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A Unified Approach to Topology Generation
and Optimal Sizing of Floorplans

Partha S. Dasgupta, Susmita Sur-Kolay, and Bhargab B. Bhattacharya

Abstract— Existing algorithms for floorplan topology genera-
tion by rectangular dualization usually do not consider sizing
issues. In this paper, given a rectangularly dualizable adjacency
graph and a set of aspect ratios of the modules, a topology which
is likely to yield an optimally sized floorplan, is produced first in
a top-down fashion by an Al-based search technique with novel
heuristic estimates based on size parameters. It is shown that for
any rectangular graph, there exists a feasible topology using only
either straight or Z-cutlines recursively within a bounding rec-
tangle., The significance of this result is four-fold: 1) considerable
acceleration of the heuristic search, 2) topology generation with
minimal number of nonslice cores, 3) guaranteed safe routing
order without addition of pseudo modules, and 4) design of an
efficient bottom-up heuristic for optimal sizing. Experimental
results show that this integrated method elegantly solves floorplan
optimization problem for general including inherently nonslicible
adjacency graphs.

Index Terms—AND-OR graph search, AO" algorithm, heuris-
tic search, nonslicible, VLSI floorplanning.

I. INTRODUCTION

LOORPLANNING is important not only for layout syn-

thesis but even more for deciding on design alternatives
that are likely to yield optimal quality during the early design
stages. Floorplan optimization problem comprises two sub-
tasks, namely, determining a suitable topology, and sizing, i.e.,
minimizing the area of the bounding rectangle by selecting the
size (aspect ratio) of each module.

Constructive floorplanning algorithms based on graph du-
alization [1], [7], [21] generate only a feasible topology by
dualization of a given adjacency graph in polynomial time;
the number of topologies for a given interconnection pattern
may be exponential. The sizing problem is polynomial-time
solvable for slicing topologies, but NP-hard for general [16]
and even hierarchical topologies of order 5 [10]. While the
general case has been tackled with the branch-and-bound
method [17] and simulated annealing [18], the latter may
change the topology. Stockmeyer’s optimal orientation al-
gorithm [16] has been generalized for area optimization of
hierarchical nonslicible topologies of order 5 [10], [19], and
general topologies in [9].

Very few algorithms exist which integrate the two subtasks
of floorplanning. The dynamic programming based technique
in [20] provides an integrated approach for slicing floorplans.
However, for inherently nonslicible [12] as well as some
slicible rectangular graphs, this method introduces pseudo-
modules.

The unified approach in our paper consists of two phases: 1)
given any rectangular graph, a floorplan topology that is likely
to have both a minimum area implementation and a minimal
number of nonslice cores is generated; 2) the actual (near)-
minimum area implementation for the generated topology is
obtained. The solution space of possible topologies being very
large, a well-known AND-OR graph search algorithm AO*
[8] is adapted with novel heuristic estimates to reduce the
search effort. The decomposition is based on our key result
that for any rectangularly dualizable adjacency graph, there
exists a floorplan obtained by considering only slices and Z-
cuts recursively; such a floorplan has a minimal number of
nonslice cores yielding a channel definition with safe (free
of cyclic dependence) routing ordering of the channels. All
the channels are monotone [5], [13], i.e., either straight or Z-
shaped and the number of Z-channels is minimal. Extensive
testing on benchmarks confirm that this approach works well
for any rectangular graph, producing notably small area.

The rest of this paper is organized as follows. In Section II,
some terminologies related to the rectangular dualization
method of topology generation are given. The notion of Z-cuts
is introduced which is then used in topology generation with
size parameters based on AND-OR graph search. Section IIT
presents the bottom-up sizing method. Experimental results are
presented in Section IV with concluding remarks in Section V.

II. TOPOLOGY GENERATION USING SLICES AND Z-CUTS

A. Rectangular Duals

A floorplan is a rectangular dissection of a given rectangular
section by isothetic line segments called cuts. The indivis-
ible nonoverlapping rectangles correspond to the functional
modules. A floorplan is said to be slicible if it is obtained
recursively by using through cuts or slices only, otherwise it
is nonslicible. 1t is assumed that the modules are rectangular,
and the junctions among them are T-junctions only. A wheel
(5-wheel) is a nonslicible floorplan with five modules [19].
A floorplan is said to be hierarchical of order 5 if it can be
obtained by recursively partitioning a rectangle into two parts
by either a vertical or a horizontal line or five parts by a
wheel [19].
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In the graph-theoretic rectangular dualization method for
obtaining a floorplan topology, the interconnection require-
ments among modules are represented by a plane graph called
the adjacency graph G = (V,E) where for cach module
there is a vertex v € V and an edge (u.v) € E implies
overlap in the boundaries of the modules u and w. The
plane adjacency graphs which admit a rectangular floorplan
are called rectangularly dualizable or rectangular graphs and
were characterized in [1], [7]; these graphs have unique plane
embeddings. One of the necessary conditions for rectangular
dualizability 1s that G must not contain any complex three-
cycle, where a complex p-cycle of a plane graph is a cycle of
p edges having at least one vertex in the finite region bounded
by it. A complex cycle will be denoted by C,, ,,, where p is the
length of the cycle and m is the number of vertices interior
to the cycle. A rectangular graph may have more than one
floorplan realization. The class of rectangular graphs which
do not have any slicible realization is known as inherently
nonslicible (INS) [12], [14].

A floorplan topology for a given rectangular graph G is
obtained as follows. First at most, four corner vertices on the
outermost cycle of the unique embedding of G [7] are chosen
thus partitioning the cycle into at most four segments forming
the sides top, right, left, and bottom. Then four external
vertices ¢, 7, [, and b, one for each side, are added. All vertices
on a side are connected to the corresponding external vertex,
and the edges (t,7), (7, b),(b,1), and (,#) are added to obtain
an extended graph F((). Finally, Gy, the geometric dual of
E(G) is embedded rectilincarly to obtain a valid rectangular
dual (floorplan) F'; this embedding may not be unique. The
outermost cycle of (74 is embedded as the bounding rectangle
of F, the four sides of which are denoted by north, east, south,
and west. Fig. 1(b)—(d), respectively, show an E((), its G,
and a floorplan for the graph G of Fig. 1(a).

A cut in a floorplan is a simple path in G4 between two
exterior vertices lying on opposite sides of the embedding of
Gy. In the dual space of E((), the corresponding cut-set of
edges decomposes E(() into exactly two nonempty subgraphs
G, and G,.. This cut-set is often referred to as a cut in . The
sequence P;(P,.) of vertices in Gi(G,-) which are adjacent to
these cut-edges forms the new boundary of any subfloorplan
for Gi(G,.). Any path in G4 is however not necessarily
embeddable as a straight slice in I. A cut in I is admissible
if it excludes at least two T-junctions on each module [12].

T
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Rectangular dualization: (a) rectangular graph, (b) extended rectangular graph, (c) geometric dual, and (d) a floorplan.

(a) (b) (©)

Fig. 2. (a) A generalized k-cut, (b) Z-cut in a rectangle, and (¢c) Z-cut in a
rectilinear floorplan.

A chord free path (CFP) [21] in G is a path P =
(v1,v2,...,v,) where for all & # j: (a) v; # vy, (b) if
(vi,v;) € G, then |[i — j| = 1. If P is not a CFP, then it has
two vertices v; and v; such that [:—j| > 1 and the edge (v;, v;)
is in (7; this edge is called a chord of P. A chord (v;,v;),i < j
of P is said to be maximal if there is no other chord (v,., v;)
where » < 72 < j < s. A cut is chord-free if both of its
boundary paths are chord free. Hence, a slice in a floorplan
corresponds to a cut in G which is chord free (embeddable
as a straight line), and both G; and (3, are rectangular. A
slice is feasible if it is admissible, chord free, and none of the
extended subgraphs on either side of it has a complex 3-cycle.

Two floorplans corresponding to the same rectangular graph
are adjacency equivalent. A canonical embedding [14] of a
floorplan is a adjacency equivalent floorplan with the minimum
number of nonslice cores (5-wheels). Such an embedding may
not be unique.

B. Z Cuts and Their Properties

Although complete characterization of slicibility of a rect-
angular graph is unknown, many sufficient conditions for
slicibility and properties of slicible floorplans appear in [12],
[21]. Some new properties related to nonslicible floorplans are
presented next. Let F' be a floorplan and G the corresponding
rectangular graph.

Definition 1: A generalized k-cut in F' (equivalently, a k-
cut in &) corresponds to a cut in & for which the number of
maximal chords on either of its boundary paths is at most k
[Fig. 2(a)].

Definition 2: A Z-cutin Fis a generalized k-cut with £ = 1
[Fig. 2(b)].

The converse that any cut in £ with two bends corresponds
to a maximal chord in its G may not be true. A slice is a
generalized k-cut with & = 0. Any generalized k-cut in I” has
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a rectilinear embedding with 2k bends or intermediate corners,
thereby decomposing F into two subfloorplans each of which
has a rectilinear polygonal boundary with 2k + 4 corners. Any
generalized k-cut can always be rectilinearly embedded with
2K bends for any &' > k. So the subfloorplans for a slice and a
Z-cut have, respectively, rectangular and L-shaped boundaries.
Floorplans with more than four corners will be referred to as
rectilinear floorplans henceforth [Fig. 2(c)].

1) Sufficiency of Slices and Z-Cuts: For the sake of effi-
ciency in optimal sizing, it is desirable to have a minimum
number of nonslice cores in nonslicible floorplans, namely a
canonical embedding. A canonical embedding of a hierarchical
floorplan has either 0 or 1 nonslice core at each level of the
hierarchy [14]. A single nonslice core at any level implies
the existence of a Z-cut. However, the nonuniqueness of
canonical embeddings leads to the observation that for a Z-
cut in I, the cut-set in G may be a CFP. Determination of a
nonslicible canonical embedding from a given ( in a top-down
fashion seems nontrivial. There exist floorplans which do not
have a recursive bipartitioning using slices and Z-cuts only.
Therefore, the following pertinent question is raised: for any G,
does there exist a rectangular dual which can be obtained top-
down by using slices and Z-cuts only? The affirmative answer
is proven below.

Lemma 1: For any rectilinear floorplan with at least five ex-
terior modules, there exists an equivalent rectilinear floorplan
Fleer having a slice.

Proof: 1t was established in [21] that for any plane
triangulated graph G, if G does not have any complex four-
cycle (Cym,m > 1) as a subgraph, then G has a slice. This
implies that if the outermost cycle of G has a length greater
than four, then it has a slice and hence the lemma follows. OJ

Observation 1: A rectilinear floorplan with four exterior
modules has a Z-cut through its concave corner which splits it
into two smaller slicible rectilinear floorplans [Fig. 2(c)]. For
all other cases with two, three, and by Lemma 1 five or more
exterior modules, a slice always exists, thereby rendering the
search for cuts in top-down topology generation more efficient.

Lemma 2: Let (G be a rectangular graph, C, a k-cut in 7
which decomposes it into 7 and G,., and P(C,) and P.(C,,)
the corresponding boundary paths in ¢ on left and right of
C,. If exactly one of P(C,), P.(C,) has a chord, then both
G and G, admit rectilinear floorplans.

Proof: Without loss of generality, let I(C,) have a
chord. So the cut C, is not a feasible slice and the subfloorplan
for G; must be rectilinear, namely L-shaped. The subfloorplan
for 7, 1s rectangular since P.{C,} has no chord; nevertheless,
this can always be extended to make it L-shaped maintaining
the adjacencies across the cut. O

Lemma 3: In a rectangular graph, the rectangular dualiza-
tion problem for the subgraph interior to a Cl,, in G is
independent of that of the rest of G.

Proof: For the four vertices on the C, ,,,, there are four
rectangles in the floorplan enclosing a rectangular section.
Thus, the subfloorplan corresponding to the interior of the
Cy,m must have a rectangular boundary, and the subgraph
of G interior to the Cy ,,, is also rectangular which may be
treated as an independent problem. |

Lemma 4: In a complex four-cycle Cy,, with m > 1
interior vertices, if all four of its exterior vertices are chosen
as corners, a Z-cut can always be obtained.

Proof: Consider the following two cases.

Case 1) m = 1. The proof follows from Observation 1.

Case 2) m > 1. By Lemma 3 above, since the interior
subgraph is a separate problem, a super-vertex
corresponding to the composite rectangular sub-
floorplan for it is considered. Thus Cly,,, reduces
to a Cy; and by case 1, a Z-cut between opposite
sides can always be obtained in it. |

Thus, Lemmas 1-4 lead to the following important theorem:

Theorem 1: A rectangular floorplan can be obtained from
a rectangular graph using recursive bipartitioning with gener-
alized k-cuts, where k£ < 1, (i.e., slices and Z-cuts only).

The Z-cuts, as evident from Lemma 4, are used only for
complex four-cycles with four distinct corners, the entire
subgraph interior to the complex four-cycle being an inde-
pendent subproblem. Using such Z-cuts has the advantage of
restricting the search space to a moderate size even for the
general floorplans. For rectangular graphs without complex
four-cycles, our method always produces slicible floorplans.
In other cases, need for Z-cuts depends on the specified sizing
constraints.

Observation 2: The number of nonslice cores, i.e., the
number of Z-cuts in the topology generated is minimal.

The rectangular dual produced by this scheme can be
represented by a binary floorplan tree Tp where the root
represents the bounding rectangle, an interior node represents
either a slice or a Z-cut, and the leaves are the indivisible
modules.

2) Safe Routing Ovder of Slices and Z-Cuts: In nonslicible
topologies with straight channels, the channel dependency
digraph C'Gy has directed cycles which call for iterations in
detailed channel routing [5], [13]. CGp is a directed graph
where for each channel there is a node, and an arc from i to
4 exists if one end of channel ¢ terminates on channel j.

Rectilinear monotone channels in any floorplan yield acyclic
channel dependency and thus a safe routing order (SRO),
but routing of monotone channels with many bends is quite
complex. Z-channels are relatively simpler. In the proposed
method of topology generation a minimal number of Z-cuts
are used.

Theorem 2: For a floorplan topology [ obtained by top-
down recursive bipartitioning using slices and Z-cuts only, its
channel digraph C'G' ¢ has a safe routing order.

Proof: Clear. See [3] for details. |

C. Formulation as AND-OR Graph Search

1) AND-OR Graph Search: An optimization problem may
be solved by recursively decomposing it into several subprob-
lems until no further division is possible. At any stage there can
be several possible decompositions. The root problem can be
reconstructed in several ways from the possible combinations
of the subproblems. The search graph is generally represented
as an AND-OR graph, where each node is either an AND node
representing actual decomposition, or an OR node denoting a
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Fig. 4. A floorplan tree with slices and Z-cuts.

set of possible decomposition strategies. A solution, called
the solution graph is a subgraph of the AND-OR graph. A
cost function associated with each arc (node) of the search
graph contributes to the cost of the solution(s). The objective
is to find the solution graph with optimum cost for the root
node s. A heuristic cost estimate [ on the nodes is said to
be admissible [8] if for each node n in the search graph
f(n) £ fopt(n) where foni(n) is the optimum cost of the
solution graph rooted at n. To tackle an NP-complete problem
in this framework, heuristic estimates are employed to direct
the search, thus reducing the execution time.

A floorplan topology is determined by recursively biparti-
tioning the adjacency graph until all the subgraphs are single
vertices. Each subgraph is realized as either a rectangle or an
L-shaped composite module (L-module). An AO*-based top-
down search algorithm is used here for determining a potential
topology. In the search graph, the root node s represents the
given adjacency graph with a chosen set of corners, each AND
node a bipartition (cut) of a composite module, and each OR
node a set of possible cuts. The AND and OR nodes occur at
alternate levels and have costs based on sizing constraints.
Fig. 3 shows a portion of the AND-OR partitioning of an
adjacency graph.

A solution graph is a binary tree with each AND (OR) node
having two (one) successors. The output T shown in Fig. 4 is
obtained from the solution tree by coalescing OR nodes with
their (single) successors.

2) Determination of Cuts: Based on the results in
Section 1I-B, the following strategy is used to find a cut
in GGy or its subgraph: 1) for a rectangular boundary both

(a) (b) (c) (d)

Fig. 5. Four types of Z-cuts (a) right-turning rz, (b) left-turning /7, (c)
top-turning 7, and (d) bottom-turning br.

Nwo | NE NW
N 2 /MW
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44 3 SW /SW SE
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Fig. 6. (a) A complex four-cycle is split with a Z-cut with edge (2, 3) as
chord and (b) corner assignment in the two resulting subfloorplans.

slices and Z-cuts are to be found; 2) for an L-shaped boundary
only slices need to be searched. The cut-finding procedure
tests incrementally whether there is at most one (zero)
maximal chord in case 1) [case 2)]; otherwise it backtracks.

3) Corner Assignment: A preprocessing phase finds a set
of corner assignments of the floorplan, of which one is chosen.
The four convex corners of a rectangle are designated as NW,
NE, SE, and SW in a clockwise manner starting from the top-
left corner. For an L-module, the additional two corners are
labeled as MW and ME (Fig. 6).

Bisection of a rectangle may yield either two smaller
rectangles or two smaller L-modules, whereas bisection of a
L-module may yield two smaller rectangles (slice through a
concave corer) or a rectangle and an L-module.

Let C = {v{,v%,...,v%) denote a cut (path) in Gy, P(C)

= (v},v],..., o7 and P.(C) = {(wi,v3,...,v51) be the
two boundary paths.

The salient cases of corner assignment are now discussed.

Case a) Slice in a rectangle: For a vertical slice, let
Gi(G,) be the left (right) subgraphs. Then,
NW(G;) = NW(G), NE(G) = v}, SE(G) =
v’l‘_l, SW(G) = SW(GE); NW(G,) = i,
NE(G ) = NE(G), SE(G,.) = SE(G), SW(G,)
= vy

Z-cu2t in a rectangle: There are four types of Z-cuts,
namely, right-turning (7¢), left-turning (/¢), rising
(tt), and falling (bt) as shown in Fig. 5.

Fig. 6 shows a vertical Z-cut through a complex
four-cycle (1, 2, 3, 4) The chord (2, 3) for this
Z-cut is on the right [Fig. 6(a)]. The NW, NE,
SE and SW corners of the new subfloorplans are
obtained as in the previous case. In addition, there
is a convex and a concave corner for both (¢; and
G, [Fig. 6(b)]. A concave corner is represented
by the two modules forming it. If the cut is of
type rt, then MW(G;) = (1,4), ME(G)) = 4
MW(G,.) = 5, and ME(G,.) = (5.3).

Slice through a concave corner in an L-module: As
in Fig. 7(b), NW(G;) = MW(G), NE(G}) = v},

Case b)

Case ¢)
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SE(Gy) = v, SW(G)) = SW(G); NW(G,) =
NW(G), NE(G,) = NE(G), SE(G,) = SE(G),
SW(G,) = v2 L.
Slice not through a concave corner in an L-
module: As in Fig. 7(c), MW((G;) = MW(G),
ME(G)) = ME(G), NW(G) = NW(G),
NE(G)) = v}, SE(G;) = v}~ ! and SW(G)) =
SW(G); NW(G,) = vi, NE(G;) = NE(G),
SE(G;) = SE(®), and SW(G;) = v5 .
For the slice in Fig. 7(d), new corners are assigned similarly.
4) Cost Computation: Each cut has a cost which is an
ordered list of the following.

Case d)

a) Estimate for the minimum wasted area of the floorplan
corresponding to a node, where the wasted area is the
area of the floorplan minus the sum of the area of its
modules. This is computed from the estimated minimum
dimensions of the corresponding floorplan.

b) Estimated ranges of the dimensions along the cut for the
two parts on two sides of the cut. Greater is the overlap,
better is the fitting of the two halves of the floorplan
on two sides of the cut and hence the quality of the
final floorplan. For a slice, this measure is computed for
the entire range of the cut. A Z-cut is considered as a
collection of three segments, and a composite measure
1s obtained from the overlap measures for each segment.

¢) The ratio of the areas on the left (bottom) and on the
right (top) of the cut. This is for a balanced cut.

d) The ratio of the proportional areas on the left (bottom)
and on the right (top) of the cut, where proportional
area is defined as the actual area divided by the number
of modules in the corresponding part. This helps in
achieving a uniform distribution of the modules over the
floorplan and in reducing the height of the search graph.

For slices through the concave corner of an L-module,
parameters (b) and (c) are ignored. Each node n in the search
graph has a nonnegative cost estimate f (n) and an actual cost
f(n). The cost estimate f in the explored search graph Gy,
is derived from the costs (a)~(d) defined above. Thus, f (n) is
a 4-tuple [F1(n), f2(n), f3(n), Fo(n)].

The actual cost f(n) of a node n in the underlying search
graph Gypuq is a similar ordered list. Let f{(n), f3(n), f3(n),
and f1(n) be the lengths of the longer and shorter horizontal
edges, and the longer and shorter vertical edges respectively,
for a module corresponding to node n. Then f!(n) = f{(n)=*
FA(n) = [f(n) = F}(n)] = [f(n) — FA(n)]. For rectangular
module, fl(n) = f3(n) and fi(n) = fi(n).

1
B iFLLD_i
(d)

Fig. 7. Five types of nodes in bottom-upsizing algorithm.

J(n) is defined as follows.

a) n is a terminal leaf. f{n) = f(n) where the values of
f”‘(n) for m > 2 are don’t cares.

b) n is an OR node with immediate successors
ny, M2, --,ng in Gyna. Here, f(n) is given by
the 4-tuple corresponding to a nondominated successor
node n;, where a node n; is said to be nondominated
among a set of nodes if there is no other node in the
set that is better than n; in the given order of the
elements of f.

c) n is an AND node with immediate successors n; and
na. f(n) is a function of f(n,) and f(n2) defined in the
manner shown at the bottom of the page where v(n;) is
the number of vertices in the subgraph for node ;. The
cost estimate f(n) is defined similarly.

At an unexplored OR node 7, f(n) is estimated by consider-
ing the given implementations of the exterior vertices for node
n. For the module n, fl(n) is computed by considering the
minimum and maximum dimensions of the noncorner exterior
modules and all possible dimensions of the corner modules.

An unexplored AND node directly inherits the cost esti-
mate from its predecessor. For all other nodes, the costs are
estimated from the aspect ratios and adjacency subgraphs in
a way similar to that for f(n). As the explicit graph grows,
f(n) becomes an increasingly finer estimate of f(n). For the
root node f (s) is ideally equal to f(s). Since f involves only
the minimum estimates, it is admissible.

For a SOLVED node n [8], f(n) may not be the actual min-
imum cost of the corresponding partial floorplan. To improve
the solution quality, whenever a node is SOLVED, the best
implementation for the corresponding topology is computed
in a bottom-up manner, and the estimated dimensions are set
accordingly. We will refer to this as partial cost computation
(PCC). PCC can be done selectively at different levels of
the search graph to have a tradeoff between the processing
time and the solution quality. The proposed method fails to
consider any interaction between the subgoals (AND nodes).
Thus, the best solution of a subgoal (obtained by PCC) may

f(n) is computed from f'(n;) and f'(ns) discussedas in [3].

f?(n) = overlap along common boundary of n; and n..

_ fHna) = f5(na) = [fi(na) = f3(na)] = [f3 () — fi(na)]

Fn)

in) =

T fE(n2) * fi(ne) — [fE(n2) — fA(n2)] * [fi(na) — fi(n2)]
[fL(n1) * f3(n1) — [f(n1) = f3(n1)] * [f3(n1) — fi(n1)]] fv(ny)

[fL(n2) = f3(na) — [fi(n2) — f3(na)] * [f3(n2) — fi(na2)]]/v(n2)’
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Fig. 8. Example 2: (a) input graph, (b) solution with slices only, and (c) solution with slices and Z-cuts.

not correspond to the best solution of its predecessor subgoal,
and hence an optimum solution is not provably guaranteed [6].

5) Search Algorithm for Top-Down Topology Generation:
Formal description of the proposed algorithm AO_FP* for
Phase I, namely the generation of a potential topology is
presented below. Let G’ be the actual search graph generated
by the algorithm located at the bottom of the page. Restricting
the cuts to slices only naturally reduces the space and time
complexities of AQ_F'P* considerably.

III. OPTIMAL SIZING

The second phase of our method achieves optimal sizing
in a bottom-up fashion described in this section. The output

of Phase I is a binary floorplan tree 7p. Using the given
set of possible implementations of the leaf modules, the
implementations of the root node of T can be obtained by a
post-order traversal of T and combining the implementation
lists of children of an internal node to form that of their
parent. An optimal implementation of the floorplan can then
be obtained by selecting one with minimum area from the
irredundant set of implementations for the root. The minimum
area of a floorplan clearly implies its minimum wasted area.
Implementation of a rectangular module is given by a 2-
tuple (w,h) where w is its width and % is its height. For
an L-module, it is a 4-tuple (w!,w? h', h?) where w'(w?)
represent the lengths of the longer (shorter) horizontal edges

Algorithm AOQ_F P* (Phase I)
Input: A rectangular graph G.

Qutput: A floorplan topology in the form of a binary slicing tree, Tr.

begin

input & which is the start node s of G' and the initial
nonleaf unexplored node of the potential solution graph (psg);
repeat (" until s is labeled SOLVED ™)
choose a nonleaf unexplored node n of the marked psg; expand n;
for each successor n; of n not already in G’ do begin
compute f(n,;); if n; is a terminal leaf then label n; SOLVED;

create S := {n};
end;

repeat (" until 5 is empty ™)

if (m is a node in S) and (no descendant of m in G’ occurs in S)

then remove m from 5;

if (m has no successor) and (m is not a leaf) then e := oc;

(*e : a temporary cost variable *)

else if m is an OR node then begin .
choose the successor m; of m with minimum f(mn;);
let this node be min; € := f(Mpnin ) mark the arc (m, Moain );
if m,,,;, 18 SOLVED then label in SOLVED;

end;

else if m is an AND node then

if both of its successors m; and m> are SOLVED then
compute the partial cost e, of m; e := ey; (" PCC "),
else compute e using f(m1) and f(m2);

if e <> f(m) then f(m) := e;

if (value of f(m) changes in the previous step)
or (m is labeled SOLVED) then
add to S all immediate predecessors of m along marked arcs;

until S is empty;
until s is labeled SOLVED;

output marked subgraph of the AND-OR search graph as T+ ;

end.
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and h'(h?) represent those of the longer (shorter) vertical
edges. For an L-module, an implementation (w*,w?, ht, h?)
dominates another (wl!,wy,hlf,hgf) if wt < wl w? <
w? hY < hY and B2 < h?. A set of implementations X
is redundant if there exist distinct implementations « and /3 in
it where v dominates /3. Thus, for area minimization, 3 can
be discarded, and only an irredundant set of implementations
need to be maintained.

For the convenience of processing and to have a higher
degree of pruning, irreducible R-list’s and L-list’s are used
as in [19].

The nonslicing structures generated by the proposed method
are hierarchical in nature [19]. Five major categories of nodes
that may occur in the floorplan tree are as follows.

Type A) A rectangle formed by combining two smaller
rectangles as in  Stockmeyer’s algorithm
[Fig. 7(a)] [16].

A L-module formed by combining two rectan-
gular modules: generalization of an «-node [19]
[Fig. 7(b)].

A composite L-module obtained by joining a
rectangular module along either of the longer
edges of an L-module: generalization of the /-
node [19] [Fig. 7(c)]-

A composite L-module obtained by joining a
rectangular module along either of the shorter
edges of an L-module: generalization of the ~-
node [19] [Fig. 7(d)].

A rectangle obtained by attaching two L-modules
with facing concave edges [Fig. 7(e)].

Type B)

Type C)

Type D)

Type E)

An irreducible R-list or L-list at a node of T is obtained
by appropriately combining the irreducible R-lists and/or L-
lists of the successors. There are five basic procedures, called
type i procedures, i € {A,B,C, D, E} to construct a set of
irreducible R-lists or L-lists for a type ¢ node. In all the cases,
m is a node of type ¢,7 € {A,..., F} with m, and m as
its successors.

Type A Procedure (proc_4): Nodes m, mq, and mso cor-
respond to rectangles. Let R,,, and R,,, be the R-lists for
nodes m; and mo, respectively. This procedure constructs at
most | Ry, |+ | R, | — 1 implementations in an R-list R,,,. The
construction of an element of R, is as in [16].

Type B Procedure (proc_B): Nodes m; and mga represent
rectangles. We assume that m; is the rectangle on the left
(vertical cut) or at the bottom (horizontal cut) and m. is the
rectangle on the right (vertical cut) or on the top (horizontal
cut).

Let R,,, and K, be the R-lists for nodes m; and mo,
respectively. The procedure constructs a set L, of |R,, |

irreducible L-lists {L%,, L2 -, b |} with each list con-
taining |R,,,| elements. Construction of each element of L,,
is a generalization of a-procedure [19].

Type C Procedure (proc_C): Nodes my and my are, respec-
tively, a rectangle and an L-module and are combined along
a longer edge of ms. The dimensions of m; are in an R-
list R,,,, containing A elements, and those of mso are in a
set of L-lists £, = {L},,,L3,,, -, L5 }. For a vertical

me? —mg?

cut, the procedure is preceded by a processing as described
below. The widths and heights of the modules m; and m»
are interchanged; and each of the L-lists and the R-list is
rearranged to obtain new L-lists and R-list. The total number
of elements in the L-lists is 7 = Y |Li, | and hence
the average time complexity of the preprocessing will be
O(T log T) which will not affect the overall time complexity
of the sizing. For a horizontal cut, this preprocessing is not
required. The procedure is identical to procedure-3 [19]. For
a vertical cut, the dimensions of the composite modules are
rearranged to the original ordering in time O(1'log¥’).

Tipe D Procedure (proc_D): Nodes m; and my are a
rectangle and an L-module, respectively, and are combined
along a shorter edge of m3. The dimensions of rn; are in an
R-list R,,, containing M elements, and those of my are in a
set of L-lists £,,,, = {Ly.,., L2, ,---, LY _}. For a horizontal
cut, along the shorter horizontal edge of mg, a preprocessing
is done as in the previous case. The procedure is identical to
procedure-~ [19]. For a horizontal cut, the dimensions of the
composite modules are rearranged to the original ordering.

Type E Procedure (proc_E): Nodes m; and mgy represent
two L-modules. The dimensions of m; and ms are given
in two sets of L-lists £, = {L& L% ,-- L% }
and L,,, = {Li,.L2,.---,L%._}. The dimensions of
m are formed by combining these L-lists sequentially
from the beginning to the end and the new dimensions
are stored in a single R-list, which is later pruned to
remove redundant elements. If the «th element of Lj,,l
and the yth element of Lf — are (wi,wf, hi,hi) and
(w3, w3, h3, h3), respectively, the composite rectangle will
have dimensions given by [max(w} +w3, w} +w3), max(w] +
w3, w? +wl), max(hi, hi, h? +h3), max(hi, h3, b3 +h3)] for
vertical cut and [max(wi, w3, w? + w3), max(w}, w}, w? +
wi), max(h} + h3,h3 + h%),max(h} + h3, K3 + h?)] for
horizontal cut. Certain key observations which enable us
to reduce the size of the R-list follow. Let p € L;, and
q € Lj,, be implementations of m; and ma, respectively,
with hil, > hé. For any » which appears before g in the L-list
L}, hk < h} < hl, sor need not be considered for a vertical
cut. Similar reductions are applied to a horizontal cut.

A pruning procedure as in [19] is used on the L-lists and
R-lists formed. The proposed sizing algorithm is described at
the bottom of the next page. This phase becomes polynomial-
time solvable if only slices are used. Only type A-procedure
has to be used with R-lists.

1) Complexity of the Algorithm: Since the first phase of
our method uses a best-first AND-OR graph search, it is
difficult to provide an exact theoretical complexity. This can
only be judged from the empirical observations.

The bottom-up sizing algorithm is complicated for floorplan
topologies having wheels. Thus, in discussing the complexity
of sizing, the sizing for a wheel is primarily dealt with.
For slices only case, the complexity of this phase becomes
O(blogb) where there are b modules with two possible aspect
ratios each [16].

Consider the wheel in Fig. 4 along with the cuts through it.
Let g; be the number of implementations for module ;. Then
the total number of implementations of the L-module at 7,
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is g1q2 (g1 L-lists, each having ¢» implementations). Each of
these ¢ L-lists is now combined with the g3 implementations
of module b3 to form g; L-lists each having (g2 + gz — 1)
implementations. At ng, there are g5 L-lists, each having g4
implementations. Thus at n4,q; L-lists, each having (g2 + ¢3
—1) are to be combined with ¢; L-lists, each having g4
elements. These form several R-lists. Total number of R-lists
1 q145, each of (g2 + g3+ g4 — 2) elements. The time required
in type-E procedure is dominated by merging these R-lists and
the time required for it is O(q1q5{(g2 + g3 + g1 — 2) log(q1q5)-
The total time required is the sum of the times in the individual
nodes and is clearly dominated by the time required in the
type-E procedure at node ny. Assuming ¢ = ¢2 = g3 =
g4 = g5 = ¢, the time complexity of the sizing for the wheel
is O(g®logq). Although the time complexity of the sizing
method used by us is greater than that in [10], our method is
simpler to implement.

IV. EXPERIMENTAL RESULTS

The proposed method has been implemented in C on DEC
Alphastation 250 running at 266 MHz clock speed. Exper-
iments have been performed on some benchmark problems
available from the literature and on some randomly generated
rectangular graphs. In Tables [ and II, these benchmarks are
represented as examples 1-17; of these, examples 11-17 are
INS. Examples 1-6 are taken from [20], [17], [21], [19], [15],
and [2], respectively. Examples 7, 8, and 10 are randomly
generated, example 9 is from [11], examples 11-15 are taken
from [19], and examples 16 and 17 are from [15]. Details of
aspect ratios appear in [3]. Some of the solutions obtained by
us are shown in Figs. 8-10.
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Example 15: (a) an INS input graph and (b) solution obtained.
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Example 6: Topology generated with slices and Z-cuts (sizing not

Two versions of the proposed method have been tested:

AO_FP* allowing slices and Z-cuts and AO_I"

allowing

*
slice

Sizing Algorithm (Phase II)

Input: Tr, a potential topology from AO_FP™.
Qutput: A minimum-area floorplan for 1.

proc_botup()

input: sets of irreducible R-lists associated with the modules (from
given sets of aspect ratios), and T

output: an irreducible R-list R, for s, the rootnode of T
begin for all nodes i in Tr, computed|[i] := 0; search(s); end.

search(n) (* recursively scan the subtree below node n *)

begin

if n is a leaf node then computed[n] := 1;

else begin

left (n) := left successor of n; right(n)
if (computed[lefi(n)] = 1) and (computed[right(n)] = 1) then begin

computed[n] := 1;

(* compute dimensions of n from those of its successors *)

case of type(n)
A : proc_A(n);
B : proc_B(n);
C :proc_C(n);
D : proc.D(n);
E : proc_E(n);
end;
end;
else begin search(/efi(n))
end;
end.

; search(right(n)); end;

:= right successor of n;



134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 2, FEBRUARY 1998

TABLE 1
EXPERIMENTAL RESULTS WITH SLICES AND Z-CUTS
Example | # implemen- Area Wasted | # Z-cuts CPU time {secs.} Distinct Total
tations area (%) Phase T | Phase IT | nodes nodes
1 310 30 0.00 0 0.008 0.00001 80 155
2 2.03 x 10'¢ 1024 0.00 5 11.75 0.03 3601 7547
3 47 140 5.71 0 8.36 0.0001 6396 13268
4 4% 242 0.83 0 1121.34 0.0009 88962 182513
5 416 72 0.00 2 0.39 0.0003 406 725
6 2187 196.42 3.73 2 9018.7 1.98 273876 512204
7 2B 88 0.00 0 0.42 0.0009 729 1340
8 24 247 0.00 0 1051 0.0009 70115 | 182923
9 4% 360 18.33 0 383.03 0.001 53502 | 129944
10 2201 310 3.9 0 3899.16 0.08 175212 | 321242
11* 3% 117 14.53 1 7.69 0.01 5757 12289
12* 4% 160 6.25 1 9.57 0.01 5727 11989
13* 52 468 14.53 1 16.72 0.01 5718 12190
14* 6% 320 6.25 1 16.1 0.07 5693 11877
15* 8% 638 5.96 1 39.99 0.01 3038 6136
16* 318 77 0.00 1 0.36 0.0003 369 606
17* 315 56 0.00 2 0.42 0.0001 626 1071
(* Inherently nonslicible input graphs).
TABLE II
EXPERIMENTAL RESULTS WITH SLICES ONLY
Example Area Wasted CPU time (secs.) [ Distinct [ Total
obtained | ares (%) [ PhaseT | Phase IT nodes nodes
1. 30 0.00 0.008 0.00001 B0 155
2. 1200 14.67 0.33 0.0001 418 448
3. 140 5.71 8.36 0.0001 6396 13268
4, 242 0.83 779.25 0.0009 72400 172493
5. 84 14.29 0.12 0.0012 118 178
6. 416.25 54.57 2043.04 0.01 50944 105996
7. 88 0.00 0.42 0.0009 729 1340
8. 345 0.00 751 0.0009 68201 152313
9. 360 18.33 383.03 0.001 53502 129944
10. 310 3.9 3899.16 0.08 175212 | 321242
11-15 INS 0.0001 N.A. 516 940
16. INS 0.0001 N.A. 119 170
17. INS 0.0001 N.A. 0 (1]

slices only. In both the cases, the CPU time required in each
of the two phases, the area obtained, and the percentage of
wasted area are noted. The space requirement is reduced by
using a graph search instead of a tree and the reduction is

noted in terms of the total nodes generated and the number of

distinct nodes in the search graph as given in Tables I and II.

Version AO_F'P* produces a hierarchical floorplans of
order 5. Most of the results obtained have nominal wasted area,
and the time and space requirements are not too large, except
for very large input graphs. Table I shows the performance
of AO_FP* for the above benchmarks; sizing complexity
is demonstrated in terms of the total number of possible
implementations.

The search space requirement and the execution times
are observed to be quite small for AO_F'F}; . compared to
AO_FP* but the wasted area is generally larger. It fails to
produce any feasible implementation for input INS graphs,
and reports failure within 0.0001 second. Table II summarizes
the performance of the version AO_F P, .

The complexity of the heuristic search being much larger
than that of sizing, the former clearly dominates the overall
complexity of our method.

In our experiments, for slicible graphs, the version AO_I" P*
outputs either a slicible or a nonslicible floorplan depending

on the sizing parameters, whereas for INS graphs, it definitely
yields a nonslicible floorplan.

The number of implementations for examples 6 (with 137
modules) and 10 (with 201 modules) are too large, and hence
the CPU time required is quite high. To restrict the search
space to a reasonable limit, the maximum number of cuts in
the input graph is kept small and varied with the depth of a
node in the search graph as specified by the user for better
solution quality.

To derive the set of aspect ratios for each module, initially a
nonslicing floorplan topology is obtained without considering
the aspect ratios. Next, based on this topology, a suitable pair
of dimensions for each module is estimated. If (a,b) are the
estimated dimensions for a module, the set of aspect ratios
for the latter is chosen {(a, b), (b, a)}. For these aspect ratios,
AO_F P}, . has more than 50% of wasted area, but AO_FP*

slice

yields a nominal wasted area [3].

V. CONCLUSION

This paper demonstrates an application of Al-based graph
search methods to an important problem in VLSI layout
design. Apart from the novelty of the approach, the results
so far in terms of area and time are very promising compared
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to those of few alternative methods [20] reported earlier. Our
top-down topology generation preserves all adjacencies of the
input graph; however, the bottom-up sizing method may not
guarantee 100% preservation of these adjacencies. The amount
of violation observed for the above examples varies from 0 to
16% [3].

The utility of our approach is three-fold. First, it proves the
sufficiency of using certain types of cuts for transforming a
rectangular graph into a floorplan the channels in which can
be safely routed later on. Second, optimal sizing for nonslicible
topologies can be performed in polynomial time. Third, it
illustrates the applicability of well-studied Al algorithms to
VLSI design. Further improvement of the proposed algorithm
has appeared in [4]. It can be casily extended to weighted
adjacency graphs by modifying the path search routine.

The heuristic search method has scope of improvement. For
rectangular graphs with a large number of possible slices at the
root, a depth-first strategy is needed. Some dominance rules
may be framed to reduce the search space. Moreover, the CPU
time and node generations can be reduced by using a weighted
inadmissible heuristic estimate at little cost of solution quality.

REFERENCES

[1] J. Bhasker and S. Sahni, “A linear algorithm to find a rectangular
dual of a planar triangulated graph,” in Proc. 23rd ACM/AEEE Design
Automation Conf., June 1986, pp. 108-114.

[2] Y. Cai and D. F. Wong, “A channel/switchbox definition algorithm for
building-block layout,” in Proc. 27th ACM/IEEE Design Automation
Conf., June 1990, pp. 638-0641.

[3] P. S. Dasgupta, “Studies on the application of Al techniques to VLSI
design,” Ph.D. dissertation, Univ. Calcutta, India, Feb. 1996.

[4] P.S. Dasgupta and S. Sur-Kolay, “Slicibility of rectangular graphs and
floorplan optimization,” in Proc. Int. Symp. Phys. Design, Apr. 1997,
pp. 150-155.

[5] M. Guruswamy and D. F. Wong, “Channel routing order for building-
block layout with rectilinear modules,” in Proc. [EEE Int. Conf.
Computer-Aided Design, 1988, pp. 184-187.

[6] R. E. Korf, “Learning to solve problems by searching for macro-
operators,” Res. Notes in Artificial Intelligence, vol. 5, 1985.

[71 Y. T. Lai and S. M. Leinwand, “Algorithms for floorplan design via
rectangular dualization,” IEEE Trans. Computer-Aided Design, vol. 7,
pp. 1278-1289, Dec. 1988.

[8] N. J. Nilsson, Problem Solving Methods in Artificial Intelligence.

York: McGraw-Hill, 1971.

P. Pan and C. L. Liu, “Area minimization for floorplans,” IEEE Trans.

Computer-Aided Design, vol. 14, pp. 123-132, Jan. 1995.

P. Pan, W. Shi, and C. L. Liu, “Area minimization for hierarchical

floorplans,” in Proc. Int. Conf. Computer-Aided Design, 1994, pp.

436-440.

M. Rebaudengo and M. S. Reorda, “GALLO: A genetic algorithm for

floorplan area optimization,” IEEE Trans. Computer-Aided Design, vol.

15, pp. 943-951, Aug. 1996.

S. Sur-Kolay and B. B. Bhattacharya, “On the family of inherently

nonslicible floorplans in VLSI layout design,” in Proc. I[EEE Int. Symp.

Circuits Syst., Singapore, June 1991, pp. 2850-2853.

S. Sur-Kolay and B. B. Bhattacharya, “The cycle structure of channel

graphs in nonslicible floorplans and a unified algorithm for feasible

routing order,” in Proc. IEEE Int. Conf. Computer Design, Oct. 1991,

pp. 524-527.

S. Sur-Kolay and B. B. Bhattacharya, “Canonical embedding of rect-

angular duals with applications to VLSI floorplanning,” in Proc. 29th

ACMAEEE Design Automation Conf., June 1992, pp. 69-74.

S. Sur-Kolay, “Studies on nonslicible floorplans in VLSI layout design,”

Ph.D. dissertation, Jadavpur Univ., India, Nov. 1991.

New

[9

[

[10]

(1]

[12]

[13]

[14]

[15]

135

[16] L. Stockmeyer, “Optimal orientation of cells in slicing floorplan de-
signs,” Inform. Control, vol. 57, pp. 91-101, 1983.

[17] S. Wimer, I. Koren, and I. Cederbaum, “Optimal aspect ratios of building
blocks in VLSL,” IEEE Trans. Computer-Aided Design, vol. 8, pp.
139-145, Feb. 1989.

[18] D. F. Wong and C. L. Liu, “Floorplan design for rectangular and
L-shaped modules,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 1987, pp. 520-523.

[19] T. C. Wang and D. F. Wong, “Optimal floorplan area optimization,”
IEEE Trans. Computer-Aided Design, vol. 11, pp. 992-1002, Aug. 1992.

[20] K. H. Yeap and M. Sarrafzadeh, “A unified approach to floorplan sizing
and enumeration,” [EEE Trans. Computer-Aided Design, vol. 12, pp.
1858-1867, Dec. 1993.

[21] K. H. Yeap and M. Sarrafzadeh, “Sliceable floorplanning by graph
dualization,” SIAM J. Discrete Math., vol. 8, pp. 258-280, May 1995.

Partha S. Dasgupta received the B.Tech. degree
in radiophysics and electronics and the M.Tech.
and Ph.D. degrees in computer science from the
University of Calcutta, India, in 1983, 1985, and
1997, respectively.

At the Indian Institute of Management, Calcutta,
he was on the Technical Staff of a UNDP sponsored
project between 1987 and 1992, Systems Analyst at
the Computer Center from 1992 to 1996, and has
been a faculty member in the MIS group since 1996.
His current research interests are in VLSI CAD, Al,
and analysis of algorithms.

Susmita Sur-Kolay received the B.Tech. (Honors)
degree in electronics and electrical communication
engineering from Indian Institute of Technology,
Kharagpur, in 1980, and the Ph.D. degree from
Jadavpur University, India in 1991.

She was a Research Assistant at the Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge, from 1980 to 1985, She
was a Research Fellow at the Indian Statistical Insti-
tute, Calcutta, from 1987 to 1991, and Postdoctoral
Fellow at University of Nebraska, Lincoln, in 1992.
Since 1993, she has been a Reader in the Department of Computer Science
and Engineering, Jadavpur University. She served on the Program Committee
of the 10th International Conference on VLSI Design in 1997. Her research
interests include algorithms, VLSI CAD, and computational geometry.

Dr. Sur-Kolay was awarded the President of India Gold Medal in 1980.

Bhargab B. Bhattacharya received the B.Sc. (Hon-
ors) degree in physics, the B.Tech. and M.Tech.
degrees in radiophysics and electronics, and the
Ph.D. in computer science, all from the University
of Calcutta, India.

Since 1982, he has been on the faculty of the
Indian Statistical Institute, Calcutta, where currently
he is a Professor of Computer Science. From 1985
to 1987 he was with the Department of Computer
Science, University of Nebraska, Lincoln, as a Visit-
ing Assistant Professor. He served in the conference
committees of the International Test Conference from 1986 to 1987, the
Asian Test Symposium in 1995, the International Conference on VLSI Design
from 1996 to 1998, and the International Conference on High-Performance
Computing in 1997. He also worked as the Tutorial Co-Chair in the 7th
International Conference on VLSI Design in 1994 and as the Program Co-
Chair at the 10th International Conference on VLSI Design in 1997. His
research interests include fault-tolerant computing, logic synthesis and design
for testability, VLSI physical design, and computational geometry.




	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf

