P+ =
(7)

Note that 6 measures the angle, as shown in Fig. 2, of the

line segment joining the mother hull-processor m; and the

processor ; with respect to the x-axis. Let 77; be the proces-

sor such that (see Fig. 2)

ol = min 0;4 (8)
1

J

The processor ; is declared as a hull-processor (see the
proof of Proposition 1 for justification) and as a child of
the mother hull-processor . Since m; is a child of m , it
inherits the type of its mother mr, that is, 7; is also an 4-
type hull-processor. The creation of the child makes
inactive, and makes m; an active mother hull-processor.
By inactivating a processor we mean that it is no longer a
mother but it remains as a hull-processor. The process of
angle calculation and finding the processor with minimum
angle is repeated with the active mother hull-processor ;.
Consequently, 7; also gives birth to a child processor of its
own type. This process of reproduction is continued until an
A-type child becomes equivalent to an existing hull-proces-
sor of another type. Our next proposition shows the process

indeed terminates.

380 A. Datta et al. / Neural Networks 13 (2000) 377—-384

Layer for
minimum
computation

PR,

A\
]

Layer for
Angle Computation

Fig. 3. The subnetwork architecture for a given type of hull-processor. Solid
dots indicate point-processors and the circled dots represent hull-proces-
sors. All the links represented by lines are bidirectional.

Proposition 1. Ifthe reproduction process is continued, at
one point of time the child of an A-type mother will even-
tually be equivalent to another type (B, C or D).

Proof. Here S is a given set of finite number of points.

Let P4, Pp, Pc and Pp be the points corresponding to the
initial four hull-processors m, , m,, 7, and 7, .

By definition, P4, P, Pc and Pp are hull-points and the
rectangle 0,0,0;0; (the sides of which pass through the
points P,, Py, Pc and Pp) in Fig. 2 contains all the points
of S.

Let P4 be the point corresponding to the child processor
of . Suppose, the line PPy cuts O;0; at O;. Thus, the
triangle P,0;0, does not contain any point of S other than
P, and P,. So the line PP, partitions the plane into two
half-planes such that one of them contains all the points of S
and the other contains no point of S. Therefore, by Result 1,
P,P, is a hull-edge. Hence P, is a hull-point. Now, if
P, = Py then the reproduction of A-type processors
stops. If not, the reproduction of A-type processors
continues.

Renaming P, as P, the same logic can be repeated. Note
that with the creation of a new child processor (hull-point)
the number of points inside the triangle P,P30; is reduced at
least by one. Since S is finite, in a finite number of steps, this
number would be zero in which case the most recent A-type

child processor will be created at Py. And the reproduction
process stops.

Similar arguments hold for the other three types of
processors. Thus, the reproduction process of a particular
type of hull-processor stops when a child of its own type is
equivalent to another type of processor. Hence the
proof. [

Like A-type processors, other types of hull-processors use
similar reproduction rules when the respective formulae for
angle calculation are as follows. If m , m,, and m, are B-,
C- and D-type hull-processors, respectively, then compute
the angles 67, 65 and 6° i = 1,2, ..., n, given by Egs. (9)—
(11), respectively.

(Vi = Vi,

cos ! if x; = xp,
» \/(Xi —x,)t G =)
P — (l # kz)
i v,
27— cos” ! 21 Yk if x; > x,
| \/(xi —x,)? + =)’
©
cos ! M % ify, =y
. Vo, =0+ 0, — 7
¢ = | i#k
i I 1 xk3 —x; ¢ _ (3)
T — COS > B MYk, < Vi
L \/(xk3 —x)° t+ (yk3 =)
(10)
cos ! Yo i if x;, = x;
o \/(xk4 - xi)2 + (Vlu _yi)2
- (i # ky).
1 _— .
27— cos ! Tk i ifx, > x;
\/(xk., - xi)2 + (qu _yi)2
(11

The computation of minH? , min Gic, min@iD and the repro-
duction processes are similar to that of 4-type processor. It
can be seen that the process stops by Proposition 1. And
when it happens, as we shall see later, all the hull-processors
are ordered. The initial four processors are ordered by their
type definitions. Again, the child hull-processors are ordered
according to their parent—child relations.

3. The architecture of the model

We shall now discuss the network architecture for a
connectionist implementation of the proposed model. The
network consists of two layers: lower layer and upper layer.
The lower layer is used for the angle computation and the
upper layer is used for finding the minimum angle (see Fig.
3). The number of processors in each layer is n, the number
of data points. Both layers have similar structures where
every processor is connected to every other. In the lower
layer, there is no self-connection while in the upper layer
every processor has a self-excitation connection as present

A. Datta et al. / Neural Networks 13 (2000) 377—384 381

[convex-hull computation)

Topmost layer

Middle layer

[minimum angle
computation)

Bottom layer
(angle

Subnetwork C

computat

Subnetwork D

Fig. 4. The complete network architecture for the proposed model.

in the ‘maxnet’ described earlier. Moreover, the ith proces-
sor in the lower layer is connected to the ith processor in the
upper layer by feedforward as well as by feedback links.
First, consider the A-type processors. Suppose, in the
lower layer, m;, is an A4-type hull-processor. The within
layer connections in Fig. 3(a) are shown in more detail in
Fig. 3(b). A processor ; is connected to by four links (in
Fig. 3(a), they are represented by a single straight line). At
the beginning, the connection weights are assigned as shown
in the figure against each link. The motivation behind such
connection weights is that 7, must know the co-ordinates of
a;, and 77; must know the co-ordinates of ;. The output of
of the ith processor is computed by the activation function

01/'1 :fA(ai’ Bis X Vi)

-1 a; — X

cos if B; =y,

_ e, =x07 + (B =) '
27— cos” ! S ifB,-<y,‘
o —x? + (B~ w0 ‘

(12)

If we put o; = x; and 3; = y;, then 0}4 is nothing but the
angle O,A (Eq. (7)). It is to be mentioned here that many
connectionist models use sigmoidal function as the activa-
tion function. As we need to compute the angles, the arc
cosine function has been used here.

The above activation function can be rewritten as

A A
0; =Sy, Bis Xp Vi)
al' - .Xk

=+ 8m— dcos !
Ve = x)* + (B — y)?

13)

where

-1
6 P

+1

if B; = y

otherwise

This & can casily be realized by an analog comparator
circuit which compares the voltage B; with the refer-
ence voltage yy.

Every processor 7;, in the lower layer computes output of
according to Eq. (12). These output values are passed to the
respective processors in the upper layer by the forward links.
The ‘maxnet’ layer then selects the winner (in respect of the
minimum value) processor 77; and passes this information back
to the lower layer. The processor 7; is then declared as an 4-
type hull-processor and as a child of 77, and the processor 7 is
then inactivated. Thus, at any point of time, only one A-type
hull-processor is active in the entire lower layer although
there could be more than one such processor present in the
layer. In the next iteration, the only active 4-type processor
(most recently created child) plays the role of an A4-type
mother hull-processor and the process continues until the
stopping criteria are met (see Proposition 1).

The above process is replicated for all other types (i.e. B,
C and D) of processors. This is done by replication of the
above network (Fig. 3(a)) four times and adding another
layer above these networks as shown in Fig. 4. Each such
replication (subnetwork) takes care of a distinct type of hull-
processors. These subnetworks are structurally identical but
their activation functions are different. The activation
function of a lower layer node for Subnetwork-B, Subnet-
work-C and Subnetwork-D are given in Egs. (14)—(16),
respectively.

B B
o; =f"(q, Bi’xk27yk2)

Bi — Vi,

cos ! if oy = xpp
Vi@ =3 + (B~)
27 — cos ' Bi — v, if oy > xp
\/(Oli —x,)* + (B — vi)?
(14)

382 A. Datta et al. / Neural Networks 13 (2000) 377—384

Oic =fC(Oli, Bi»xk3 ’yk3)

Xy — &

cos ! ify,, = B;
\/(xk3 - ai)z + (Vk; - Bi)z
27— cos” ! My if ye, < B
\/(xk3 - ai)z + O, — Bi)z
(15)
OiD :fD(ai’ Bi’xk4 ’yk4)
cos ™! Vi — P ifx, =
\/(xk4 - ai)2 + ()’k4 - Bi)z
27— cos ! Vi — Py if x, > o
\/(xk4 - ai)z + (Vl\;, - Bi)z
(16)

The ith processor in the upper layer of every subnetwork
(now it is the middle layer in the complete network) is
connected to the ith processor of the topmost layer (see
Fig. 4). So the ith node of the topmost layer will have
four input connections. Within the topmost layer every
processor is connected to every other and the connection
weights initially are set to zero. In every iteration, the angles
(with respect to a given mother processor) are computed in
the bottom layer. These angles are passed to the middle
layer where the winner (the child processor) is selected.
After the winner is selected, the child is marked as a hull-
processor. At the same time, the weight of the connection
from the mother to the child processor (in the topmost layer)
is set to 1 (denoted by thick lines in the topmost layer in Fig.
4). We now show, by Propositions 2 and 3, that the network
formed by the hull-processors and the links with connection
weights as 1 on the topmost layer provides the required
convex-hull.

Proposition 2. On termination all hull-processors on the
topmost layer are ordered and every processor will have
exactly two links. In other words, the processors and the
links form a closed loop.

Proof. We explained earlier that if a mother hull-proces-
sor . creates a child processor ;, then a link is established
(the link weight is set to 1) from m; to 7r; on the topmost
layer to get a hull-edge. Hence, the link defines the ordering.
Thus, every subnetwork produces an (linearly) ordered set
of hull-processors. Since there is an implicit cyclic ordering
among the 4, B, C and D-type hull-processors (4 — B —
C — D — A) and the child of one type eventually becomes
equivalent to another type (coming as the next in the order-
ing) by Proposition 1, all the processors are ordered and they
form a closed loop. (Note that if a particular type of proces-
sor is absent (say, C-type processor is absent) then a B-type

child will eventually be equivalent to a D-type processor,
when D-type is present.) [J

Proposition 3. The topmost layer finally gives the
required convex-hull.

Proof. Recall the proof of Proposition 1. It is clear (by Eq.
(8)) that the extended edge PP, (see Fig. 2) partitions the
plane into two half-planes such that only one half-plane
contains all the points of S and the other half-plane contains
no point of S. Similar argument holds for all the links with
weight 1 (on the topmost layer). Moreover, by Proposition
2, all the links with weight 1 on the topmost layer form a
closed loop. Hence the proof. [J

The algorithm for computation of the convex-hull can be
now briefly stated as:

Algorithm CHULL

Step 1 [Initialization]. Create the initial active hull-
processors according to Egs. (3)—(6). Mark these first
mothers as 4", B, C* and D", respectively.

Step 2 [Reproduction]. Each active mother hull-processor
creates a child of its own type. The mother then becomes
inactive and the child becomes active. This process is
continued unless the child is equivalent to the first mother
of a different type.

Step 3 [Convex-hull construction]. Construct the convex-
hull from the topmost layer.

Step 4. Stop.

3.1. Computational aspects

After the initial four hull-processors are created, every
processor, in each subnetwork, computes its output indepen-
dently (in parallel). Thus this computation takes constant
amount of time. Since, for every type of hull-processors
(i.e. 4, B, C and D), there is a separate subnetwork, the
winner processor can be selected in parallel by the respec-
tive ‘maxnet’ layers. Hence, computational complexity of
this step will not depend on size of the data set. It is easy to
see that each subnetwork, in the worst case, needs to
compute the output (in the lower layer) and then select the
winner (in the upper layer) 4 times where / is the number of
hull-points. Thus, the whole process takes, in the worst case,
O(h) number of iterations.

The above complexity analysis assumes that no three
points of S fall on a single side of the rectangle
0,0,050,. Without this assumption we may have three or
more initial hull-processors of the same type (say, B-type).
We select arbitrarily one of them as the respective first
mother (B"). Then, in Step 2 of our algorithm, there will
be a tie while computing the minimum angle. As we break
the tie arbitrarily, we may not hit the first mother B" at the
first chance. Hence, the Subnetwork 4 may take longer time

A. Datta et al. / Neural Networks 13 (2000) 377-384 383

Fig. 5. The intermediate and final results on a planar set: (a)—(c) The results after iterations 1, 2 and 3, respectively; (d) the final result after 4 iterations.

than O(h). However, from theoretical point of view, the
probability of three points (in the Real plane) falling on a
single side is zero.

4. Results and conclusions

The proposed model is tested on several 2D point sets.
Fig. 5 shows one such example with intermediate outputs.
Throughout this paper, we have assumed that all the four
types of hull-processors are present. Note that for n > 1,
there may be only two or three types of hull-processors
also. It is easy to see that the algorithm remains the same
as we can simply forget the relevant subnetworks for the
types not being present. At the time of network initialization
(Step 1 in Algorithm CHULL) when the 4, B, C and D-type
hull-processors are identified, the respective subnetworks
are put ‘on’ or ‘off’.

We proposed a neural network model for computing the
exact convex-hull of planar set. The proposed model is self-
organizing in the sense that the learning is unsupervised. In
the output layer (top layer), the hull-processors are orga-
nized in such a way that they are mapped as the hull vertices
of the required convex hull. Moreover, only the links
between two successive hull-processors are set to 1 and
these links are mapped as the corresponding hull edges.

Computation of convex-hull of a planar set has been a
problem of considerable interests and several researchers

have developed various algorithms. While most of them
are based on conventional techniques, Wennmyr (1989)
and Leung et al. (1997) suggested neural network based
techniques. For computing the exact convex-hull, Wennmyr
proposed a multi-layer perceptron based model. Leung et al.
proposed an ART based model that can compute an approx-
imate convex-hull. Both algorithms have complexities O(n)
in off-line mode. The algorithm proposed in this paper
provides a self-organizing connectionist model to compute
convex-hull of a given set of 2D points in O(/) time in off-
line mode.

Acknowledgements

The authors gratefully acknowledge the reviewers for
their valuable comments that led to considerable improve-
ments of the paper.

References

Agarwal, P. K. (1994). Applications of parametric searching in geometric
optimization. Journal of Algorithms, 17,292—-318.

AKL S. G., & Toussaint, G. T. (1978). A fast convex hull algorithm. /nfor-
mation Processing Letters, 7, 219-222.

Akl, S. G., & Lyons, K. A. (1993). Parallel computational geometry.
Englewood Cliffs, NJ: Prentice-Hall.

Bently, J. L., Faust, G. M., & Preparata, F. P. (1982). Approximation

384 A. Datta et al. / Neural Networks 13 (2000) 377—-384

algorithm for convex hulls. Communication of the Association of
Computational Machinery, 25, 64—68.

Bentley, J. L., Clarkson, K. L., & Levine, D. B. (1993). Fast linear expected
time algorithm for computing maxima and convex hulls. Algorithmica,
9, 168—-183.

Bern, M. W., Karloff, H. L., & Schieber, B. (1992). Fast geometric approx-
imation techniques and geometric embedding problems. Theoretical
Computer Science, 106, 265—281.

Capoyleas, V., Rote, G., & Woeginger, G. (1991). Geometric clustering.
Journal of Algorithms, 12, 341-356.

Carpenter, G.A., & Grossberg, S. (1987). ART2: self-organization of stable
category recognition codes for analog input pattern. In: Proceedings of
the IEEE International Conference on Neural Networks, San Diego,
CA, vol. II, pp. 727-736.

Chank, D. R., & Kapur, S. S. (1970). An algorithm for convex polytopes.
Journal of the Association of Computational Machinery, 17, 78—86.

Choi, D., & Park, S. (1994). Self-creating and organizing neural networks.
IEEE Transactions on Neural Networks, 5, 561-575.

Devijver, P. A., & Kittler, J. (1982). Pattern recognition: a statistical
approach. Englewood Cliffs, NJ: Prentice-Hall.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis.
New York: Wiley.

Earnshaw, R. A. (1988). Theoretical foundations of computer graphics and
CAD NATO ASI, F40. Berlin: Springer.

Eddy, W. F. (1977). A new convex hull algorithm for planar sets. Associa-
tion of Computational Machinery, Transactions of Mathematical Soft-
ware, 3, 398—403.

Edelsbrunner, H., Kirkpatrick, D. G., & Seidel, R. (1983). On the shape of a
set of points in the plane. JEEE Transactions of Information Theory, 29,
551-559.

Fritzke, B. (1991). In T. Kohonen, K. Makisara, O. Simula & J. Kangas, Let
it grow—self-organizing feature maps with problem dependent cell
structure, Artificial neural networks (pp. 403—408). vol. 1. Amsterdam:
North-Holland.

Graham, R. L. (1972). An efficient algorithm for determining the convex
hull of a finite planar set. /nformation Processing Letters, 1, 132—133.

Guibas, L., Salesin, D., & Stolfi, J. (1993). Constructing strongly convex
approximate hulls with inaccurate primitives. Algorithmica, 9, 534—
560.

Hwang, Y. K., & Ahuja, N. (1993). Cross motion planning—a survey.
Association of Computational Machinery Computational Survey, 24,
219-291.

Jarvis, R. A. (1973). On the identification of the convex hull of a finite set of
points in the plane. Information Processing Letters, 2, 18—21.

Kohonen, T. (1989). Self-organization and associative memory. Berlin:
Springer.

Leung, Y., Zhang, J.-S., & Xu, Z.-B. (1997). Neural networks for convex
hull computation. /EEE Transactions on Neural Networks, 8, 601—611.

Lippmann, R. P. (1987). An introduction to computing with neural nets.
IEEE ASSP Magazine, April, 4-22.

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial
neural networks. Cambridge, MA: MIT Press.

Preparata, F. P., & Hong, S. J. (1977). Convex hulls of finite sets of points in
two and three dimensions. Communication of the Association of
Computational Machinery, 20, 87-93.

Preparata, F. P., & Shamos, M. 1. (1985). Computational geometry: an
introduction. New York: Springer.

Rumelhart, D. E. & McClelland, J. L. (1986). Parallel distributed proces-
sing. vol. 1. Cambridge, MA: MIT Press.

Sabourin, M., & Mitiche, A. (1993). Modeling and classification of shape
using a Kohonen’s associative memory with selective multiresolution.
Neural Networks, 6, 275-283.

Schwartz, J. T. & Yap, C. K. (1987). Advances in robotics I: algorithmic
and geometric aspects of robotics. Hillsdale, NJ: Lawrence Erlbaum.

Serrano-Gotarredona, T., Linares-Barranco, B., & Andreou, A. G. (1998).
Adaptive resonance theory microchips—circuit design techniques.
Dordrecht: Kluwer Academic.

Toussaint, G. T. (1985). Computational geometry. New York: North-
Holland.

Wennmyr, E. (1989). A convex hull algorithm for neural networks. /EEE
Transactions on Circuits and System, 36, 1478—1484,

	1.pdf
	2-8t.pdf

