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SUMMARY. Tho characteristic functiona antisfying (2) bLelow aro proved ta be
essentially the somi-stablo laws. Auxiliary simultancous integral cquations aro atwlied ia
Theoroms 1, 2, 2 sad 3. Tho final form of results duo to B. Ramachandron.C. R. Rao and
w R. Shimizu is obtained.

Remachandran and Rao (1970) considered characteristic functions
(ch.f.’s) non-venishing on 72 and satisfying a functional equation
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where 0 <ay, by <1 and tho 7y, & are positive constants. Under ccrtain
assumptions on theso parameters, which later turned out to bo superfuous,
they showed that such an f i3 infinitely divisiblo (i.d.) and derived the forms
that the Lévy speetral functions M and N in the Lévy representation
L{a, 03, ), N) for ¢ = In f tako—theso results are also to bo found reproduced
in Kagan, Linnik and Rao (1073), Theorems 5.4.2, 5.6.1 and 5.6.3. On the
basis of this analysis, such ch.f.'s wero ealled ‘“‘gencralized stablo laws™ (but
turn out to bo not too diffcrent from the “scmi-stable” laws as pointed out
by Shimizu : seo below). Larlier, Shimizu (1968) had considered (1) in the
easo where y; = 8 = 1 for all j and only finite products appear on the RIS,
of (1). Both papers used variants of complex analysis arguments involving
tho Laplaco transform introduced by Yu.V. Linnik. Then, Davies and
Shimizu (1976) obtaincd closed-form formulas for f satisfying (1), directly,
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ON CILARACTYBISTIC FUNCTIONS 101

ie., without first attempting to prove that fisi.d. ; also, they used real analysis
arguments : that f is i.d. now became a consequence of their analysis ; however
they still had to impose certain restrictions on the parameters. Shimizu (1978)
generalized and streamlined these arguments to cover the more comprehensive
form of (1) given by

gty = § gltuMp()+ [ $(—tuldvlt) w (2
oY w0,

where s and v are o-finite measures on (the Borel subsets of} (0, 1}, to obtain
essentially the same conclusions on ¢ satisfying (2) as had been obtained
earlier for (1), but still under the restriction that there exist x and g such that

1= futdptv) () < fu?dluty) (u) <co . (3)

The result, stated briefly, is that for some real ¢, f(f) ¢ is a ‘semi-stable’ ch f.
with exponent z (and in particular id.).

In the light of recent work on the integrated Cauchy functional equation
(ICFE), it has now become possible to do away with the assumption (3) in
solving (2) : the existence of an a ratisfying the equality in (3) no longer has
to be postulated as an assumption, it now becomes part of our assertion :
for, the non-negative even function 3y = — Re ¢ satisfies the functional equa-
tion (a “multiplicative version” of the usval ICFE):

viy= [ y(ut) du+v){u)
0.1}

and hence we conclude that there exists a unique z such that | ]u'd(/a+y)(u)= 1
.1

and that y(1) = [¢]¢ F'(la|i]), where I' has every member of S{x) | S(v)
as period and 0 < 2 < 2 necessarily. The rest of the argument for Theorem
4 of Shimizu (1978) remains in force and the above analysis obviates
the need for assumption (3). Theorem 3(a) below and ita Corollary are needed
for the above (supplementary) argument, and we provide below new proofs
of these results, azain made possible by recent work on the ICFE.

Theorems 1, 2 and 2' are related results on simultaneous integral
equations. They generalize earlier results obtained by Shimizu and by
Ramachandran and Rao in the above context (to ¢btain the forms of the Lésy
spectral functions for ¢). We also provide a proof of Theorem 3 based on
Theorem 2, and Theorem 3 is in turn used to obtain Theorem 2, which ia a
sharper vemion of Theorem 2.
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Theorom 1: Let g and h be non-negative Borel-measurable functions on
[0, w0), locally integrable w.r.t. Lebesyue measure. Let st and v be o-finile mea-
sures on (the Borel a-algebra of) [0, o0) and let for all > 0 (may be relaxed to:
Jor almost all (Leb. meas.) z » 0):

glx) = { glz+y)dp@y) 3 [ hz4-y)dvly) } “
-

hz) = § h(z4-y)dpuly) + § glety)dsly)
If A = u+v, thon cither

(i) thero exists no real @ such that [¢dA(y) = 1 in which case wo must
have g=h =0 a.o, or

(i) thero exists a real a, necessarily unique, such that { e dA(y) = 1,in
which caso we must have :

9l2) = (pa)+el)es ae, ha) = pl@)—qle)esae. . ()

where, S(o) denoting the support of the measure o,

plzt+y) = p(z) for all y e S(z) L) S(v)
9(2) for y ¢ S(e)
qlz+y) = { - (9
—g(x) for y € S(v)

Proof: By srgumonts which are by now standard, we may confine our
discussion to the case where g and & aro continuous. Let & = g+h, so that
k= ko A—vTiting (feo){z) = [flx+y)do(y). Then, from LR(1982)—also
R(1982)— it follows that either {i) holds or there exists an a, unique, such
that f e dA(y) = 1 and that k{z) = r(2)e?%, where r has every element of S(})
as period. Writing

9(2) = glx)e=%, di(y) = evdA(y)

(0 that X is & p.m.) and defining hy, &, analogously, we have
B=gysfithy e v hy=hyofitg v
whoro

0 gy, and p,¢ given by

2p =g, +h, 2¢ = g,—h
are such that e S = 0

p=pod, g =qe(i—i)
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It follows from the Choquet-Deny-Shimizu thoorem that
pla+y) =p) for all yeSEH)=5WQ
and from Theorem 2 of Shimizu (1978)—also sce Thcorem 3 of this paper—
that g satisfies (6) (S(i) = S(n), S(¥) = S(v)). Henco the theorem.

Theorom 2: Let g and h be non-negative locally integrable functions on
2 and let g and v be o-finile measures on 70 such that the relations below hold for
all (or almost all) real z :

g=gepthevh=hoeptgev. )
Let A = p+v. Then cither

(i) thero exists no real a such that [ e?vdA(y) =1, in which case
g=h=0ae, or

(ii) there exists a uniquo real e such that [ e dA(y) = 1, in which caso
(5) holds a.e. on 72, with p and g¢ satisfying (6), or

(iii) there exist two rcal numbers a < g such that f ew dA(y) =
[e dA(y) =1, in which case we must bave

9lz) = r,(z)e-=+a.<2’°’z}
8.8 (8)

I(z) = ry(2)erz+s,(2)?"

where the r( and 8, i = 1, 2, have every element of S(z) as period : in fact,
they have every element of S(c) as period where o is the measure defined by
(10) below.

Proof: As before, we noeed only to considor the cases whero g and 4 are
continuous. If g+h =k, then k= ke A and we have, from LR(1984)—also
R(1984), RP(1084) and R(1987)—that

Kz) = r(x)ers 4 s(z)e?* . (9)

whero [ eVdA(y) = [ e*vdA(y) = 1 (noto that if no such a, § exist then (i)
holds ; if thero is a uniquo such a, we may imitato the proof of Theorem 1 to
obtain statement (i) ; thus we need consider below only the case (iii) and
rand g ore periodic with every cloment of S(A) as period. Then, iterating
tho relations (7), we havo for overy positive integer #,

g=ge {/z+y" . (:g;:")}-}-htp"' ow,
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If u(79) = 0 or ¥{72) = 0, the above reduces to-: g = gat* or g =gop res
pectively ; in the complementary eases,

(hopi™® o v)(x) < (Rop™® o v)(x)

Stzty) Yy

= [{rlx+yt+v:)e

Bisty+v3)

+s(z+y,+yse } dpn*(y)dvlys)

<& M{fewdp(y)r . (] evdv(y)jes+ M{[evdp(y))?.{fe?¥dv(y)}e?2 >0 as nazo

since every { } above is strictly < 1 and M being an upper bound for (the
periodic and hence bounded) functions r and 8. Writing (in all cases, whether
or not a(#) = 0 or v(72) = 0)

o= pt1tte ( '%I‘" ) - (1)

it then follows that g = ges, similarly & = heg, and therefors k =ker os
well, showing that wo must also have

k{x) = r*(x)e?r 4 s°(x)eb®
where [evdo(y) = [ evda(y) = 1 i take y < 4.

Since, however, k already has the representation (9), it follows that we must
have y = a, § = f# (the cases whero r or afr® or s* is zero identically are easily
disposed of), and (since g = geor, h = hea) g and k must have the representa-
tions (8) with the ry, 8, having every clement of S(o) and so of S{x) as period.

We pass on to (new) proofs of Theorems 2 and 3 of Shimizu (1978) and
of extensions thercof to 72 from [0, ). As already stated, the Corollary
below finds vital application in solving equations (1) and (2).

Theorem 3 : (a) Lel st and v be (strict) sub—p.m.'s on [0, co) such thal
1ty is a pm., and let L be a real bounded continuous function on (0, co) such

that for z 5 0
L(x) = § L(x+y) d(u—v)(y). -

Then L(z+u) = L{x) for v €S(p) and = —L{2) for u € S(v)

(b) The same aasertion holds if L, pp and v are defined on 72 and (11) holde
for all yveal x.

Corollary : The conclusion of the theorem holds if L{x+y)—L(x) is
bounded for every fixed y > O while (11) holds (L itself need not be bounded).

Remark 1 :  Part (a) is Theorem 2 of Shimizu (1978) and the Corollary is
Theorem 3 thereof. Part (b) is of independent interost and alko needed to
cnablo us to pass from Theorem 2 to Theorem 27,
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Remark 2: The theorem and (provided § x du(x) # 0 if v = 0) corollary
romain in forco if sz or v is not a strict sub-p.m., i.e., if v = 0or u =0, only
minor modifications being needed in the proofs below.

Proof :  \We ghall consider the set-up in Part (b) ; the proofs are essentially
tho eamo for both parts. Writing (11)in tho form L = Le(s—v) and iterating
it, we sce that, for overy positive integer »,

L=Lep—Lov
=Lep—(Lep—Levyev
=Le(pt?*)—Lestor

=1L {/L+v" . ("i:: [L")]—L st ey,
r-

Asin the proof of Theorem 2, we sce that (L e #* sv)(x}— 0 for every x, L being
bounded and sz being a strict sub-p.m., so that, with o being defined by (10),
L= Leo. Straightforward computation shows that ¢ is & p.m. in our prosent
situation (1 4-v being a p.m.) Hence, by the Choquet-Deny-Shimizu theorem,
L{z) = L(z+y) for y e S(g) and in particular for y € S(x). Then we have
from (11) that for all real =

(7R L) = — § Liz+y)duly).

If u € S(v), then for any y € S(v), u+y € S(**) C S(o) and henco L{z+u+y) =
L{z). Tt follows that

w(#) Liz+u) = —[ Lix+tuty)duly) = — L), l(R).
Hence the theorem.

Tho corollary is needed for the solution of (2) after establishing the form
of Re ¢(t) = In|f(t)]. We refer tho reader to Shimizu (1978) for the detaiils.
We may obtain a short proof of the Corollary as follows. TPart (a) of the
theorem applied to L(z+y)—L{x), for fixed y > 0, implics that

L{x+y)—L{z) ifue S),
Lx+y+u)~Liztu) = . (12)
—{L{x+y)— L)} if u € S().
Fix 1 € S(z). Thon the first relation in (12) yiclds that for all y > 0

Liz+y+0)—Lir+y) = Liz+1)—Liz).
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Chooso now & y € S(v). Then the second relation in (12) implies that the
LHS of tho preceding relation is also = —{L{x+u)— L(x)} so that L(z+4u)~
L(zx) = —{L(x+u)—L{z)} = 0. Using this fact in (11), we have

L(z) = — h]' _)L(-T+y)fb'(y) o (1)

where v* = ¥¥{{0, c0)} is & p.m. If now u € S(v), then (13) implics that
L+ Ue) = = (Urko)+ Lt )dy)

= — [{Liz+u+L)d ) fom (12)
= —{L(=)+Liz+u)
whenco the corollary follows.

1t is of some interest to note that Theorem 2 may bo used to prove Theorem
3(b), which in turn is necded to prove Theorem 2’ below :  Let K bo & positive
constant such that |L(z)| < K. Then g = K+L and h = K—L are both
non-negative and, further, satisfy (7). Henco, by Theorem 2, they admit the
representations (8). Both being bounded, it follows that @ = # =0 in this
particular caso in (8)—in other words, g and & have every eloment of S{o)
(D S(n)) as period. Using this fact in (7), we sce that

9(z) = [ hz+y)dv*(y), Mz) = Jglz+y}dv(y)

where v* = yfv (72) is & p.m. As before, we then conclude that, since S(o)
D 8(v?*), if ue S(v), then g{z+u) = h(x)W*(72) = h(z), so that L(z+u)=—L(z)
for such u.

We are now in a position to postulate a sharper version of Theorem 2,
namely,

Theorem 2': In case (iii) of Theorem 2,
9(z) = {pu2)+0:(x)}) €7+ {py(z)+ 5(a)} 2
h(z) = {py(x)—0,(2)} *+{py(2) — gy()} ¢#* }
a.e. (Leb. meas.), where py, qi. € = 1,2, are such that
plz+n) =pla)  forallye SEU S6)

qfx)  forallye S(p)
ale+y) = o 9)
—qi(z) for ally & S(v)

w (M)
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Proof : As before, wo need only consider tho ease where g and £ aro
continuous.

By Theorem 2, g and 2 admit the representations (8). Substituting
in (7) and recalling that every clement of S{u) is a period for the ry, &,
taking 1 as a positive clement of S{x) w.l.g. and defining

9-(x) = g{z) €%, 0:(z) = Q) -qy{z+1), 94(2) = ga(x) ez,

snd Xy, by, kb, simitarly, we have thab
9y =0 ithye b ly = hye fitgy 05

where dji(y) = e dply), dv{y) = e dv{y) and & = i+7 is theoreforo & p.m.
But (8) also implics that

gy = cry, Iy = cry where ¢ = 1—¢*-4,

(If @ = B, the proof is similar to that of Theorem 1, so we shall consider only
the caso @ < §). Thus p and ¢ given by

2p = gathy, 20 =3Iy
satisfy the cquations p =ps (2+%), g =g« (i—%).

Applying tho Choquet-Deny-Shimizu theorem to p and Theorem 3(b) to ¢,
or Theorom 3(b) in the light of Remark 2 to both p and g, we sce that p and ¢
satisfy (6). It follows that r, and r, are of the forms p,-+¢, and p;—gq, res-
peetively, where p,, ¢, have the propertics (15). The assertions re. s, and s,
follow dually, Ilenco the theorem.

This joint paper is the common outcome of the {echnical papers Lau-Gu
(1986) and Ramachandran (1986). The referce of the latter is to be thanked
for suggestions which led to improvemonts in the presontation as well as in
arguments.  As pointed out by tho refereo of this joint papor, a slight im-
provement in presontation would have resulted if (iii) of Theorem 2 had beeon
replaced by the statement of Theorem 2° with appropriate attendant
alterations.
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