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can do feature selection simultaneously with designing the clas-

sifier, it would be able to select the most appropriate set of fea-

tures for the task and can result in a good classifier. In [39] Pal

and Chintalpudi developed an integrated feature selection and

classification scheme based on the multilayer perceptron archi-

tecture. The present paper is motivated by this work though the

formulation and philosophy of feature selection are completely

different. Krishnapuram and Lee in [27] also developed a neural

network for classification, which uses fuzzy aggregation func-

tions. Their network is capable of feature selection in certain

conditions though it is not primarily meant for the feature se-

lection task. Similar networks are also discussed in [19], [25],

[26], [28].

In [4] we discussed a methodology for simultaneous feature

analysis and system identification in a five-layered neuro-fuzzy

framework. The feature selection strategy which we use in the

current work is the same as in [4]. The network in [4] was meant

for system identification problems, which has been modified

here to solve a classification task. Unlike the network in [4], this

is a four-layered network. Also the methods used to optimize the

network have been modified to suite the classification process.

In this context a few new concepts have also been introduced for

pruning of the network and, hence, the rule-base.

Our network is trained in three phases. In phase I, starting

with some coarse definition of initial membership functions, the

network selects important features and learns the initial rules. In

phase II, the redundant nodes as detected by the feature attenua-

tors are pruned, and the network is retuned to gain performance

in its reduced architecture. In phase III, the architecture is fur-

ther reduced by pruning incompatible rules, zero rules and less

used rules. After pruning the network represents the final set of

rules. The membership functions which constitute the final rules

are now tuned to acheive better performance.

In the next section, we describe the structure of fuzzy rules

for classification and also the network architecture to realize

them. In Section III, we derive the rules for selecting the im-

portant features and the initial rules for classification. In Sec-

tion IV, we discuss a pruning algorithm to get rid of the redun-

dant nodes. Section V discusses two more pruning strategies

along with a scheme for tuning of the membership function pa-

rameters. Section VI gives the simulation results on a synthetic

data set and three real data sets. Finally, the paper is concluded

in Section VII.

II. THE NETWORK STRUCTURE

Let there be input features and classes

. Given a , the proposed neural-fuzzy

system deals with fuzzy rules of the form : If is and

is and is then belongs to class with a cer-

tainty , . Here, is the th fuzzy set defined on

the domain of .

From our notation one might think that for each rule we are

using a different set of antecedent linguistic values (fuzzy sets)

but that is not necessarily true; in fact, for every feature only a

few fuzzy sets are defined and, hence, some of the

for some and .

Fig. 1. The network structure.

Note that, the structure of the rules used here is quite different

from the structure of the rules used in [4]. The proposed neural-

fuzzy system is realized using a four layered network as shown

in Fig. 1. The first layer is the input layer, the second layer is the

membership function and feature selection layer, the third layer

is called the antecedent layer and the fourth layer is the output

layer. The activation function of each node with its inputs and

outputs, is discussed next layer by layer. We use suffixes , ,

, to denote, respectively, the suffixes of the nodes in layers 1

through 4. The output of each node is denoted by .

Layer 1: Each node in layer 1 represents an input linguistic

variable of the network and is used as a buffer to transmit the

input to the next layer, that is to the membership function nodes

of its linguistic values. Thus, the number of nodes in this layer

is equal to . Let be the input to the node in layer 1 then

the output of the node will be

(1)

Layer 2: This is the fuzzification and feature analysis layer,

which is similar to the layer 2 of the network described in [4].

Each node in this layer represents the membership function of a

linguistic value associated with an input linguistic variable. The

output of a layer 2 node represents the membership grade of the

input with respect to a linguistic value. We use bell shaped mem-

bership functions. All connection weights between the nodes in

layer 1 and layer 2 are unity. If there be fuzzy sets associ-

ated with the feature then the number of nodes in this layer

is . The output of a node in layer 2 is computed by

(2)

Here and are the center and spread, respectively, of the

bell shaped function representing a term of the linguistic vari-

able associated to node ( indicates the th term (fuzzy

set) of the linguistic variable ).
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As in [4], for feature selection, the output of this layer needs

to be modified. The activation function of any node in layer 2

is taken as

(3)

The justification behind (3) can be found in [4]. The tunable pa-

rameter associated with each input feature is called a fea-

ture modulator. s are learned by backpropagation. When

takes a large value then tends to and for small values of

, tends to 1, thereby making the feature indifferent. There-

fore, our objective would be to make take large values for

good features and small values for bad ones through the process

of learning. Up to this the functioning of the present network is

similar to that in [4].

In learning phase I, the parameters of the membership func-

tions are kept fixed and only the s are learned through error

backpropagation. In learning phase III, the s are kept fixed

and the membership function parameters are updated. Initially

we define the parameters of the membership functions in an

ad hoc manner. We choose an arbitrary number of fuzzy sets,

with considerable overlap between adjacent ones such that the

antecedents span the entire range of variability (bounding hy-

perbox) of the input features. This conservative initialization

strategy may require further optimization of the membership

function parameters, which is done in learning phase III.

Layer 3: This layer is called the antecedent layer. Each node

in this layer represents the IF part of a fuzzy rule. The number

of nodes in this layer is . There are many operators

for fuzzy intersection [22], [32] of which

and product are quite popular and have been widely used in

numerous applications. In [4] we used product as the operator

for intersection and got fairly good results. But we know that

for any , , . So use of product

as the intersection operator is counter-intuitive. To elaborate it,

consider two propositions with truth values and . It is not

natural to assume that they will produce a firing strength less

than . Let us consider a rule:

If is and is is then the class is .

Suppose, for an input each ,

, has a membership of 0.9 in the respective fuzzy set

, . Thus, for this input if product is used as the

operator for intersection then the firing strength of the rule will

be . So, the firing strength decreases exponentially with .

So, for a reasonably big , the firing strength reduces almost to

zero, though each of the input components has a high member-

ship of 0.9 in the corresponding fuzzy set. Therefore, the use of

product for intersection is not intuitively appealing. One might

wonder why did we (others also) get good results using product

in [4]. The answer lies in the defuzzification process. For ex-

ample, in the height method of defuzzification, the defuzzified

value is computed as a weighted sum of the peaks of the output

fuzzy sets, where the weights are the normalized values of the

firing strengths. The final output is, thus, computed as a convex

combination of the peaks of the output fuzzy sets. But in this

case such defuzzification methods cannot be applied. Conse-

quently, here we use as the operator for intersection. As

is not differentiable, for ease of computation many softer

versions of that are differentiable have been previously

used [2], [38]. We use the following soft version of which

we call :

As , tends to the minimum of all s,

. For our purpose we use in all results re-

ported. Note that, is not a as it does not

satisfy the criteria of associativity and identity. For our feature

selection task, the intersection operator must satisfy the prop-

erty of , which does possess for .

So, is compatible with our feature selection strategy

though it is not a . Thus, the output of the th node

in layer 3 is

(4)

where is the set of indexes of the nodes in layer 2 connected

to node of layer 3 and denotes the cardinality of .

Layer 4: This is the output layer and each node in this layer

represents a class. Thus, if there are classes then there will

be nodes in layer 4. The nodes in this layer perform an OR

operation, which combine the antecedents of layer 3 with the

consequents. According to the structure of the fuzzy rules that

we are concerned about, the consequent of a rule is a class with

a degree of certainty. Thus, the output of node in this layer

represents the certainty with which a data point belongs to class

. We classify a point to a class , if . The nodes

in layers 3 and 4 are fully connected. Let be the connection

weight between node of layer 3 and node of layer 4. The

weight represents the certainty factor of a fuzzy rule, which

comprises the antecedent node in layer 3 as the IF part and

the output node in layer 4 representing the THEN part. These

weights are adjustable while learning the fuzzy rules. The OR

operation is performed by some [22]. We use here the

operator. Thus the output of node in layer 4 is computed

by

(5)

where represents the set of indexes of the nodes in layer 3

connected to the node of layer 4. Since s are interpreted as

certainty factors, each should be nonnegative and it should

lie in [0, 1]. The error backpropagation algorithm or any other

gradient based search algorithm does not guarantee that

will remain nonnegative, even if we start the training with non-

negative weights. Hence, we model by . The is

unrestricted in sign but the effective weight will

always be nonnegative and lie in [0, 1]. Therefore, the output

(activation function) of the th node in layer 4 will be

(6)

Since it is enough to pick the node with the maximum value

of the product of firing strength and certainty factor, it is not

necessary to maintain in [0, 1]. The nonnegativity alone

would be enough. So we use .This also reduces
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the computational overhead on the network. Thus, (6) can be

modified to

(7)

Note that, in layer 4 we use the usual operator instead

of a differentiable soft version of . As is not differ-

entiable the update equations that we derive in the next section

have to be split for different conditions of the network. We could

have used a differentiable (soft) version of here too. But if

we use both soft version of and soft version of as ac-

tivation functions in two layers of the network, the update equa-

tions would become very complicated. Hence, we choose to use

the usual in this layer and a differentiable version of

in layer 3. The learnable weights are updated in all the three

learning phases.

III. LEARNING PHASE I: FEATURE SELECTION AND RULE

DETECTION

We now derive the learning rules for the neural-fuzzy classi-

fier with the activation or node functions described in the pre-

vious section. All the training phases use the concept of back-

propagation to minimize the error function

(8)

where is the number of nodes in layer 4 and and are the

target and actual outputs of node in layer 4 for input data ;

. In learning phase I the the learnable weights

between layer 3 and layer 4 and the parameters s in layer 2

are updated based on gradient descent search. We use online

update scheme and, hence, derive the learning rules using the

instantaneous error function . Without loss of generality we

drop the subscript in our subsequent discussions.

The delta value of a node in the network is defined as the

influence of the node output on . The derivation of the delta

values and the adjustment of the weights and s are presented

layer wise next.

Layer 4: The output of the nodes in this layer is given by (7)

and the value for this layer will be

Thus,

(9)

Layer 3: The delta for this layer is

Hence, the value of will be

if

otherwise.
(10)

Here is the set of indexes of the nodes in layer 4 connected

with node of layer 3.

Layer 2: Similarly, the for layer 2 is

Hence,

(11)

In (11) is the set of indexes of nodes in layer 3 connected

with node in layer 2.

With the calculated for each layer now we can write the

weight update equation and the equation for updating .

or

if

otherwise.
(12)

Similarly, we calculate

or

(13)

Here, is the set of indexes of nodes in layer 2 connected to

node of layer 1. Hence, the update equations for weights

and are

(14)

and

(15)

In (14) and (15), and are learning coefficients, which are

usually chosen by trial and error or one can use methods de-

scribed in [10], [30] for better choices.

The network learns the weights of the links connecting layers

3 and 4 and also the parameters associated with nodes in layer

2, which do the feature selection. The initial values of s can be

so selected that no feature gets into the network in the beginning

and the learning algorithm will pass the features, which are im-

portant, i.e., the features that can reduce the error rapidly.

A. Implicit Tuning of Membership Functions

The feature modulators not only help us to select good fea-

tures but also have an interesting side effect. They tune the mem-

bership functions to some extent. The output of a layer 2 node

is
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(a)

(b)

(c)

Fig. 2. Plot of ELONGATED. (a) Features 1–2 . (b) Features 2–3. (c) Features
1–3.

where

and .

Note that, is also a Gaussian function with mean and

spread because

(16)

where

(17)

The feature modulators, thus, tune the spread of the input mem-

bership functions and retain their Gaussian nature.

At this point a natural question may come: why are we not

tuning the parameters of the membership functions at this phase

of training? There are two reasons. First, tuning of spreads of

the membership functions although can reduce the misclassi-

fications, it cannot do the task of feature selection. Tuning of

membership function parameters refines each rule to reduce the

classification error, while for elimination of a feature the spreads

of all membership functions defined on that feature need to

be modified. Second, simultaneous tuning of modulator func-

tions and the parameters like mean and spread of membership

functions is not desirable. Because, tuning of modulator func-

tion looks at all membership functions defined on a feature as

a whole, while the tuning of membership function parameters

tries to improve the performance of a rule, i.e., tunes parame-

ters of the membership functions considering each rule sepa-

rately. As a result, if both modulator functions and membership

function parameters are tuned, the learning process may become

unstable. Therefore, tuning of parameters of membership func-

tions should be done after feature elimination (i.e., after tuning

of the modulator functions). Consequently, tuning of member-

ship function parameters are done in learning phase III which is

discussed later.

Next we discuss strategies to prune the network to make it

more readable.

IV. LEANING PHASE II: PRUNING OF REDUNDANT NODES AND

FURTHER TRAINING

We started with a network which represented all possible

rules. But all possible rules usually are never needed to represent

a system. Moreover, the modulator functions associated with the

second layer nodes, may decide that all features present are not

really important. Hence, some of the nodes present in the net-

work may be redundant. The presence of these redundant nodes

will decrease the readability/interpretability of the network and

add to its computational overhead. Also as per our formulation

each node in layer 3 is connected with all nodes in layer 4, and

this gives rise to incompatible rules that need to be removed.

Further, here we used fuzzy sets which covered the total domain

of each feature, thus the antecedents cover the entire hyperbox

that bounds the data. The training data may (usually will) not

be distributed even over the smallest hyperbox containing the

data. Consequently, there may be some rules which are never

fired by the training data. Such rules, which are not supported

by the training data could be harmful. The certainty factors of

such rules can be erratic and they can lead to bad generalization.

So, it is necessary to get rid of redundant nodes, incompatible

rules and less used rules.
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TABLE I
SUMMARY OF THE DATA SETS

TABLE II
FREE PARAMETERS OF THE NETWORK

A. Pruning Redundant Nodes

Let us consider a classification problem with input features.

So layer 1 of the network will have nodes. Let the indexes of

these nodes be denoted by . Let be the set

of indexes of the nodes in layer 2, which represents the fuzzy

sets on the feature represented by node of layer 1. We also

assume that of the features are indifferent/bad as

dictated by the training. Let be the set of indexes of the

nodes, representing the indifferent/bad features. Hence, any

node with index in layer 1 such that is redundant. Also

any node in layer 2, where and is redundant. In

[4] we provided a scheme to prune redundant nodes in layer 1

and layer 2. The same scheme is applicable here. After pruning

of the redundant nodes a few epochs of training is required in the

reduced architecture for the network to regain its performance.

The selection of a redundant feature depends on the value

of . A feature is considered redundant and

consequently a member of the set , if , where is

a threshold. It was shown in [4] that is a reasonable

value for the threshold. Please refer to [4] for the details.

After pruning the redundant nodes, the certainty factor of the

rules are further tuned using (14). Phase II training ends, once

the values of stabilize.

V. LEARNING PHASE III: PRUNING OF INCOMPATIBLE RULES,

LESS USED RULES, AND ZERO RULES AND FURTHER TRAINING

In phase III, the network is pruned further and the certainty

factors of the rules are again tuned. In this last phase of training

the parameters of the membership functions are also tuned. The

details are presented in the following subsections.

A. Pruning Incompatible Rules

As per construction of our network, the nodes in layer 3 and

layer 4 are fully connected and each link corresponds to a rule.

The weight associated with each link is treated as the certainty

factor of the corresponding rule. If there are classes then layer

4 will have nodes and there will be rules with the same an-

tecedent but different consequents, which are inherently incon-

sistent.

Suppose layer 3 has nodes (i.e., antecedents) and

layer 4 has nodes (thus, consequents or classes). Each

node in layer 3 is then connected to nodes in layer 4. The

link connecting node of layer 3 and node of layer 4 has a

weight associated with it, which is interpreted as the cer-

tainty factor of the rule represented by the link. For each node

in layer 3 we retain only one link with a node in layer 4 that

has the highest certainty factor associated with it.

B. Pruning Zero Rules and Less Used Rules

After removal of the incompatible rules each node in layer

3 is connected with only one node in layer 4. Suppose node

in layer 3, which is connected to a node in layer 4, has a

very low weight (we take ). Then,

the rule associated with the node pair and has a very low

certainty factor and it does not contribute significantly in the

classification process. We call such rules as Zero rules. These

rules can be removed from the network. In fact such rules should
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TABLE III
USER DEFINED PARAMETERS

be removed from the network as we do not like to make any

decision with a very low confidence. Removal of a zero rule

means removing a node in layer 3 along with its links.

Further, as discussed earlier, our network starts with all pos-

sible antecedents which cover a hyperbox bounding the data.

Hence, there may (usually will) be rules which are never fired

or fired by only a few data points. Such rules are not well sup-

ported by the training data and will result in bad generalization.

We call such rules as less used rules and they should also be

removed. As per the structure of our network, the class label

of a point is decided by only one rule. Thus, there may be rules

present in the network which never takes part in decision making

or makes decision for only a very few points. These rules repre-

sent parts of the input space which are not supported by training

data or they represent outliers. These rules are bad rules and

can lead to bad generalization. To remove these rules, for each

antecedent node (note that at this stage, an antecedent rep-

resents an unique rule) we count the number of data points ,

for which makes the decision. If is less than then we

consider node as well as the rule represented by it as inad-

equately supported by the training data. Every such node in

layer 3 along with its links can be removed. The choice of is

related to the definition of outliers. In this study unless a rule

represents at least three points, we take it as a less-used rule and

delete it.

C. Tuning Parameters of the Reduced Rule Base

The network (rule base) obtained after pruning of the redun-

dant nodes, less used rules and the zero rules is considerably

smaller than the initial network with which we began. The pa-

rameters of the membership functions of this reduced rule base

are now tuned to get a better classifier performance. The up-

date equations for the centers and the spreads of the member-

ship functions can be written as

(18)

TABLE IV
NUMBER OF FUZZY SETS FOR EACH FEATURE FOR ELONGATED

and

(19)

Here

(20)

and

(21)

where is the feature related to node of the second layer and

is a predefined learning constant.

The update equations (18) and (19) are applied iteratively

along with (14) till there is no further decrement in the error

defined by (8). We emphasize that in this phase of training the

values are not updated. As discussed earlier, tuning of the fea-

ture modulators along with the membership function parameters

may make the training unstable.

VI. SIMULATION RESULTS

A. The Data Sets

The methodology is tested on four data sets and the results

obtained on them are quite satisfactory. Of the four data sets,

one is a synthetic data set named ELONGATED and other three

are real data sets named IRIS, PHONEME, and RS-DATA.

ELONGATED [31] has three features and two classes, the

scatterplots of features 1–2, 2–3, and 1–3 are shown in Fig. 2.
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(a)

(b)

(c)

Fig. 3. Fuzzy sets used for ELONGATED. (a) Feature 1. (b) Feature 2. (c)
Feature 3.

These plots show that features 1 and 2 or features 2 and 3 are

enough for the classification task. Thus, any one of these two

combinations is adequate to solve the problem. IRIS [1] is a data

set with four features and three classes. It is well known that for

IRIS features 3 and 4 are enough for the classification task [3].

The PHONEME data set contains vowels coming from 1809

isolated syllables (for example: pa, ta, pan, ) in French and

Spanish language [24], [52]. Five different attributes are chosen

to characterize each vowel. These attributes are the amplitudes

of the five first harmonics AHi, normalized by the total energy

Ene (integrated on all frequencies), AHi/Ene. Each harmonic is

signed positive when it corresponds to a local maximum of the

spectrum and negative otherwise. The Phoneme data set has two

classes, nasal and oral.

The RS-DATA [23] is a satellite image of size 512 512

pixels captured by seven sensors operating in different spec-

TABLE V
INITIAL ARCHITECTURE OF THE NETWORK USED TO CLASSIFY ELONGATED

TABLE VI
VALUE OF    FOR DIFFERENT INPUT FEATURES FOR ELONGATED

tral bands from Landsat-TM3. Each of the sensors generates

an image with pixel values varying from 0 to 255. The 512

512 ground truth data provide the actual distribution of classes

of objects captured in the image. From these images we pro-

duce the labeled data set with each pixel represented by a 7-D

feature vector and a class label. Each dimension of a feature

vector comes from one channel and the class label comes from

the ground truth data.

We divide each data set into training and test

sets, such that and . For

ELONGATED, IRIS and PHONEME the training and test divi-

sions were made randomly. For RS-DATA we created a training

sample containing exactly 200 points from each class. The sum-

mary of the data sets used is given in Table I.

B. The Implementation Details

Before we present the results we discuss a few implemen-

tational issues. The network contains the feature modulators

( s), the certainty factor of the rules ( s) and the mem-

bership function parameters ( and ) as free parameters.

The initial values of s are set to 0.001; so, initially the net-

work considers all features to be equally unimportant. The ini-

tial values of the certainty factor of the rules, i.e., the weights

of the links between layer 3 and layer 4 are all set to 1.0, which

signifies that initially all rules have the same certainty factor.

For the initial values of the membership function parameters, for

each feature we choose an arbitrary number of equidistant fuzzy

sets with considerable overlap between adjacent ones. These

fuzzy sets span the entire domain of the feature. The choice of

fuzzy sets may have considerable influence on the performance

of the classifier. For one data set with complex class structures

we use exploratory data analysis to get the initial network struc-

ture. It is possible to design more elaborate methods using clus-

tering and cluster validity indexes to decide the initial member-

ship functions. For some such methods, readers can refer to [35],

[40]. Since the thrust of this paper is to establish the utility of in-

tegrated feature selection and classifier design in a neuro-fuzzy

framework, we do not pursue the issue of network initialization

further. Table II depicts the list of the free parameters with their

meanings and initial values.

Other than the free parameters the network also contains

some user defined parameters. The learning parameters and
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Fig. 4. The rules for classifying ELONGATED.

TABLE VII
THE LINGUISTIC RULES FOR ELONGATED

and are differently chosen for different data sets. For all

the data sets, as explained earlier, is taken as 3, as 0.05,

and as 0.001. Table III gives the values of all user defined

parameters of the network. Other than the learning coefficients,

users can use the values suggested in Table III. For the learning

coefficient, as done in all gradient based learning schemes,

either one can use a trial and error method or schemes discussed

in [10], [13], [30], [49], [50]. A simple workable solution is to

keep a snap-shot of all learnable parameters before an epoch

starts and use a high value (say 1) of the learning coefficient. If

the average error after an epoch is found to increase, then the

learning constant is decreased by an amount, say 10% of the

present value and the learning is continued after resetting the

learnable parameters using the snap-shot.

C. Results

1) Results on ELONGATED: The number of fuzzy sets used

for each feature for this problem is shown in Table IV and the

actual fuzzy sets used are depicted in Fig. 3. The initial archi-

tecture is shown in Table V.

After only 100 iterations, the number of misclassifications on

the training set were reduced to 0. The values of after

100 iterations are depicted in Table VI. Table VI shows that

the network selects features 1 and 2 and rejects the third fea-

ture. Consequently the network is pruned for redundant nodes.

After pruning the network retains its performance, i.e., produces

a misclassification of 0 on .

Initially, the network had 36 antecedent nodes. Hence,

it had . After pruning of the redundant
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(a)

(b)

(c)

(d)

Fig. 5. Fuzzy sets used for IRIS. (a) Feature 1. (b) Feature 2. (c) Feature 3. (d)
Feature 4.

nodes the number of antecedent nodes becomes 12; hence,

at this stage the number of rules is . Next, the

incompatible rules are pruned to obtain 12 rules. Finally,

one rule is found to be less used and hence removed. Thus,

the final architecture represents 11 rules as shown in Fig. 4.

In Fig. 4 the 11 ellipses represent the 11 antecedent clauses.

The coordinates of the center of an ellipse correspond to

the centers of the two bell shaped fuzzy sets that form the

antecedent clause. The major and minor axes of the ellipses

are equal to twice the spreads of the respective fuzzy sets.

For antecedent clauses of rules representing a particular class

we use a particular type of line to draw the corresponding

ellipses. For example, in Fig. 4, the continuous line is used

to represent class 1 and the dotted line for class 2. The

linguistic rules read from the network are shown in Table VII.

The final network produces a misclassification of 0 on as

well as on .

2) Results on IRIS: Here we used three fuzzy sets for each of

the four features. The fuzzy sets are shown in Fig. 5. The initial

architecture for the network is shown in Table VIII.

After 300 epochs, the values stabilized and the number of

misclassifications produced on the training set was 3. The

values of after 300 iterations are shown in Table X,

which suggests that only features 3 and 4 are important. Hence,

we prune the redundant nodes. After pruning, the network still

produces three misclassifications on .

In this case the initial network had 81 antecedent nodes re-

sulting in . After pruning of the redundant

nodes the number of antecedent nodes becomes 9, hence, at this

stage the number of rules is . Next, the incompat-

ible rules are pruned to obtain nine rules. For IRIS we found

four less used rules and we removed them. The final architec-

ture represented only five rules that are depicted in Fig. 6 and

the corresponding linguistic rules are shown in Table XI. In Iris

data features 3 and 4 represent petal length and petal width of iris

flowers, respectively. In Table XI pl and pw represent the petal

length and petal width, respectively. The final network again

produces a misclassification of 3 on the training set and

1 on the test set . This clearly suggests that pruning neither

degrades the performance on the training data nor the general-

ization capability of the system.

We also trained our network with all the 150 points. In this

case too we obtained just the same results in terms of features

selected and misclassification, i.e., we obtained a misclassifica-

tion of 4 on the entire data set.

There are many results available on Iris data in the literature.

Table IX (adopted from [43])shows the best resubstitution ac-

curacy for some rule based classifiers. From Table IX it is clear

that FuGeNeSys and SuPFuNIS show the best results using five

rules. We obtain a resubstitution accuracy of 97.3% with five

rules which is better than all others in Table IX leaving out Fu-

GeNeSys and SuPFuNIS. Note that, all results in Table IX are

obtained by using all four features, but our classifier uses only

two features. In [7], Chiu uses only two features, i.e., features

3 and 4 to develop a classifier. The features considered by Chiu

are the same as those selected by our classifier. Chiu reports a

training error of 3 and a test error of 0 on a training test partition

of 120 30 using only three rules. This is of course better than

the result obtained by us, but we do not know the training test

partition used in [7].
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Fig. 6. The rules for classifying IRIS.

TABLE VIII
INITIAL ARCHITECTURE OF THE NETWORK USED FOR IRIS

TABLE IX
BEST RESUBSTITUTION ACCURACY FOR IRIS DATA FOR DIFFERENT

RULE BASED CLASSIFIERS

TABLE X
VALUE OF    FOR DIFFERENT INPUT FEATURES FOR IRIS

3) Results on PHONEME: Like IRIS, here also we used

three fuzzy sets for each feature. Fig. 7 shows the membership

functions used. In this case for each feature we used the same

membership functions. The initial architecture of the network is

presented in Table XII.

On termination of phase I, the number of misclassifications

on was reduced to 85. The values of after phase

I training (Table XIII) reveal that the network rejects only the

fifth feature. The network is accordingly pruned for redundant

nodes. In this case too, the network can retain its performance

after pruning, i.e., produces the same misclassification of 85 on

.

Pruning of redundant nodes reduces the number of antecedent

clauses to 81. The removal of incompatible rules consequently

yields 81 rules. Among these 81 rules 32 rules were zero rules

and there were no less used rules. Therefore, the final network

represented 49 rules. After phase III training the number of mis-

classifications on was 75(15%). This shows that tuning of

membership function parameters enhances the performance of

the classifier in this case. The misclassifications produced on

by the final network was 898(18.3%).

This data set has been extensively studied in [24] and the

average misclassifications reported there on this data set using

MLP are 15.40% on the training data and 19.63% on the

test data. Using Radial Basis Function networks, the average

training and test error were 19.9% and 22.48%, respectively

[24]. Thus our results are quite comparable (in fact a little

better) than the previously reported results.

4) Results on RS-Data: In all previous results reported, we

selected the initial architecture of the network arbitrarily. Such

initial networks may not yield good results in case of complex

class structures. Also blind selection of initial networks may

make the network too large and learning on such networks may

become computationally very expensive. This problem becomes

more severe when the number of features and number of classes

are large. We demonstrate this problem in this example. We shall
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TABLE XI
LINGUISTIC RULES FOR IRIS DATA

Fig. 7. The fuzzy sets used for all the five features of PHONEME.

TABLE XII
INITIAL ARCHITECTURE OF THE NETWORK USED TO CLASSIFY PHONEME

TABLE XIII
VALUE OF    FOR DIFFERENT INPUT FEATURES FOR PHONEME

TABLE XIV
VALUE OF    FOR DIFFERENT INPUT FEATURES FOR RS-DATA

TABLE XV
NUMBER OF FUZZY SETS FOR REDUCED RS-DATA

also discuss a methodology for deciding on the initial network.

Most neuro-fuzzy techniques reported in literature do not pay

adequate attention on the setting up of the initial network. The

methodology that we discuss here is not a very general one, but

it worked well with the present data set. More investigations are

required in this area to evolve a general guideline for choosing

the initial network.

The data set in question has seven input features and eight

classes. With three fuzzy sets for each input feature, the number

of antecedent nodes becomes 2187. After 100 iterations the

values of the feature modulators almost stabilized and the

values (as shown in Table XIV) suggest that features 2 and 6

are not important.

So, we discard these two unimportant features. Note that, the

network is still quite big and also the use of only three fuzzy sets

for each feature may not be adequate. So we now try to exploit

some tools of exploratory data analysis to get a better initial

network. The rest of the analysis is done on the remaining five

features, we call this data set as REDUCED RS-DATA. For each

class of the data we run the fuzzy c means (FCM) algorithm [3]

with fuzzifier 2 and number of clusters 3. The number of clusters

were determined in an ad hoc manner, but one may use some

cluster validity index [3] to determine the “optimal” number of

clusters. Thus, we obtained 3 prototypes for each class (in total

24 prototypes) in . Let , where

to 24, be the prototypes. Let be the

set of data points represented by the prototype . Here is

obtained from the final partition matrix of the FCM algorithm.

Let ; to be the points in .

For each and to 5, we calculate

(22)

For each feature ( to 5), we take ( to 24), as the

center and as the spread of a bell shaped fuzzy membership

function. In this way, for each feature we obtain 24 fuzzy sets.

For each feature , if , and if ,

we discard the fuzzy set with center , otherwise we discard

the fuzzy set with center . This is quite a natural choice as

the peaks of two adjacent fuzzy sets should be at least two gray

levels apart. The final number of fuzzy sets for each feature that

we arrived at after this process is shown in Table XV.

Of all the rules represented by this network, we find only

132 antecedents producing a firing strength of more than 0.1 for

more than three points. We retain only these 132 antecedents
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TABLE XVI
PERFORMANCE AND RULE REDUCTION OF THE PROPOSED SYSTEM

which are supported by more than three data points. This drasti-

cally reduces the size of the network, yet there may be many

redundant antecedents as we still allowed some weakly sup-

ported rules. We took this conservative approach with the hope

that some of the weakly supported rules may become useful

after tuning. So, we train a network with 132 antecedents (i.e.,

) discarding all other antecedents at the

onset of training. After pruning of the incompatible rules we ar-

rive at a network representing 132 rules. Out of these 132 rules

we found 41 as less used. Thus, the final network represents 91

rules. This network gives a misclassification of 18.31% on the

training data and 17.39% on the test data. RS-DATA was used

by Kumar et al. [23] in a comparative study of different classifi-

cation methods. The best results obtained by them using a fuzzy

integral based scheme showed a misclassification of 21.85% on

the test set. Our results with a reduced set of features outperform

their results.

Table XVI summarizes the results on the various data sets

used. It clearly shows a good performance of the proposed

system.

VII. CONCLUSION

We proposed a new scheme for designing fuzzy rule based

classifier in a neuro-fuzzy framework. The novelty of the system

lies in in the fact that the network can select good features along

with the relevant rules in an integrated manner. The network

described here is also completely readable, i.e., one can easily

read the rules required for the classification task from the net-

work. The network starts with all possible rules and the training

process retains only the rules required for classification, thus re-

sulting in a smaller architecture of the final network. The final

network has a lower running time than the initial network. The

proposed method is tried on four data sets and in all four cases

the network could select the good features and extract a small

but adequate set of rules for the classification task. For one

data set (Elongated) we obtained zero misclassification on both

training and test sets and for all other data sets the results ob-

tained are comparable to the results reported in the literature.

For further development of the methodology, some special-

ized tools of exploratory data analysis may be used to decide

upon the number and definition of the input fuzzy sets. To some

extent we did it in case of RS-DATA. But the method suggested

to analyze RS-DATA needs further refinement and modifica-

tions to make it general in nature.

Another important problem of interest related to this may be

to find the sensitivity of the output of a neuro-fuzzy classifier

with respect to its internal parameters. The classifier described

here is sensitive to the changes in the parameters of the mem-

bership functions and the certainty factors of the rules. We are

currently working on this and hope to communicate our findings

soon.
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