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Abstract—The notion of a logically routed network was de-
veloped to overcome the bottlenecks encountered during the
design of a large purely optical network. In the last few years,
researchers have proposed the use of forus, Perfect Shuffle,
Hypercube, de Bruijn graph, Kautz graph, and Cayley graph as an
overlay structure on top of a purely optical network. All these
networks have regular structures. Although regular structures
have many virtues, it is often difficult in a realistic setting to
meet these stringent structural requirements. In this paper, we
propose generalized multimesh (GM), a semiregular structure, as
an alternate to the proposed architectures. In terms of simplicity
of interconnection and routing, this architecture is comparable
to the forus network. However, the new architecture exhibits
significantly superior topological properties to the torus. For ex-
ample, whereas a two-dimensional (2-D) torus with /N nodes has a
diameter of ®(IN°®), a generalized multimesh network with the
same number of nodes and links has a diameter of ® (IN°-2%),

In this paper, we also introduce a new metric, flow number, that
can be used to evaluate topologies for optical networks. For optical
networks, a topology with a smaller flow number is preferable, as
it is an indicator of the number of wavelengths necessary for full
connectivity. We show that the flow numbers of a 2-D torus, a mul-
timesh, and a de Bruijn network, are ® (N*-%), ®(N*2%), and
®(N log N), respectively, where IN is the number of nodes in the
network. The advantage of the generalized multimesh over the de
Bruijn network lies in the fact that, unlike the de Bruijn network,
this network can be constructed for any number of nodes and is
incrementally expandable.

Index Terms—De Bruijn graph, flow number, multihop net-
works, multimesh (MM), optical networks, torus.

I. INTRODUCTION

PTICAL networks use interconnection of high-speed

broadband fibers to transmit information. These networks
support lightpaths, which are end-to-end communication paths
passing through one or more fibers, using one wavelength divi-
sion multiplexing (WDM) channel per fiber. Optical networks
can be divided into two classes—single hop and multihop.
Scalabilty of purely optical networks is a limiting factor that
hinders the design of single-hop networks with a large number
of nodes. As shown in [27], whereas a bidirectional ring

using wavelength-routed point-to-point optical connections
with seven nodes needs only six transceivers and six optical
wavelengths per station, the number of required transceivers
and wavelengths grows to 21 and 61, respectively, if the number
of nodes is increased to 22. The notion of logically routed
networks (also known as multihop networks) was introduced to
alleviate this problem [1].

An important objective in a single-hop network design is to
minimize the total number of carrier wavelengths needed for
communication among various end stations. To realize high
throughput, a multihop optical network must ensure that the
average delay due to buffering at the intermediate nodes is
small. Ideally, a network topology should be incrementally
scalable, should have a simple routing strategy, and should be
able to communicate even in the presence of node and link
failures. The topological design of optical networks, both for
logical and for physical connections, has been considered in
[2], [15], [20], and [22] and includes the Torus (or Manhattan
Street Network) [16], [17], the Perfect Shuffle (or ShuffleNet)
[12], the Hypercube [6], the de Bruijn graph [26], the Cayley
graph (or CayleyNet) [28], the Kautz graph [19], and the
GEMNET [18]. None of the proposed topologies satisfies all
these orthogonal, if not conflicting, requirements [18], [22].

In this paper, we introduce a new overlay architecture called
generalized multimesh (GM) and compare its performance with
two other architectures, the torus and the de Bruijn graph. The
GM is a generalization of the multimesh (MM) architecture pro-
posed for parallel processing systems [4], [S]. The MM structure
is defined for n* nodes for any integer n. Because it is difficult
to satisfy such a stringent requirement on the number of nodes,
in a LAN/MAN/WAN environment, we have generalized this
architecture so that it can be defined for any number of nodes
N, 1 < N < n*, for some integer n. The new architecture is
also incrementally expandable, i.e., an N node network can be
extended to an V+1 node network without a major reconfig-
uration of the existing structure, if N < n*. It may be noted
that although the authors in [29] refer to the network discussed
in their paper as the multimesh network, in the research com-
munity this network is known as the Manhattan Street Network
[16], [17]. The MM network in this paper refers to the network
proposed in [4] and [5].

The architecture proposed in this paper can be used as both
a physical and a logical topology for optical networks. In terms
of simplicity of interconnection and routing, the architecture is
comparable to the regular mesh and the torus. However, it ex-
hibits significantly superior topological properties to the mesh
and the torus. For example, whereas a two-dimensional (2-D)
torus with IV nodes has a diameter of ©(/N°%), a GM network
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with the same number of nodes and links has a diameter of
O(NO-25),

Because two different lightpaths cannot be assigned the same
WDM channel if they share the same fiber [18], the demand
for the number of channels per fiber will be higher if many
lightpaths have to share the same fiber. As the length of the
source-destination path is bounded by the diameter (distance
between two nodes of the network that are furthest from each
other), one might be inclined to think that the demand for the
number of channels per fiber will be low, if the network topology
has a small diameter. However, this is not necessarily true; even
in a small-diameter network, because of the topology, a large
number of lightpaths may be forced to travel through a small
number of fibers, thereby increasing the demand for the number
of channels in those fibers.

At present, there is no graph theoretic metric to evaluate this
aspect of a network topology. To address the need for such a
metric, we have also introduced the notion of flow number. This
metric supplements the currently used metrics such as the di-
ameter and the connectivity of evaluation network topology. Al-
though this metric is particularly useful in evaluating topologies
for optical networks, the concept is useful in any network. A
topology with a low flow number is more suitable for lightwave
applications than a topology with a high flow number. We show
that the flow numbers of a 2-D torus, a MM, and a de Bruijn
network are O(N1?), ©(N1-2%), and ©O(N log V), respectively,
where NV is the number of nodes in the network. The advantage
of a GM over a de Bruijn network lies in the fact that, unlike
the de Bruijn network, this network can be constructed for any
number of nodes and is incrementally expandable.

II. THE GENERALIZED MULTIMESH ARCHITECTURE

The GM architecture is an extension of the MM interconnec-
tion network [4], [5]. The interconnection pattern in MM is a
modification of the simple mesh connection. In an n X n mesh,
the processors are arranged in n rows and n columns. The MM
uses this as a building block for the construction of the network.
The idea is to use n? such blocks arranged again in n rows and n
columns, as shown in Fig. 1. Thus, an MM network has exactly
n* nodes. Each of these n* nodes is identified with a four-tuple
label (o, 3, , y). The first two (v, /3) identifies the block and
the last two (z, y) identifies the node within a block. Each of
these coordinates can take a value between one and n (both in-
clusive).

MM Interconnection: The n X n nodes within each block are
connected as a regular 2-D mesh. The interblock connections are
made using the following rules:

Rule 1) V3, 1 < 8 < n, the node («, /3, 1, y) is connected
to the node (y, /3, n, &) where 1 < y, « < m.

Rule2) Vo, 1 < o < n, the node (e, 3, x, 1) is connected
to the node (v, z, 3, n), where 1 < z, 3 < n.

It may be observed that the interconnection rules given above
generate a regular topology where the degree (the number of
edges incident on a node) of each node is four. An MM network
with 81 nodes is shown in Fig. 2.
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Fig. 1. Blocks in an MM network.

Fig. 2.
clarity).

MM network with 81 nodes (not all interblock links are shown for

A. GM Interconnection

The GM network can be constructed for any specified
number of nodes IV for a specified block size n, 1 < N < n,
The construction mechanism is as follows: the GM will have
m = [N/n?] blocks. The blocks will be arranged in rows and
columns in a block array, as shown in Fig. 3.

There will be p = [m/n] rows, with each row having at
most n blocks. The last row of blocks may be partially com-
plete with ¢ = mod(m, n) blocks, ¢ > 0. Every other row
will have n complete blocks, each with n x n = n? nodes. All
blocks in the last row is a complete block except, possibly, the
qth block, which will have N modn2, N modn? > 0 nodes.
The gth block will have r = [Nmod n?/n] rows with the first
r7—1 rows having exactly n nodes. The rth row within the gth
block will have s nodes, where s = n if N modn = 0; oth-
erwise, s = N modn. This implies that the four-tuple label of
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Fig. 3. Blocks in a generalized MM network.

node N is (p, g, 7, s). As in the MM network, the nodes within
a block are connected as a regular 2-D mesh. To describe the
connections between the nodes in different blocks, the following
four functions—top(«, 3, i), bottom (e, f3, 1), left(a, 3, ©),
right(c, 3, i)—are used. The parameters (v, 3) in these func-
tions identify the block and the parameter ¢ identifies a row or a
column within the block.

1) If the ¢th column in the block has at least one node, then
top(e, f3, i) is the node in row 1, column 4. Otherwise, it
is not defined.

2) If the ¢th column in the block has at least one node, then
bottom(c, 3, ¢) is the ith column node in the highest
indexed row that has at least z nodes. Otherwise, it is not
defined.

3) If the ith row in the block has at least one node, then
left(w, B, t) is the node in row ¢, column 1. Otherwise,
it is not defined.

4) If the 7th row in the block has at least one node, then
right(c, B3, 1) is the highest indexed column node in row
1. Otherwise, it is not defined.

Example: Let the incomplete block shown in Fig. 4 be in the
third row and the second column of the array of blocks, i.e.,
a = 3,8 = 2. Then top(3, 2, 1) = 1, top(3, 2,4) = 4,
bottom(3, 2, 1) =9, bottom(3, 2, 4) = 8, left(3, 2, 1) = 1,
left(3, 2,3) =9,left(3, 2, 4) is undefined, right(3, 2, 1) =
4, right(3, 2, 3) = 10, and right(3, 2, 4) is undefined.

The following observations follow directly from the defini-
tions of top and bottom.

Observation 1) If a block has at least ¢ nodes, top(«, 3, i) as
well as bottom(cv, f3, @) are defined. Otherwise, they
are not defined.

Observation2) If a block has x nodes, 1 < =z < n + ¢,
top(a, B3, i) = bottom(«, 3, 7).

Observation 3) Ifa block currently has z nodes, i < z < n?,
and we add more nodes to the block (keeping in mind
that a block can never have more than n2 nodes). The
value of top(«x, 3, ¢) does not change but the value of
bottom(c, 3, i) will change if the number of nodes in
the ¢th column changes.

Observation4) top(«, 3, 4) is defined if and only if
bottom(a, 3, i) is defined.
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Fig. 4. Incomplete block with 10 nodes.

A similar set of observations can be made for left(«, 3, 7)
and right(a, (3, ¢). The interconnection rules between the
nodes in different blocks are given next.

Rule1.1) If the node top(x, 3, o) exists, then
bottom(c, 3, ) is connected to the node
top(z, 3, ).

Rule 1.2) If the node top(z, /3, &) does not exist and the
node top(a+ 1, 3, ) exists, then bottom(cv, 3, x) is
connected to the node top(« + 1, 3, z).

Rule 1.3) If the node top(x, 3, o) as well as the node
top(o + 1, 3, z) do not exist, then bottom(«, 3, x)
is connected to the node top(i, 3, x), where 7 is the
lowest indexed row for which top(i, 3, ) is not
connected using Rule 1.1).

Rule2.1) If the node left(a, z,3) exists, then
right(c, 3, ) is connected to the node le ft(«, z, ).

Rule 2.2) If the node left(c, x, 3) does not exist and the
node left(a, B + 1, x) exists, then right(«, 3, x) is
connected to the node left(c, 3+ 1, z).

Rule2.3) If left(e, z, ) as well as left(w, B + 1, ) do
not exist, then right(c, 3, ) is connected to the node
left(w, i, ), where ¢ is the lowest indexed column for
which left(c, ¢, x) is not connected using Rule 2.1).

In general, a node having a four-tuple («, /3, x, y) is con-
nected to the nodes («, 3, z+1, v), (o, B3, z, y+1), (e, 3, x—
1, ), (e, B, z, y — 1), if they exist in block («, 3). If a node
is not in the first row, the last row, the first column, or the last
column, all these nodes exist and the node has a degree of four. If
anode having a four-tuple (<, 3, x, ) is on the periphery (first
row and/or last row and/or first column and/or last column), this
node is used as the top («v, /3, ¢) and/or bottom («, /3, j) and/or
left («r, 3, k) and/or right (v, 3, 1) for some ¢, j, k, . For each
of these cases, we have defined the node (possibly in a different
block) that will be connected to the node («, /3, x, ). There-
fore, the degree of each node is four.

It may be noted that the MM network is a special case of
the GM network where the number of nodes N = n* is for
some integer n. In this case, the nodes like top(x, 3, «) and
left(a, z, ) always exist, and as such, only Rules 1.1) and
2.1) are used for constructing the network. A GM network with
44 nodes is shown in Fig. 5.

B. Expansion in a GM Network

As mentioned earlier, the GM network can be constructed for
any number of nodes /V for a specified block size n, 1 < N <
n*. In addition, an N node GM network can be expanded to
an N+1 node GM network without a major reconfiguration if
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Fig. 5. GM network with 44 nodes.

N 41 < n*. The choice of n is somewhat critical because the
effort for reconfiguration can be significant if N 41 > n*. This
implies that n should be large enough so that this scenario is
never encountered. The underlying assumption is that the net-
work designer has a pretty good idea as to how large the network
can grow in the future. If the designer feels that the network
when it grows to its maximum size will have at most M nodes,
then during the design stage he chooses 7 as the smallest integer
such that M < n*. If n is chosen this way, the effort for recon-
figuration during augmentation of the network from /V nodes to
N+1 nodes is minimal. When a new node is added, clearly it
has to be connected to four of its neighbors. Because of these
new connections, some of the old connections may have to be
removed. However, the number of old connections that have to
be removed is at most four and in many cases even less than
that. In Figs. 5-7, we have shown how a 44-node network can
be expanded to 45 and 46 nodes, respectively.

The assumption that the network designer would have a good
idea as to how large the network can grow in the future seems
reasonable, as no network is designed with unlimited capacity.
The reconfiguration needed for the augmentation of this net-
work is simple because no more than four links have to be re-
moved for this purpose.

In summary, the main advantages of the GM are that 1) such a
network can be constructed for any number of nodes and 2) it is
incrementally expandable in the sense that an N node network
can easily be augmented to an N+1 node network. This incre-
mental expansion possibility of GM makes it very attractive for
use in a LAN/MAN/WAN environment where the number of
nodes undergoes frequent changes.

III. THE CONNECTIVITY OF MULTIMESH ARCHITECTURE

The survivability issues in IP over WDM networks are be-
coming increasingly important [8]. The survivability schemes
that are considered belong to two broad classes: protection
and restoration. A number of lightpath protection schemes
have been proposed. In one scheme [7], a dedicated backup
channel is provisioned for each primary channel requiring high
availability. The lightpath used by the primary channel has to
be completely edge (node) disjoint from the one used by the
secondary channel, so that no single failure of link or optical
cross-connect can disable both the primary and the secondary
channel simultaneously. However, the number of edge (node)
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Fig. 6. GM network with 45 nodes.
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Fig. 7. GM network with 46 nodes.

disjoint paths that exist between a pair of nodes is dependent
on the topology of the network. In this section, we show that
the MM network has the maximum connectivity that a regular
graph with a node degree of four can offer.

An MM network is a regular graph with a node degree of four.
The node connectivity between a pair of nodes in a graph is the
number of node disjoint paths between these nodes. The rnode
connectivity of a graph is the minimum of the node connectivity
over all pairs of nodes. Since the degree of each node in an MM
is four, it is clear that the upper bound of connectivity of MM is
four. In this section, we show that in an MM network, this upper
bound is indeed realized, i.e., the connectivity of MM is four.

Theorem 1: The connectivity of MM network is four (n >
3).

Proof: We show that there exists four node disjoint paths
between the nodes (a1, f1, 1, y1) and (az, 2, z2, y2) for
any value of (g, f1, 21, 1) and (ae, f2, x2, y2). We consider
a general situation with «v; # a and 31 # (32. The cases where
1) ] = 2 and /31 75 /32, 2) [e5] ;é (&) and /}1 = /}2, and
3) @1 = s and 31 = [F2 can be treated similarly and are not
shown in this paper for brevity. The four disjoint paths between
the nodes (a1, A1, 1, y1) and (a2, B2, T2, y2) are shown in
Fig. 8 (Vi, o; = a; and 3; = b; in the figure). The four node
disjoint paths are as follows.

Path1) (a1, A1, 1, Y1) _

— (alv /317 /337 71) —

(ala /317 Z1, ’IL)
(a1, B3, B1, 1) —
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S(a1,b1,x1,y1)

/. , _J
TF L
(al,bt) B(a1,b3)
B |
ed  Ba3,01) B(a3,02)
. C
1
L y 1
™~ D(a2,b2.32,y2)
fed  B(a2,b3) ) B(a2,b2)
Fig. 8. Disjoint paths between the nodes (i, 31, 21, y1) and

(az, B2, @2, Y2).

(ah /3& n, 1) - (ah /337 n, 062)
—2 (042, /33, ]., Oél) — (042, /33, ]., 7’L)
—2 (052, /337 /327 7’L) — (0’2, /327 /337 1)
= (a2, B2, 22, 1) = (a2, B2, x2, y2).

Path2) (a1, A1, 1, y1) = (a1, Br, z1, 1)
— (a1, fr, P, 1) — (a1, B3, fr, n)
— (041, /33, ]., 7’L) — (al, /33, 1, 052)
= (a27 [337 n, a’l) — (0’27 /33v n, 1)
- (a2, B3, B2, 1) - (a2, P2, B3, n)

- (062, /32a x2, n) - (042, /jza X2, y2>

Path3) (ou, A1, 21, 41) — (a1, B1, n, y1)
- (a1, B1, m, az) - (as, B, 1, a1)
= (063, /317 17 n) - (Clg, ﬂla /327 71)
A (a3, B2, Pr, 1) =3 (as, B2, n, 1)
e (053, /327 n, 012) s (a25 /[325 17 a3)
— (052, /327 17 yZ) — (042, /32v Z2, y?)

Path4) (a1, A1, 21, 41) = (a1, B1, 1, y1)
= (e, Br, 1, a3) =5 (a3, Pr, n, 1)
— (a?ﬂ /317 m, 1) S (013, /Blv /327 1)
— (063, /327 /317 71) — (043, /327 17 71)
— (a37 /327 17 Oég) — (a27 /327 n, 03)

— (a2, B2, n, y2) — (2, B2, %2, Y2).
We have assumed that if g = n, then 33 # n and vice versa.
It can easily be verified that these paths are node disjoint. This
proves the theorem.

IV. THE DIAMETER OF GENERALIZED MULTIMESH

In a multihop network, the communication delay may be pro-
portional to the number of intermediate optical cross-connects
the packets have to pass through on their journey from the source
to the destination. As a consequence, in such an environment, a
topology with a small diameter is quite desirable [18].

Suppose that the source node s is specified by
(as, Bs, xs, ys) and the destination node d is specified
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by (&g, Ba, Td, ya). We show that any destination node d can
be reached from any source node s with at most 2.5n+1 hops.
Theorem 2: The diameter of a GM network at most 2.5n+1.
Proof: Without loss of generality, we assume that oy <

agq. We consider the following cases.

Case 1.1) (g < p): In [5], it was shown that the di-
ameter of a MM when N = n* is 2n. Two
paths from the source («s, f3s, x5, ys) to
the destination (cvg, B4, Td, Ya) Were con-
sidered, one through the block («v;, 34) and
the other through the block (cvg, f3s). It was
shown that the sum of the lengths of these
two paths is 4n. As a result, at least one of
the paths must be of length 2n or less. The
same argument holds in this case (g < p),
because the blocks (s, B4) and (ag, fs) are
complete with n? nodes.
(g = p,xqa < n/2,y4 < p): In this
case a path from the source s to the des-
tination d can be constructed as follows:
(0sy Bsy sy Ys) — -+ — (Ydy Ba, 7y D)
- (p, B, Lya) — (v, Bas 2, ya) —
oo = (p, Ba, Ta, ya) = (a, Pa, Td, Ya)-
All the nodes and links needed to con-
struct such a path exist. From Case 1.1), we
can infer that the length of the path from
(Oés, ﬁsa s, ys) T ests (yd7 ﬁda n, p)
is at most 2n. The length of the path
from (yq, Ba, n, p) — (P, Ba 1, ya) —
(D, Ba, 2, ya) — -+ — (v, Ba, Ta, Ya) is
less than n/2. Therefore, the length of the
path from the source s to the destination d is
at most 2.5n.
(¢ = p,za < n/2,ya = p)In
this case a path from the source s to
the destination d can be constructed as
follows: (as, fs, s, ys) — -+ —
(p - la ﬂda n, p) i (pvﬂd’lﬂp - 1) -
(»,Pa;2,p— 1) = -+ = (p, Ba, Td, P —
1) = (pv Ba, x4, p) = (ad, Ba, Zd, yd)'
By the same argument as in Case 2.1), the
length of the path from the source s to the
destination d is at most 2.5n+1.
(g = p,xg < n/2,yq4 In
this case a path from the source s to
the destination d can be constructed as
-
N

Case 2.1)

Case 2.2)

Case 2.3) > p)

follows: (as, Bs, s, ¥s) —  ++-
(p, Bas 1, ya)
- (P, /j(la Td, Z/d) =

(p — 1, B4, 5a) —
(p, ﬁdv 27 yd) =
(aas Bas s Ya)-
There is a link from the node (p —
1, /[3d; n, yd) = bOttom(p = i, /jda yd)
to the node (p, B4, 1, ya) = top(p, Ba; Yd),
because the node (yq4, Ba, 1, p — 1) =
top(yd, Ba, p — 1) does not exist, as yq > p
and p is the highest indexed row, in the row
of blocks that contains some nodes. As the
length of the path from (as, fs, s, Us)
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to the node (p — 1, B4, n, ya) is at most
2n [Case 1.1)], and the length of the path
from (p, B4, 1, ya) to (@a, Ba, Td, Ya) 18
less than n/2, the length of the path from
(s, Bs, s, ys) to (aq, Bas Td, Ya) is at
most 2.5n.

(e = pyxa 2 n/2,ya < p)In
this case a path from the source s to
the destination d can be constructed as
follows: (s, Bs, Ts, ys) — -+ —
(Ya, Ba, 1, p)  — bottom(p, Ba, ya) —
T (pa Ba, xd, yd) = (ada Ba, x4, yd)'

As the length of the path from

(as, Bs, x5, ys) to the node (yq4, B4, 1, p)
is at most 2n [Case 1.1)] and the length
of the path from bottom(p, B4, ya) to
(ad, Bay Td, ya) is less than n/2, the
length of the path from («s, fs, s, ¥s)
to (cd, Ba, Ta, Ya) is at most 2.5n+1.
(¢ = p,za = n/2,y4 = p): In this
case a path from the source s to the des-
tination d can be constructed as follows:
(Oés, ﬂsa Ls, ys) = e (p - 17 ﬁdv 11 p)
—  bottom(p, Bayp — 1) — -+ —
(», Ba, za,p — 1) = (P, Ba, Ta, P) =
(ad, Bay Ty Yd)-

As the length of the path from

(Oés, /357 Lss yS) to (p -1, ﬁda 1, p) is
at most 2n and the length of the path from
bottom(p, P4, p—1) to (p, Ba, xa, p—1)1is
at most n/2 — 1, the length of the path from
the source s to the destination d is at most
2.5n4+1.
(g = p,zqa = n/2,y4 > p): In this
case a path from the source s to the des-
tination d can be constructed as follows:
(0457 Bs, s, ys) A (p_17 Bd, 1, yd)
e bottom(p, Ba, Ya) — e =
(p, Ba, xa, ya) = (a4, Ba, Td, Ya)-

There is a link from the node (p —
1, Ba, 1, ya) = top(p — 1, Ba, ya) to the
node bottom(p, B4, ya4), because neither the
node (yda /3(17 1a p— 1) = top(yda /jda p— 1)
nor the node top(p + 1, B4, ya) exist, as
44 > p and p is the highest indexed row in the
row of blocks that contains some nodes. As
the length of the path from (s, S5, s, ¥s)
to the node (p — 1, B4, 1, yq) is at most 2n
[Case 1.1)] and the length of the path from
bottom(p, Ba, ya) to (aa, Ba, Td, ya) 1S
less than n/2, the length of the path from
(asy Bsy s, ys) to (e, Pa, Ta, Yya) is at
most 2.5n+1.

Case 3.1)

Case 3.2)

Case 3.3)

V. FLow NUMBER

The metrics like the connectivity and the diameter of a graph
G = (V, E) are used to evaluate the relative merits of different
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topologies. However, these metrics are unable to capture one
important aspect of a network topology. Suppose that d; ; is
the traffic from node ¢ to node j, (1 < 4, j < n). For ex-
ample, d; ; may be 1 Mb/s, implying that 1 Mb have to flow
from node ¢ to node j per second. Suppose that a traffic vector
D =dy1, ..., dy ] is specified (d; ; = 0Vi,1 < i < n).
The traffic flow from node ¢ to node j may be routed in many
different ways. However, no matter how it is routed, such a flow
may be impossible if the capacity (bandwidth) associated with
the links is below a certain threshold value. Assuming that the
capacity of all the links are identical, we would like to find this
minimum threshold capacity of the links such that the demand
D can be met through some routing. We refer to this minimum
threshold capacity on the links that is able to sustain a traffic
flow d; ; = 1V%, 5,1 # j as the flow number of the graph
G = (V,E).

Formally, the flow number fn(G) of a graph G = (V, E),
(IV| = n, |E| = m) may be defined as follows. Suppose that
Ry, ..., Ry is the set of all possible ways of routing the traffic
from the set of sources to the set of destinations. The traffic
flow is d;, ; = 1V4, j, i # j. We refer to the traffic from a
source ¢ to a destination j as a data stream or a flow. Consider
anm x k traffic matrix 7" whose (¢, j)th entry T'[z, j] indicates
the number of data streams (or flows) through the edge (link) ¢;
of the graph G' = (V, E) under the routing scheme R;. Then
the flow number of G = (V, E) is

@) = iy, L, 70 1)

It may be noted that the notion of load introduced in [22]
has some similarity with the notion of flow number being intro-
duced in this paper. However, from the definition of load given
in [22], it is clear that load is a function of 1) lightpath requests
(identified by source—destination node pairs), 2) the routing al-
gorithm used for establishing the lightpaths, and, although not
stated explicitly, 3) the network topology. The flow number on
the other hand is 1) independent of lightpath requests and 2) in-
dependent of the routing algorithm used and a function of only
the topology of the network. Clearly load, which is a function of
three variables (lightpath requests, routing algorithm, and net-
work topology), is different from flow number, which is a func-
tion of only one variable (network topology).

Although the notion of flow number is applicable to any net-
work, in the case of optical networks, it takes on additional sig-
nificance. This is true because there is only a limited amount of
bandwidth available for transmitting signals over a fiber [11].
Hardware restrictions such as filtering and crosstalk impose a
limit on the minimum spacing allowed between adjacent chan-
nels [30]. This limits the maximum number of channels that can
be supported on a single fiber. As a consequence, the number
of wavelengths available for the establishment of lightpaths is
a precious network resource and the goal of many routing and
wavelength assignment algorithms is to optimize its use. In the
definition of the flow number in the previous paragraph, the
traffic flow d; ; was assumed to be unity for all ¢, j, (i # j).
Such a flow may be considered equivalent to the establishment
of a lightpath from the node ¢ to the node j. Consequently, if
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wavelength conversion is allowed, then the flow number of a
network topology provides the number of wavelengths neces-
sary and sufficient to establish full connectivity [27] between the
network nodes. If wavelength conversion is not allowed, then the
flow number provides a lower bound on the number of wave-
lengths necessary to establish full connectivity. As a result, one
topology with a low flow number is preferable to another with
a high flow number.

It may be noted that the flow number of a graph can be com-
puted using the techniques known for the multicommodity flow
problem [13]. In the multicommodity flow problem, the ca-
pacity of the links is known and the objective is to find the
maximum flow that can be attained, subject to the link capacity
constraints. In flow number computation, traffic demand for all
source—destination pairs is known, and the objective is to find
the minimum link capacity that will be able to satisfy all the
demands. The mathematical programming formulation to com-
pute the flow number of a graph is given next.

For flow number computation d; ; = 1V4, j, 4 # j. This
implies that every node has one unit of data flow to every other
node of the network. In other words, there are n(n—1) simulta-
neous flows in the network. The variable f is used to identify a
flow, 1 < f < n(n — 1). A binary indicator variable xfi ; is as-
sociated with each link (¢, j) of the directed graph G = (V, E).
If the variable x{ ; = 1, it indicates that the link (2, j) is part
of the path used by the flow f on its journey from the source to
the destination; and if a:f, ; = 0, then the link (¢, j) is not part
of such a path.

Minimize C. Subject to the following constraints:

DD s D T
{ilicV} {klkcV}
—1, ifj is the source node
= { 1, if j is the destination node
0, if 7 is any other node
n(n—1)
i) Y al,<C V(. j)€E
f=1

iy 2/ . =0/1,

g V1S f<n(n—1)Y(, j) € B

It is well known that the multicommodity flow problems are
NP-complete [10]. Approximation algorithms for these prob-
lems with a guaranteed performance bound are presented in
[14], [24]. In the following two subsections, we show that if
the graph has a regular structure, the computation of the flow
number of a graph is not necessarily all that difficult. We com-
pute the flow number of a 2-D torus, MM, and de Bruijn network
and show that their flow numbers are O(N'-?), O(N1-2%) and
O(N log N), respectively.

We compute the flow numbers in the following way: first we
compute a lower bound of the flow number, then we compute an
upper bound on the flow number, and finally we show that these
two are equal. Each undirected edge of both the torus and the
MM is replaced by two oppositely directed edges. We compute
the minimum capacity on these directed edges that will be able
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Fig. 9. Torus network.

to satisfy the traffic demand of one unit for every source—desti-
nation pair (d;, ; = 1V4, j, i # j, d; ; = 0V4).

It may be noted that the concept of forwarding index of com-
munication networks studied in [3] has some similarity with the
notion of flow number of communication networks being intro-
duced in this paper. However, they are not the same, and the re-
sults presented in this paper are completely different from those
presented in [3].

A. Flow Number of Torus Network

Consider the N = M x M torus network shown in Fig. 9.
It may be observed that only the links between nodes (1, 4) and
(1, 5) and nodes (1, 1) and (1, 8) are shown as the directed links;
all other links are undirected links. This is done only to keep
the diagram uncluttered. For the purpose of analysis, we will
consider an undirected edge as comprising of two oppositely
directed edges. For simplicity of analysis, we assume that A/ =
4m for some positive integer m.

Lemma 3: The lower bound on flow number of a 2-D torus
network with V nodes is N1*/8.

Proof: Every node in this M x M torus network has to
transfer one unit of data to every other node. Consider the ver-
tical line 4B that divides the torus into two equal halves. There-
fore, each of the M?2/2 source nodes on the left half has to
transfer data to each of the M? /2 destination nodes on the right
half of the torus. The links cut by the line AB have to carry all the
M?2 /2% M?/2 = M*/4 traffic from the left half of the torus to
the right half. There are exactly 2M directed edges (links) con-
necting the nodes on the left half to the nodes on the right half.
[Each of the M rows of the torus has two such links; in Fig. 9, in
the first row these links are from the node (1, 1) to (1, 8) and the
node (1, 4) to (1, 5)]. Since 2M links have to carry M*/4 flows,
the maximum of the minimum flows on these 2 links must be
(M*/4)/2M = M?/8 = N*-3/8. This is a lower bound on the
flow number of an N = M x M torus.
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Lemma 4: The upper bound on flow number of a 2-D torus
network with NV nodes is N*/8.

Proof: The upper bound is established by first describing
a routing algorithm. We show that if this algorithm is executed,
no directed edge (link) will be required to carry more than a cer-
tain number of data streams or flows. This establishes an upper
bound on the flow number.

As indicated earlier, we assume that M = 4m for some posi-
tive integer m. Assume that the torus is divided into two halves
by the line 4B, as shown in Fig. 9. There are M?/2 = 8m?
nodes on each of these two halves. The 8m? nodes are dis-
tributed in 4m rows, with each row having 2m nodes. Consider
another cut line CD shown in Fig. 9 that divides the left half
into two parts. The 2m nodes on the first row in the left half
is divided into two equal parts of m modes each by this line.
These 2m nodes [the nodes (1, 1), ..., (1, 4) in Fig. 9] have
to transfer one data stream to the nodes on the right side [the
nodes (1, 5), ..., (1, 8) in Fig. 9]. The links (1, 1)—(1, 8) and
(1,4)—(1, 5) can be used for this purpose. Therefore, the traffic
on any one of these two links will be m * 2m = 2m?. The
routing algorithm will route the traffic in such a way that the
traffic from the nodes (¢, m + 1), ..., (¢, 2m), 1 < ¢ < 4m
will use the link (j, 2m) — (j, 2m + 1) to travel to the nodes
(4, 2m+1), ..., (4, 4m), 1 < 5 < 4m. For example, the path
taken by the traffic to reach the destination node (j, 4m) from
the source node (z, m+1) will be as follows: (¢, m + 1) —
(.2m) — (. 2m+1) = (j, 2m +2) — -+ — (j, 4m).
The traffic from the nodes (¢, 1), ..., (i, m), 1 < i < 4m will
use the link (4, 1) — (4, 4m), 1 < 4, j < 4m to travel to the
nodes (j, 2m + 1), ... (4, 4m). Therefore, the total traffic on
the links, (7, 1) — (j, 4m) and (j, 2m) — (4, 2m + 1) for all
J» 1 < j < 4m, will be 2m? x 4m = 8m> = M3 /8 = N'/8.
Since the torus has a completely symmetric structure, no di-
rected edge will carry traffic that is higher than this value. Thus,
N13/8 is the upper bound on the flow number of the torus net-
work.

Theorem 5: The flow number of a 2-D torus network with NV
nodes is N1-3/8.

Proof: Follows from Lemmas 3 and 4.

B. Flow Number of MM Network

Consider the N = M x M node MM network shown in
Fig. 2. For the purpose of analysis, we will consider an undi-
rected edge as comprising two oppositely directed edges.

Lemma 6: The lower bound on flow number of a MM net-
work is N3 /2.

Proof: As shown in Fig. 1, the nodes in the M x M MM
are arranged in blocks of smaller meshes of size n x n, where
n = /M. The total number of nodes in the network N =
M? = n*is distributed in n? blocks, with each block having n?
nodes. Every node in this M x M MM network has to transfer
one unit of data to every other node. Consider the vertical line
AB that divides the MM in two equal halves. Therefore, each of
the M?/2 = n*/2 source nodes on the left half has to transfer
data to each of the M? /2 = n*/2 destination nodes on the right
half of the MM. Because each block has exactly n% nodes, the
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number of blocks on both sides of the cut line 4B is n? /2. The
number of rows of blocks on each sides is n. Therefore, the
number of blocks in each row of blocks on each side of the line
AB is n/2. Each block on the ¢th row of blocks on the left half
is connected to each block on the ith row of blocks on the right
half by two links (1 < ¢ < n). Thus, the total number of links
that can carry traffic from the ¢th row blocks on the left half to
the 4th row blocks on the right half is n/2 * n/2 * 2 = n?/2.
The total number of rows of a block is n. Thus, the total number
of links that can carry traffic from the left half of the network to
the right half'is n x n?/2 = n3/2.

These links cut by the line AB has to carry all these M?/2 x
M?/2 = M*/4 = n8/4 traffic from the left half of the MM to
the right half.

Because n®/2 links has to carry n®/4 flows, the max-
imum of the minimum flows on these n®/2 links must be
(n8/4)/(n3/2) = n3/2 = M?*3/2 = N'-25 /2, This is a lower
bound on the flow number of a M x M MM.

Lemma 7: The upper bound on flow number of a MM net-
work is N3 /2.

Proof: The upper bound is established by first describing
a routing algorithm. We show that if this algorithm is executed,
no directed edge (link) will be required to carry more than a cer-
tain number of data streams or flows. This establishes an upper
bound on the flow number.

As indicated earlier, the nodes in the M x M MM are ar-
ranged in n? blocks of n? nodes each, where n = /M. The
blocks are arranged in n rows and n columns. Each node in
the MM interconnection is identified with a four-tuple label
(4, g, k, 1). The first two (¢, j) identifies the block and the last
two (k, 1) identifies the node within a block. Due to the con-
struction rules of the MM, any two blocks that belong to the
same row or the same column form a cycle, in the sense that
these two blocks are connected by two links. That is two blocks
(4, 7) and (%, k) have the following two links connecting them:
(i, 5. k, 1) to (i, k, j, n) and (i, 5, k, n) to (i, k, j, 1).

Every node in this M x M MM network has to transfer
one unit of data to every other node. Suppose the following
routing technique is used: consider a flow from the node
(11, 51, k1, 11) to (42, j2, k2, [2). The flow first has to travel
to the block identified by (42, j2) from the block (i1, j1).
The routing technique tries to match the row first and then
the column. That is, to travel from (i1, j1) to (22, j2), first it
travels to the intermediate block (42, j1) and then to the block
(42, j2). Within a block, also the routing algorithm follows the
same row first policy. Suppose a flow has to travel from the
node (41, j1, k1, I1) to (42, j2, k2, [2). According to the row
first policy, the flow should travel from the (41, j1) block to the
(42, j1) block first. The two nodes on the horizontal (vertical)
boundary of a block responsible for communicating with other
blocks in the network are referred to as the communicating
nodes. Two communicating nodes on the horizontal boundary
of the (41, j1) block are connected to two corresponding nodes
on the horizontal boundary of the (:2, j1) block. According
to the routing technique considered here, the flow originating
from the node (k1, I1) within the (¢1, j1) block traverses to
the nearest communicating node to leave the (¢1, j1) block to
enter the (42, j1) block.
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The traffic that flows through the network can be divided into
two classes: interblock traffic and intrablock traffic. We first an-
alyze the interblock traffic, and later we analyze the intrablock
traffic.

Interblock Traffic Analysis: As indicated earlier, the n?
blocks of a MM network are arranged in n rows and n columns.
Suppose the blocks are numbered from (1, 1) through (n, n).
Consider the (4, j)th block with n? nodes. The interblock
traffic that enters (or leaves) the (¢, j)th block can be divided
into two classes: Class A) the traffic that either originates or
terminates at the (¢, j)th block and Class B) the transit traffic
that uses the (¢, j)th block as an intermediate block to get to
the destination.

Class A) Originating or Terminating Traffic at the (i, j)th
Block: The (4, j)th block of the MM network has n? nodes.
The remaining n* — n? nodes of the network have data streams
for each node of the (¢, j)th block. Similarly, each node of the
(i, j)thblock has data streams for each of the remaining n* —n?
nodes of the network. Thus, the total traffic originating from
other blocks and terminating in the (i, j)thblock is (n*—n?)n?.
The same number of data streams originate at the (7, 7)th block
and terminate at the other blocks. Like any other block of the
network, the (4, 7)th block has 4(n — 1) incoming (outgoing)
links. Traffic from the blocks (s, ¢),1 < s,t < n,t # j
will enter the block (7, 7) through the nodes (%, 7, ¢, 1) and the
node (%, j, t, n). Thus, the number of data streams on these two
incoming links will be (n? * n? *x n x (n — 1))/2(n — 1) =
n®/2 = M*? /2. The outgoing data streams on these links will
be (n? xn? x (n—1))/2(n — 1) = n*/2 = M?/2.

Traffic from the blocks (s, j), 1 < s < n,s # i will
enter the block (¢, j) through the nodes (¢, j, 1, s) and the node
(4, j, n, s). Similarly, the traffic to the blocks (s, 7), 1 < s <
n, s # i willleave the (4, 7) block through the nodes (4, j, 1, s)
and the node (i, j, n, s). Thus, the incoming traffic on these
links will be (n?*n?x(n—1))/2(n—1) = n*/2. The outgoing
traffic on these links will be (2 *n?xnx*(n—1))/2(n—1) =
n°/2.

Class B) Transit Traffic at the (i, j)th Block: The traffic
from the blocks (s, j), 1 < s < n,s # i to the blocks
(i,t),1 <t < n,t # j will enter the block (¢, j) through
the nodes (¢, j, 1, s) and (¢, j, n, s) and will leave the block
(4, 7) through the nodes (¢, j, ¢, 1) and (%, j, ¢, n). Thus, the
total transit traffic on these incoming and outgoing links will
be (n? % n? % (n — 1)°)/2(n — 1) = n®/2 — n*/2.

Thus, the total incoming (outgoing) traffic at the nodes
(4, 7, 1, s) and (4, j, n, s), [(%, 7, ¢, 1) and (¢, j, ¢, n)] will be
n*/2+n%/2 —n*/2 =n3/2 = M?5/2 = N1-2%/2,

Thus, it can be seen that the number of data streams on in-
terblock links never exceeds the lower bound value of N*-2%/2.

Intrablock Traffic Analysis: In this part, we consider
the traffic carried one directed edge (link) within a block.
We consider the link (¢, 4, k, 1) — (4,5, k1 + 1),
1 < 4,5k, 1l +1 < n, as shown in Fig. 10. The traffic
carried by this link can be divided into four different categories.

1) Incoming Traffic: Traffic originating in block (s, t), 1 <
s,t <mn, s #1i,t# j,and terminating in block (¢, j).

2) Outgoing Traffic: Traffic originating in block (¢, j) and
terminating in block (s, ¢), 1 < s, t <mn, s #14, t # j.
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Fig. 10. Nodes in one block of an MM network.

3) Transit Traffic: Traffic neither originating nor terminating
in block (7, j) but traversing through the block (7, ) as
an intermediate block.

4) Internal Traffic: Traffic originating and terminating in
block (2, 7).

Case 1) Incoming traffic on the link (¢, 7, k,1) —

(G, by l4+1),1 <4, 5,k I+1<n.

The link (4, j, k, 1) — (4, 4, k, I + 1) is shown in
Fig. 10. The incoming traffic enters the block (¢, j)
through the communicating nodes on either the hori-
zontal or the vertical boundary. The nodes (¢, j, p, 1)
and (4, j, p, n), 1 < p < n, p# jwill have incoming
traffic from the blocks (7, p), 1 < p, r < n,p # j.
Half of the traffic from the block (r, p) will enter
the block (4, j) through the node (¢, j, p, 1) and
the other half through the node (¢, j, p, n). It may
be noted that the traffic from the block (r, p) first
enters the block (¢, p) through the nodes (7, p, 1, k)
and (4, p, n, k), 1 < k < n, k # i and then leaves
the block (7, p) through the nodes (¢, p, j, 1) and
(4, p, j, n). The routing algorithm ensures that half
of the traffic from the block (r, p) enters the block
(4, p) through the node (¢, p, 1, k) and leaves through
the node (7, p, j, 1) and the other half enters through
the node (¢, p, n, k) and leaves through the node
(4, p, j, n). The total traffic (flow) from the block
(7, p) to the block (4, j) is n? x n? = n*. Half of this
traffic, i.e., n*/2, will enter the block (i, j) through
the node (4, j, p, 1). This traffic will be divided into
n equal parts to reach the destinations on n different
rows of the (¢, j)th block. Thus, the part of this
traffic on the kth row is n*/2. Each node on this row
consumes n? amount of the flow before it reaches
the node (7, j, k, ). Therefore, the part of this traffic
on the link (¢, 4, k, 1) — (4, j, k, I + 1) is at most
n3/2 — In®. Thus, the total traffic from the block
(r, p) on the link (4, j, k, 1) — (¢, 4, k, 1+ 1) is
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(n3/2 — In?) % (n? — n), for all possible values of r
andp (1 < p, 7 < n,p#J).

The nodes (4, j, 1, p) and (4, j, n,p), 1 < p <
n, p # t, will have incoming traffic from the blocks
(r, j), 1 < r < n,r # i Half of the traffic from
the block (7, j) will enter the block (¢, j) through the
node (¢, j, 1, p) and the other half through the node
(4, j, m, p). The total traffic (flow) from the block
(7, 7) to the block (i, j) is n? x n? = n*. Half of this
traffic, i.e., n*/2, will enter the block (i, j) through
the node (4, j, 1, p). This traffic will be divided into
n equal parts to reach the destinations on n different
rows of the (¢, j7)th block. Thus, the part of this traffic
on the kth row is n3. Each node on this row consumes
n? amount of the flow before it reaches the node
(4, j, k, 1). Therefore, the part of this traffic on the
link (i, 4, k, 1) — (i, 4, k, I + 1) is n® — In®. The
link (¢, j, k, 1) — (4, j, k, L + 1) will carry traffic
from the block (7, j) as long as 1 < r < [. Thus,
the total traffic from the block (r, j) on the link
(i, 4, k, 1) — (i, j, k, L + 1) is I(n® — In?), for all
possible values of 7 (1 < r < ).

Thus, the total incoming traffic on the link
(i, 4, by 1) = (4, 4, k, L+ 1) is (n®/2 — In?) * (n? —
n)+1(n®— In?) = n?/2— (1+1/2)n* +21n® —12n2.

Case2) Outgoing traffic on the link (¢, 4, k, 1) —

(4, J, by U4+ 1),1 <4, §, k, Il < n.

In the following, we present the analysis for the case
I < n/2. The analysis is similar for the case when ! >
n/2 and is not presented here. The outgoing traffic on
the link (¢, 7, k, 1) — (¢, 4, k, U+ 1),1 <4, 4, k, I+
1 <nwhenl < n/2iszerounless k = 1 ork = n.
We consider the case when & = n. In this case, only
the nodes (¢, j, z, y), n/2 < z < n,1 <y <1
will be using the link (¢, j, k, 1) — (¢, 4, k, I+ 1) to
transmit data to the (I + 1, 2)th (1 < z < n) block in
the network. Thus, the total traffic on the (¢, j, k, [) —
(i, j, k, 141) will be, at most, n/2xlxn*n? = In* /2,

Case 3) Transit traffic on the link (¢, j, k, 1) — (4, 7, k, [ +

D,1<4,5,k1+1<n.

As in the previous case, we consider the case [ <
n/2. When ! < n/2, then the transit traffic through the
link (¢, 4, k, 1) — (4, 4, k, L + 1) is zero because the
routing algorithm uses the row first policy. If | > n /2,
then the traffic is nonzero. For the expression for the
traffic, the reader is referred to [23].

Case4) Internal traffic on the link (¢, 7, k, 1) — (4, 4, k, [+

D,1<4, 5, k1+1<n.

The internal traffic on the link (¢, 5, k, 1) —
(4,7, k, 14+1),1 <4, 5, k, I+1<nisnl(n—1).

Thus, the total traffic on the link (¢, j, k, 1) —
(G, gkl +1),1 < 44kl +1 < nis
n/2 — (I + 1/2n* + 2In® —?n? + In*/2 +
0 + In”—1®n which after simplification is
n®/2 — (14 1)n*/2 +2In® — (12 — )n — PPn.

The above expression is less than or equal to n° /2 =
M?3 = N125/2 if n > 4. This establishes an upper
bound on the intrablock traffic.
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TABLE 1
COMPARISON TABLE OF Ly0x(SP), Liax(LP), AND FLOW NUMBER

A | D | Lynoz(SP) | Linaz(LP) | Flow Number
212 3 4 3

213 11 12 9

214 29 32 26
215 81 80 66
312 7 6 6

313 31 27 25

41 2 9 8 8

Theorem 8: The flow number of a MM network with NV
nodes is N1-2% /2.
Proof: Follows from Lemmas 6 and 7.

C. Flow Number of de Bruijn Network

Lightwave networks based on de Bruijn graphs were pro-
posed in [26]. For the sake of completeness, we describe the
network first. An N node de Bruijn network can only be con-
structed if N = AP, for two integers A and D. Each node
v has a D digit representation (v, ve, ..., vp), Where v; €
{0,1,..., A—1},1 < ¢ < D. There is a directed edge from
the node u (u1, ug, ..., up)to the node v (v, vo, ..., vp) if
v; = U1 for 1 <4 < D — 1. Each node of de Bruijn network
has A incoming and outgoing edges. The diameter and connec-
tivity of a de Bruijn network with AP nodes are D and A—1,
respectively.

Edge loading L; for the edge e; was defined in [26] as the
number of lightpaths passing through edge ¢;. Assuming that a
lightpath needs to be established between every pair of nodes
in the network, the authors in [26] computed average and
maximum edge loading in the graph. Clearly, the edge loading
will be dependent of the routing algorithm used for message
transfer between the nodes. Two routing algorithms—shortest
path routing and longest path routing—were considered in
[26] and the maximum loading values for the two algorithms
presented for de Bruijn networks with different values of A
and D.

In terms of edge loading considered in [26], the notion of flow
number presented in this paper is the optimal edge loading. That
is, the flow number is the maximum edge loading of the best
possible routing algorithm. The maximum edge loading using
even the better of the two algorithms (longest path routing) con-
sidered in [26] is not optimal. Using the mathematical program-
ming formulation of the flow number in Section V, we computed
the flow number of de Bruijn graphs using the CPLEX opti-
mization package on a SUN Ultra 5 workstation. The results
of edge loading with the longest path routing Ly,.x(LP) and
the shortest path routing Ly, (S P) and the flow number of de
Bruijn network with different values for A and D are presented
in Table I. Due to the memory limitation of our workstation, we
were unable to compute the flow number of de Bruijn graphs
of larger size. The mathematical programming formulation of
flow number for de Bruijn graph with A = 4 and D = 2, has
144 000 variables and 3900 constraints. The workstation took
less than two minutes to compute the result.
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TABLE I
COMPARISON OF VARIOUS NETWORK ATTRIBUTES
Network Type | Node Degreé | Connectivity | Diameter | Flow Number
Torus 4 4 O(N%) O(N1?)
Multi-Mesh 4 4 O(N"B) | "9(NT%)
De Bruijn AA -1 A -2 O(log N) | ©(Nlog N)

Next we present the flow number of a de Bruijn graph.
Lemma 9: The lower bound on flow number of a de Bruijn
network with NV nodes is Q(V log V).

Proof: The bisection width of a network is the minimum
number of links that need to be removed in order to disconnect
the network into two halves with identical (within one) number
of nodes [9]. It has been shown in [9] that the bisection width of
a de Bruijn network is ©(NN/ log N), where N is the number of
nodes in the graph. If the network is divided into two equal-size
groups of N/2 nodes each, then the total traffic from the nodes
in one group to the nodes on the other group will be N/2 x N/2.
Since the bisection width is ©(N/log V), the flow number is
Q((N?/4)/(N/log N)) = (N log N).

Lemma 10: The upper bound on flow number of a de Bruijn
network with IV nodes is O(N log N).

Proof: 1In [26], it was shown that if longest path routing is
used, then the maximum loading on an edge Ly, ( LP) is given
by Liax(LP) < DAP~! = (Nlogs N)/A. Clearly, this is an
upper bound of the flow number of a de Bruijn graph.

Theorem 11: The flow number of a de Bruijn network with
N nodes is O(N log V).

Proof: Follows from Lemmas 9 and 10.

In Table II, we present a comparison among various parame-
ters of torus, MM, and de Bruijn networks.

VI. SIMULATION RESULTS

In this section, we study the routing and wavelength assign-
ment (RWA) problem in a wavelength-routed single-hop net-
work with a physical topology based on the MM architecture
through simulation. The simulation model used for this study is
identical to that used in [26]. The features of the study are as
follows.

1) The network topology under evaluation is GM.

2) Each node of the network has m optical transmitters and

receivers.

3) The acceptable limit on the call-blocking probability is

known.

The objective of the simulation is to determine the number
of wavelengths necessary to ensure that the call-blocking prob-
ability p will be below the acceptable limit.

The analytical solution of the RWA problem for the GM net-
work appears to be just as difficult as for the de Bruijn graph and
the Kautz graph studied in [26] and [25]. Following [26] and
[25], we use Monte Carlo simulation to determine the number
of wavelengths necessary to ensure a small call-blocking prob-
ability. We assume that the wavelength continuity constraint is
satisfied so that a lightpath traversing a number of fibers always
uses the same wavelength on every fiber on the path. We car-

ried out the experiment for three different values of m: 5, 10,
and 15, (m is the number of transmitters and receivers in each
node). In our Monte Carlo simulation of the GM network, we
changed the number of wavelengths /N used in the network to
observe the variation of the call-blocking probability p.

The following assumptions are made in our study.

1) The traffic between all source—destination pairs is equally
likely.

2) Each node has the capability of tuning its transmitter to

any one of the NV wavelengths used in the network.

The following steps were taken to observe the variation of
the call-blocking probability p with the number of wavelengths
used in the network, when each node of the network has exactly
m transmitters and receivers.

Simulation Steps

Input: The MM network with N nodes and
an integer m, the number of trans-
mitter/receiver at the nodes.

Output: The results of the effect of vari-
ation of the number of wavelengths on
the call-blocking probability, with a
given value of m.

begin
Step 1.1: Initialize the number of
blocked calls to 0;

Step 1.2: Initialize the number of at-
tempted connections to 0;
Step 2: Repeat steps 3-8 100 times;
Step 3.1: Initialize the network such
that no edge is carrying any lightpath;
Step 3.2: Initialize the network such
that all m transmitters and receivers
at each node are available for use;

Step 4: Repeat steps 5-8 if there is
at least one node S with a free trans-
mitter and one node D with a free re-
ceiver (S # D) ;

Step 5: Select at random a pair (S5, D)

of nodes such that

i) the node S has at least one of
its m transmitters free,

ii) the node D has at least one of
its m receivers free,

iii) S is distinct from D,

iv) either the node pair (S, D) was
never selected earlier or the last at-
tempt for a connection from S to D was
successful;
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Step 6: Examine a shortest path P
from § to D to determine if there ex-
ists a wavelength A;;0 < ¢ < N such that
none of the edges in the path P cur-
rently has a lightpath with a wavelength
Ai

Step 7:
available,
case we

i) increase the number of blocked
calls by 1,

ii) insert the pair (S, D) in a list
of source and destination pairs of nodes
that were blocked in previous attempts,

iii) return to step 4;

Step 8: If a wavelength A; is found

i) allocate the wavelength A; on
each fiber of the path P for the commu-
nication from S to D,

ii) reduce the number of transmit-
ters of the source node S and the number
of receivers of the destination node D
by one,

iii)

If no such wavelength is
the call is blocked. In this

return to Step 4.
end

Atthe completion of the simulation, we calculated the relative
frequencies of the blocked connections to obtain an estimate
of the blocking probability when the network has A available
wavelengths for connection establishment. This simulation had
to be repeated many times with increasing values of A so that
the call-blocking probability p would fall below an acceptablly
low threshold value.

In Figs. 11-13, we plotted the blocking probability versus
the number of wavelengths using a logarithmic scale. In the
graphs, the squares, diamonds, and crosses represent the cases
with m = 5, 10, and 15, respectively. These graphs may be used
by a network designer to determine an appropriate value of A for
a network with a specified value of m and acceptable limit of
the call-blocking probability p. The graphs show a steep decline
in the values of p as A is increased. This implies that it is pos-
sible reduce the call blocking probability to an arbitrarily small
value by a modest increase in the number of wavelengths.

VII. CONCLUSION

We have adapted the MM topology proposed for multipro-
cessor interconnection for WDM optical networks. This adap-
tation enables the new topology to have any number of nodes
without sacrificing the attractive properties of the MM. Even
though researchers have proposed complex topologies (e.g., de
Bruijn, Hypercube) for optical networks, existing networks are
based on simple structures such as the Ring. The MM is attrac-
tive for optical networks because it is simple and resembles the
familiar torus network but has superior topological properties.
In addition, we also have introduced a new metric for the eval-
uation of interconnection topologies for lightwave networks.
Using previously known metrics, such as the connectivity and
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the diameter, as well as the newly introduced metric, the flow
number, we have shown that the new architecture has many at-
tractive features to be considered for use as an alternate to the
other topologies proposed for use in the optical network domain.
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