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Abstract—The hybrid Fourier transform, involving a linear combination of the cosine and sine
functions as its kernel, is generalised for discontinuous but integrable functions, in the half-range
comprising of the positive real axis. The present generalisation of the hybrid transform is observed
to be useful in the area of two-dimensional wave problems involving a two-fluid region as opposed to
the well-known hybrid transform, known as Havelock’s expansion theorem, whose use is limited to
the study of water wave problems involving only a single fluid medium.
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1. INTRODUCTION

Integral transforms involving only the cosine or the sine functions in their kernels, which are
known as the Fourier cosine or the Fourier sine transforms, have been extensively used in the
study of a variety of boundary value problems of mathematical physics. The transforms, for which
the kernels are linear combinations of the cosine and sine functions in the whole semi-infinite range
of their definitions, are called hybrid Fourier transforms (cf. [1,2]). Such hybrid Fourier transforms
have also been used in the study of a number of mixed boundary value problems occurring in
the linearised theory of water waves (cf. [3,4]). The simplest of the hybrid Fourier transforms,
along with its inversion formula, is also known as Havelock’s expansion theorem. This expansion
theorem was originally given by Havelock [5] to solve the classical plane vertical wavemaker
problem occurring in the theory of surface water waves involving a single fluid medium. Later
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on, this has been utilised to analyse a large class of water wave scattering problems involving a
thin vertical plane barrier in a single fluid.

In the present paper, we have examined the possibility of obtaining an integral expansion
theorem which is useful for functions which are in general discontinuous but integrable and are
defined on the positive real axis and having just one point of discontinuity. Such an expansion
theorem defines a new generalised hybrid Fourier transform in which the kernel is comprised of
two different combinations of the cosine and the sine functions, in the two ranges, separating the
point of discontinuity. The corresponding inversion formula is easily derivable from the expansion
theorem proved.

As an application to the presently derived expansion theorem, we have generalised the classical
wavemaker problem in a single fluid to the case when the fluid medium is comprised of two
different immiscible fluids of constant densities. All the results for this simple two-fluid problem
are expressed in terms of convergent integrals, and the corresponding classical results for a single
fluid are derived as a limiting case.

2. THE GENERALISED EXPANSION THEOREM

THEOREM 2.1. If f(y) is an integrable function in the range (0, 00), having a discontinuity at a
single point y = h(> 0), then f(y) can be expanded as

MY+ Agw) + [ AWMLk, 0<y<h,
0
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where v is the unique positive root of the transcendental equation
(K +v)e " + (Ko —v)e’" = 0 (2.2)

with K > 0 and o = (1+5)/(1—s) (0 < s < 1) as two given constants (note that there exists no
positive root of equation (2.2) if s > 1),
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g(y)—K(a_l)e o +K(0_1)e = 0<y<h, (2.3)
Li(k,y) = K(kcosky — K sinky), (2.4)
La(k,y) = Li(k,y) + (1 — ) (k* + K*) sinkh cos k(y — h), (2.5)
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with

D(k) = {(1 — s)ksinkh + K cos kh}? + s?K? sin? kh. (2.8)

PrOOF. We prove the theorem by utilizing some standard results involving the delta function
and its representations in terms of the trigonometric functions. First, we consider the Hilbert
space of complex valued functions ¢(y), ¥(y) of the real variable y € (0,00) and introduce the
generalised inner product (¢, ) defined by

o

h —_— [
(#,9) = lim [ | erewiwians | e*%(y)w(y)dy] (2.9)
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with the bar denoting the complex conjugates, where ¢ and v are two complex-valued functions
in the range (0,00) with a possible discontinuity at y = h. Introduction of such generalised
inner products with the aid of an appropriately chosen convergence factor is common in Fourier
analysis even though it is not stated explicitly in many published works in this direction, since
divergent integrals are always to be understood as limits of convergent integrals involving certain
convergence factors.

Next, we consider the following eigenvalue problem, for the discontinuous function x:
d?y

LX = d—y2_ = )‘X’ ye (Ovh) U (h1 OO), (210)

with x having a discontinuity at y = h, such that

x'(0) + Kx(0) =0,
x'(h+0) = x'(h - 0),
X' (h+0)+ Kx(h+0)=s{x(h-0)+ Kx(h—-0)},

and
x(y) bounded as y — oo. (2.11)

It may be noted that A occurring in the problem described by (2.11) is an eigenvalue. It is easy
to show that the operator L with respect to the inner product defined by (2.9), is self-adjoint in
the sense that

(¢, L) = 9, L), (2.12)

and that the following are the sets of eigenvalues and corresponding independent eigenfunctions
of the eigenvalue problem described by (2.11):

(i) A= K?, x(y)=e %Y, 0<y<oo,

.. 9(v), 0<y<h,

ii A =12 =

(i) x(¥) { i
Liky), 0<y<h,

(iii) A=Kk >0), xy) = { 1(k.) v
La(k,y), h<y< oo,

where g(y), Li(k,y), and La(k,y) are given by (2.3), (2.4), and (2.5), respectively. Thus, since
the operator L is self-adjoint, the above eigenfunctions corresponding to the different eigenvalues
are orthogonal with respect to the inner product defined by (2.9), and hence, the expansion the-
orem (2.1) is easily proved by using the standard techniques involving eigenfunction expansions.
The expressions for A; and A, as given in (2.6) and (2.7) are obtained easily, while the main
result to determine A(c) as given by relation (2.8) (with k replaced by «) is the following:

e—0

h 0
lim [s/ e YLi(k,y)L1{o,y) + / e~V Ly(k,y)Le(a,y)dy
0 h
= g (G1(k, @)b(k — @) + Ga(k, @)d(k + )]

with
Gia(k,a) = sK? (ka + K?) + (1 - s)K (asinah + K cos ah)

x {a(kcoskh — K sinkh) + K(ksinkh + K coskh)}

+ (k* + K?) sinkh(acosah — K sinah)

+ (1 = V(K2 + K2\ (a? + K\ sin khsin ah.

(2.13)
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which is easily obtainable by using

lir& e costr dr = mo(t) (t real),

€—>

L ; (2.14)
lim e “Tsintxdt = - (t # 0, real).

e—0+ /4 t

It is observed from the above expansion theorem (2.1) that we can now define the following
generalised hybrid Fourier transform along with its inversion formula.
The generalised Fourier transform of the function f(y) (y > 0} is given by

h o0
ﬂ@=sl.ﬂ@h%wﬂy+é f@)La(k,v)dy,  h>0, (2.15)

where L;(k,y) and Ly(k,y) are given by relations (2.4) and (2.5), respectively, and s is a known
constant such that 0 < s < 1.

The inversion formula for the transform (2.15) is given by (2.1) with the constants A;, A, being
given by (2.6),(2.7) along with the relation

A(k) = {u(k)} " F(k),

where
u(k) = 3 (K + K?) D(k), (2.16)

with D(k) being given in (2.8).

We easily check that in the special circumstances when s — 1 and h — oo, we get back the
well-known Havelock’s expansion theorem, giving rise to the hybrid transform

Fy(k) = /o f(y)(kcosky — K sinky) dy

along with the inversion formula

- 2 [® Fy(k) )
— Ky £ H _
f(y) =Ce + T ) Rt (kcosky — K sinky) dk
with -
C= 2K/ fly)e K¥dy. (2.17)
0

We remark here that though our theorem has been proved above for sufficiently smooth func-
tions f(y), it is also possible to prove its validity even if f(y) represents a generalised function by
using the standard concepts that generalised functions can be associated with equivalent classes
of smooth ordinary functions having compact support.

3. AN APPLICATION

As an application of the generalised expansion theorem derived above, we consider the following
boundary value problem for the Laplace’s equation in two dimensions, occurring in the study of
forced waves in a two-fluid region. We have to solve the PDE

¢ 9%
.6_;2..4.-5;2-..0, 0<y<h, and h<y<oo, (3.1)

where ¢(x, y) represents the velocity potential of an irrotational motion, with a discontinuity along
the plane y = h which represents the interface (at rest) of two layers of inviscid, incompressible,
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and immiscible fluids of two different constant densities p; and pz. The various conditions under
which the PDE (3.1) has to be solved are

0

—6%+K¢=0, ony=0, (32)
bij i)
(—¢ + qu) =s (—9 + K¢) (3.3)
dy y=h+0 dy y=h-0
with s = p1/p2 (0 < s < 1),
0 py), for0<y<h,
a—¢ (0,y) =p(y) = { (3.4)
z pa2(y), fory>h,
p1(y), p2(y) being known functions,
#(z,y) ~ Rie~ Kv+iKlal L Ry I(y)e1®, as |z| — oo (3.5)
with - P "
aly), or0<y<n,
Uy) = 3.6
2 { e?h=9)  for y > h, (3.6)

‘where g(y) is given by (2.3) and v is the unique positive root of equation (2.2), and R; and R,
are two unknown complex constants representing the amplitudes of waves radiated at infinity
with wave numbers K and v, respectively.

@, V¢ —0asy— oo. (3.7)

This problem is a generalisation of the classical wavemaker problem of Havelock [5] to a two-layer
fluid.
An appropriate solution satisfying (3.1)-(3.3), (3.5), and (3.7) is given by

o0
é(z,y) = Rie  KVHE= L Ry I(y)e™® + / A(k)L(k,y)e”** dk,  forz >0, (3.8)
0

where ,
Ly(k,y), for 0 <y<h,

Liky) = { Lo(k,y), fory>h, 39)

and A(k) is an unknown function of appropriate behaviour for the mathematical analysis followed
below to hold good.
Use of condition (3.4) produces

o<
p(y) = iKRie Kv + 1wRag{y) — / kA(k)L,(k,y) dk, forO0<y<h,
0

and
o
pa(y) = iKRie XY 4 jyRye?h—v) — / kA(k)Lo(k,y) dk, for y > h. (3.10)
0

Thus, using Theorem 2.1, we find that

iKRy = —?&T-h—— s/hpl(y)e'xy dy + /mpz(y)e'm dy
1+ S(€2Kh - 1) 0 h !

, g (3.11)
s o 1(¥)9(y) dy + [, pa(y)e? =¥ dy

s Mol ¥2 du + 17120

i’URz =

9
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and

kAR = E TR D

® [8/ pi(y) Lok, y) dy + /h p2(y)La(k,y) dy} : (3.12)
0
It is interesting to note that in the limiting case when s — 1 and h — oo, we get back the results
of the classical wavemaker problem for a single fluid of infinite depth.
As special cases, if we choose p1(y) = pa(y) = e~ XY, then we find

578 R, , and (k) =0,

so that ¢(z,y) is simply given by

e—Ky+sz

’

1
d(z,y) = 7

while if we choose p1(y) = g(y), p2(y) = e**~ ¥, then

1
Rl = 0, R2 = vy A(]C) - O,
w

so that ¢(z,y) is given by
1 vz
B(z,9) = 7 Uy)e™.

For the more general case, for prescribed p(y), ¢(z, y), and hence, the forms of the free surface
and the interface can be obtained. However, this we have not pursued here.

4. CONCLUSION

It is clear that expansion theorems of the type described here can be further generalised for
integrable functions having more than one but finite number of discontinuities in the range (0, o)
of its definition, by way of defining an appropriate generalised inner product of the type (2.9).
Such general expansion theorems will then give rise to hybrid Fourier transforms over multiple
intervals, and these will obviously have utility in handling wave problems involving multiple layers
of inviscid, incompressible, and immiscible fluids of different constant densities.
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