


Fig. 1). For other variations of two-dimensional policies, see for example, Singpurwalla and Wilson (1993),
Blischke and Murthy (1994), etc.

Referring to Fig. 1, observe that every failure within the shaded region attracts warranty service. It then
follows that a failure of the product, under two-dimensional policy must be indexed by both age and usage.
As a result, failure/cost modeling in such situations naturally involves bivariate failure model. However, two
approaches have been adopted by researchers for warranty cost modeling, namely, (a) two-dimensional (2D):
when the bivariate failure model is taken as it is, and (b) one-dimensional (1D): when the problem is reduced
to univariate by incorporating the usage-rate suitably.

This note brings in focus the discrepancy in the formulae based on above two approaches for computation
of warranty cost under both repairable and non-repairable cases.

The outline of this article is as follows. The modeling assumptions and notation are contained in Section 2.
The formulae of warranty cost by the two approaches for both repairable as well as non-repairable product
are presented in Section 3. We provide some examples in Section 4 in order to highlight the difference in results
obtained by the two approaches. In Section 5, we study the merits of the formulae, and try to identify the cor-
rect ones. We then conclude in Section 6.

2. Assumptions and notation

We consider the warranty service (compensation scheme) to be free repair or replacement, which is referred
to as FRW in the literature. For repairable product, we assume that a failure is always minimally repaired (see
Baik, Murthy, & Jack, 2004; Lawless & Thiagarajah, 1996; etc.), that is, the corresponding repair helps restor-
ing the condition of the product that prevailed immediately before the failure occurred. When a product is
minimally repaired, only minor part/component may be replaced but not the whole product. We also assume
that repair or replacement time is very small, and hence it can be ignored. For the sake of convenience, we
shall denote both unit price as well as repair cost by cr (constant). Note that they do not apply to the same
product, namely, we talk of repair cost for repairable product only, and unit price for replacement of non-
repairable product.

Rectangular warranty region is quite common in automobiles. Let us assume the same region for the prod-
uct under consideration, with limits on age and usage be x0 and y0, respectively. Denote the first failure
instance of a unit of the product by (X,Y), where X = age and Y = usage.

Let us write usage-rate as R = Y/X, and the age at failure for given usage-rate r be denoted by
X(r) = [XjR = r]. Associated with (X,Y), we use the following notation:

fX ;Y ðx; yÞ = joint probability density function (pdf)
F X ;Y ðx; yÞ = distribution function
SX ;Y ðx; yÞ = survival function
MX ;Y ðx; yÞ = renewal function.

Fig. 1. Rectangular warranty region.
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The mileage (usage) function is defined as the amount of usage at a given age of failure, and is denoted by
Y(x) = [YjX = x]. Besides, we also use the following notation concerned with any random variables U:

fU ðuÞ = (marginal) pdf
F U ðuÞ = distribution function
MUðuÞ = renewal function
E½U � = expectation of U.

3. Formulae for warranty cost

Warranty cost of a product, for a given policy, is measured by the expected cost of warranty service per unit
of the product. In the following, we present the two approaches (1D and 2D) for the computation of warranty
cost.

Denote the number of failures of a unit within the warranty region by N(x0,y0), and the corresponding cost
by C(x0,y0). Therefore, we have C(x0,y0) = crN(x0,y0). We are interested in the expected value of C(x0,y0),
namely, E[C(x0,y0)], which is equal to crE[N(x0,y0)]. Consequently, the expression for E[N(x0,y0)] will suffice.

We consider first the case of non-repairable product. The expressions for expected number of failures under
the two approaches are as follows.

• 2D approach: Following Hunter (1974, 1996) (also see Murthy, Iskandar, & Wilson, 1995), N(x,y) is two-
dimensional renewal counting process for x, y > 0, and

E½Nðx0; y0Þ� ¼ MX ;Y ðx0; y0Þ; ð1Þ

where MX,Y(x0,y0) is the two-dimensional renewal function, and is obtained as the solution of:

MX ;Y ðx0; y0Þ ¼ F X ;Y ðx0; y0Þ þ

Z x0

u¼0

Z y0

v¼0

MX ;Y ðx0 ÿ u; y0 ÿ vÞdF X ;Y ðu; vÞ:

It is nearly impossible to obtain MX,Y(.,.) analytically even for the simplest form of FX,Y(.,.). Iskandar (1991)
provides a computational procedure, and tabulates selectedMX,Y(.,.)s for Beta Stacy and Downton’s Bivariate
Exponential distributions. Alternatively, one can obtain an estimate by the method of simulation.
• 1D approach: According to Blischke and Murthy (1994) (also see Jack, Murthy, & Iskandar, 2003), with
conditional on the usage-rate R = r (see Fig. 2),

Nððx0; y0ÞjrÞ ¼
NX ðrÞðx0Þ if r < y0=x0

NX ðrÞðy0=rÞ if r P y0=x0;

�

ð2Þ

Fig. 2. Warranty coverage age with R = r.
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where NX(r)(.) is one-dimensional renewal counting process associated with the distribution function FX(r)(.).
This implies that

E½Nððx0; y0ÞjrÞ� ¼
MX ðrÞðx0Þ if r < y0=x0

MX ðrÞðy0=rÞ if r P y0=x0;

�

ð3Þ

where MX(r)(.) is obtained as the solution of renewal equation:

MX ðrÞðxÞ ¼ F X ðrÞðxÞ þ

Z x

u¼0

MX ðrÞðxÿ uÞdF X ðrÞðuÞ: ð4Þ

As a result, we have

E½Nðx0; y0Þ� ¼

Z y0=x0

r¼0

MX ðrÞðx0ÞdF RðrÞ þ

Z 1

r¼y0=x0

MX ðrÞðy0=rÞdF RðrÞ: ð5Þ

It is again well known that MX(r)(.) can be obtained analytically only for a small class of distributions, for
example, Exponential, Erlang, Uniform, etc. In general, one needs to use numerical procedure or adopt sim-
ulation. The numerical method of Xie (1989) is quite fast and very accurate.

We now turn to repairable product. It is strongly advocated (Ascher & Feigngold, 1984) that failure time
modeling be done by non-homogeneous Poisson process (NHPP) with appropriate failure intensity function
or rate of occurrence of failure (ROCOF). In the case of minimal repair, the conditional failure intensity func-
tion (as defined in Lawless & Thiagarajah, 1996) remains unaffected by each failure, and therefore ROCOF is
taken as the hazard function of the first failure time.

Consequently, Baik et al. (2004) and Blischke and Murthy (1994) presume that N(x,y) is NHPP in two
dimensions for x, y > 0 with kX,Y(.,.) as the intensity function, where kX,Y(.,.) is hazard function of (X,Y).
E[N(x0,y0)] is then written under 2D approach as:

E½Nðx0; y0Þ� ¼

Z x0

u¼0

Z y0

v¼0

kX ;Y ðu; vÞdvdu: ð6Þ

For 1D approach, they employ the similar arguments as in Eq. (2) and propose to compute E[N(x0,y0)] by the
formula:

E½Nðx0; y0Þ� ¼

Z y0=x0

r¼0

KX ðrÞðx0ÞdF RðrÞ þ

Z 1

r¼y0=x0

KX ðrÞðy0=rÞdF RðrÞ; ð7Þ

where NX(r)(x) is assumed to NHPP for x > 0 with its intensity function as the hazard function of X(r) so that
the cumulative intensity function is given by KX(r)(u) = ÿln[1 ÿ FX(r)(u)].

While adopting the Eq. (7), under the assumption that first failure information is absent but FR(.) is known,
researchers consider occurrence of failures according to Poisson process with suitable intensity function
kX(r)(.). For instance, Murthy and Blischke (1992) as well as Mitra and Patankar (2000) take
kX(r)(x) = h0 + h1r + (h2 + h3r)x. A special case of this intensity function is proposed by Moskowitz and Chun
(1994), but they do not exactly utilize the Eq. (7). We discuss this later in Section 5.

4. Some examples to compute E[N(x0,y0)]

In the following, we present some examples in order to illustrate the difference in E[N(x0,y0)] values as com-
puted by the two approaches: 1D and 2D. These examples are certainly not the exceptions. In fact, we strongly
believe that it may be hard to find example where the difference, however small, is absent. This difference may
be due to either use of incorrect formula or because of wrong interpretation.

Typically, the researchers have advanced those bivariate probability distributions for the analysis of two-
dimensional warranty for which E[Y(x)] is an increasing function of x; see Murthy et al. (1995) for instance.
All our examples do possess this property.
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4.1. Non-repairable case

Example 4.1.1. Suppose that (X,Y) � Beta Stacy distribution. Murthy et al. (1995) propose its application in
warranty analysis. The joint pdf is

fX ;Y ðx; yÞ ¼
ðc=/Þaÿac

CðaÞBðh1; h2Þ
xacÿh1ÿh2

y

/

� �h1ÿ1

xÿ
y

/

� �h2ÿ1

exp ÿ
x

a

� �ch i

for x > 0, 0 < y < /x, and a, c, a, /, h1, h2 > 0. Observe that X and R are independent with respective pdfs as:

fX ðxÞ ¼
caÿac

CðaÞ
xacÿ1 exp ÿ

x

a

� �ch i

; x > 0;

fRðrÞ ¼
1

/Bðh1; h2Þ

r

/

� �h1ÿ1

1ÿ
r

/

� �h2ÿ1

; 0 < r < /:

Consequently, the Eq. (5) becomes:

E½Nðx0; y0Þ� ¼ MX ðx0ÞF Rðy0=x0Þ þ

Z 1

r¼y0=x0

MX ðy0=rÞdF RðrÞ: ð8Þ

We obtain the values of MX(.) by the method of Xie (1989). With a = 1.9, c = 2.5, a = 0.2, / = 1.1, h1 = 1.1,
and h2 = 1.1, the values of E[N(1,0.3)] are given in Table 1. Iskandar (1991) tabulates the corresponding value
as 1.8713. Based on the experience of numerical experimentation, we strongly feel that the difference in results
between Iskandar (1991) and simulation (of 2D approach) is merely due to numerical error, but the difference
in values obtained using the two approaches may not be just due to numerical error.

Example 4.1.2. Assume that the joint pdf of (X,Y) be

fX ;Y ðx; yÞ ¼
ka

hCðaÞ

ya

xaþ1

� �

exp ÿ
1

h
þ
k

x

� �

y

� �

for x, y > 0, and h, k, a > 0. We then observe that X(r) � Exponential(r/h) and R � Gamma(a,k) with

fX ðrÞðxÞ ¼
r

h
eÿrx=h; x > 0;

fRðrÞ ¼
ka

CðaÞ
eÿkrraÿ1; r > 0;

and F X ðxÞ ¼ 1ÿ 1þ
x

kh

� �ÿa

; x > 0: ð9Þ

Let us now consider the special case: y0 = 1, that is, we are concerned with one-dimensional policy having no
limitation on usage. Hence, the Eq. (5) turns out as

E½Nðx0;1Þ� ¼
ax0

kh
: ð10Þ

On the other hand, the 2D approach (Eq. (1)) results in

E½Nðx0;1Þ� ¼ MX ;Y ðx0;1Þ ¼ MX ðx0Þ ðsee Hunter; 1974Þ: ð11Þ

Combining the Eqs. (10) and (11), we obtain MX(x0) = ax0/(kh). But one can easily verify that, with FX(x) as
given in Eq. (9), ax0/(kh) is not solution of the renewal Eq. (4). This leads to a contradiction.

Table 1

Values of E[N(x0,y0)]

Example (x0,y0) 1D approach 2D approach

4.1.1 (1,0.3) 2.1312 Average = 1.9290* (Min. = 1.9188*, Max. = 1.9412*)

4.2.1 (1,2) 0.9741 1.5186

* Estimate by method of simulation: Nij(x0,y0) = No. of renewals for jth unit in ith replication for i = 1, . . ., m, j = 1, . . ., n where m = 10,

n = 10,000; M i ¼ ð1=nÞ
Pn

j¼1N ijðx0; y0Þ; Average ¼ ð1=mÞ
Pm

i¼1M i; Min. = mini{Mi}; Max. = maxi{Mi}.
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4.2. Repairable case

Recall that only minimal repair is under consideration. We refer to the Eqs. (6) and (7) for the two
approaches – 2D and 1D, respectively.

Following Baik et al. (2004), we take kX,Y(x,y) = fX,Y(x,y)/SX,Y(x,y). They observe that
Z x0

u¼0

Z y0

v¼0

kX ;Y ðu; vÞdvdu 6¼ ÿ ln½SX ;Y ðx0; y0Þ�:

Example 4.2.1. Let ðX ; Y Þ � Bivariate Lognormalðl1; l2; r
2
1; r

2
2; qÞ, that is,

fX ;Y ðx; yÞ ¼
1

2pðr1xÞðr2yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ q2
p exp ÿ

1

2ð1ÿ q2Þ

ln xÿ l1

r1

� �2

þ
ln y ÿ l2

r2

� �2
("

ÿ2q
ln xÿ l1

r1

� �

ln y ÿ l2

r2

� ���

for x, y > 0, r1, r2 > 0, and ÿ1 < q < 1.
We assume q > 0, which implies that E[Y(x)] " x. Observe that R � Lognormalðl2 ÿ l1; r

2
1;þ

r22 ÿ 2qr1r2Þ; X ðrÞ � Lognormalðl0; r
2
0Þ, where

l0 ¼ l1 þ
r1ðqr2 ÿ r1Þ

r2
1 þ r2

2 ÿ 2qr1r2

ðln r þ l1 ÿ l2Þ;

r2
0 ¼

ð1ÿ q2Þr2
1r

2
2

r2
1 þ r2

2 ÿ 2qr1r2

;

and KX ðrÞðuÞ ¼ ÿ ln 1ÿ U
ln uÿ l0

r0

� �� �

:

For l1 = ÿ0.5, l2 = ÿ0.2, r1 = 1.0, r2 = 1.1, and q = 0.5, the values of E[N(1,2)] are given in Table 1.

5. Discussion

It is therefore established that discrepancy does exist between the two approaches. Under such circum-
stances, how does one go about the decision-making?

In non-repairable case, we have no doubt that 2D approach (formula (1)) produces the correct result since
it is based on well developed renewal theory in two dimensions (see Hunter, 1974, 1996, for reference). The 1D
approach through formula (5) is an attempt to express two-dimensional renewal function in one dimension. A
correct version involving use-rate is as follows. Let (Xi,Yi) for i = 1, 2, . . . be the failure instances. Clearly,
each (Xi,Yi) is independent and identically distributed with common joint pdf as fX,Y(.,.). Also, let
SX
n ¼

Pn

i¼1X i; SY
n ¼

Pn

i¼1Y i, and Rn ¼ SY
n =S

X
n for n P 1. Then, we have:

MX ;Y ðx0; y0Þ ¼
X

1

n¼1

P SX
n 6 x0; S

Y
n 6 y0

� �

¼
X

1

n¼1

Z 1

r¼0

P SX
n 6 x0; S

Y
n 6 y0jRn ¼ r

� �

fRn
ðrÞdr

¼
X

1

n¼1

Z 1

r¼0

P SX
n 6 x0; S

X
n 6

y0
r
jRn ¼ r

h i

fRn
ðrÞdr

¼
X

1

n¼1

Z 1

r¼0

P SX
n 6 min x0;

y0
r

n o

jRn ¼ r
h i

fRn
ðrÞdr

¼
X

1

n¼1

Z y0=x0

r¼0

F SXn jRn¼rðx0ÞfRn
ðrÞdr

�

þ

Z 1

r¼y0=x0

F SXn jRn¼r

y0
r

� �

fRn
ðrÞdr

#

: ð12Þ
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On comparison of the formulae (5) and (12), we conclude that the former is at best an approximation.
Therefore, we require the knowledge of error involved for its possible application and interpretation. On
the other hand, one can explore the possibility of adopting the approach given by Moskowitz and Chun
(1994) for repairable product. This is described below. With conditional R = r, let P1(r) = {(x, rx):
x 2 (0,x0) for r < y0/x0} and P2(r) = {(y/r,y): y 2 (0,y0) for r P y0/x0} be the two line segments (refer to
Fig. 2). If we denote the expected number of failures occurring on these line segments by Ef[Pi(r)] for i = 1
and 2, then

E½Nðx0; y0Þ� ¼

Z y0=x0

r¼0

Ef ½P 1ðrÞ�dF RðrÞ þ

Z 1

r¼y0=x0

Ef ½P 2ðrÞ�dF RðrÞ: ð13Þ

With regard to 2D approach for repairable case, Baik, Murthy, and Jack (2006) report that formula (6) is
false, and provide a revised formulation. One must observe that this new formulation fails to preserve the dis-
tribution of product use-rate that changes from failure to failure. This is a serious drawback to arrive at a
meaningful value of E[N(x0,y0)]. As we understand, theory on minimal repair in two dimensions is possibly
yet to be developed.

6. Conclusion

In this note, we consider the problem of calculating warranty cost with rectangular two-dimensional policy
for both the types of products: non-repairable, and repairable with minimal repair. Specifically, we demon-
strate through examples the discrepancy in the warranty cost formulae derived by the two approaches,
namely, 1D and 2D. It is shown that the existing formula by 1D approach for non-repairable product is incor-
rect. For repairable product, the formulae under the two approaches are not comparable. In this case, the lim-
itation of the formula by 2D approach has been stressed.
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