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ARSTRACT, Tn this paper, we introduce a nolion thatl we call a hepergroup; this
notion capturcs the natural algebraic structure possessed by the set of equiva-
lence classes of irreducible bifinite bimodules over a 1I; factor. After develop-
ing some basic facts concerning bimodules over 11 faclors, we discuss abstract
hypergroups. To make contlact with the problem of whal numbers can arise as
index-values of subfactors of a given II; factor with tovial relative commutant,
we define the notion of a dimension function on a hypergroup, and prove that
every finite hypergroup admits a unigue dimension fenction. we then give some
nontrivial examples of hvpecrgroups, some of which are related to the Jones sub-
factors of index 4cos?m/{2n + 1) _ In the last section, we study the hypergroup
invariant corresponding 1o a bifinite module, which is used, among other things,
to obtain a transparcot proof of a streogthened version of what Ocncanu terms
‘the crossed-product remembering the group.”

INTRODUCTION

In this paper, we introduce a nolion that we call a hypergroup {although
the term seems to have been used in the literature with somewhat differing
definitions—see the opening remarks in §IV). Our hypergroup describes the nat-
ural algebraic structure possessed (with respect to tensor-products and contragre-
dients) by the collection &(&) of equivalence classes of irreducible
bimodules over a TI; factor & that are bifinite {in the sense of having finite
left- and right-dimensions over N},

The first half of the paper is devoted to setting up the machinery. Although
portions of this half can be gleaned from [C and P], these sections are included
for the sake of completeness and sctting up the notation and our models, and
because there are some results here that are probably new—such, for instance,
as the fact that for vectors in a bifinite bimodule, the notions of left- and right-
boundedness are equivalent. The third section leads up to the fact that captures
the contragredient axiom in the hypergroup.

The fourth section begins with the axiomatic definition of (our notion of} an
abstract hypergroup. After developing some basic consequences of the axioms,
we define the notion of a dimension function on a hypergroup and we prove the
existence and uniqueness of such a function on a Anite hypergroup. In case a
finite hypergroup ® admits an outer action on a 1I; factor & {c¢f. Definition
IV.7), and if & — 4, denotes the dimension function on &, it would follow
that for each o in &, we can find a II| factor M, containing a copy of
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N as a subfactor with trivial relative commutant and index d2. We exhibit
some nontrivial examples of finite hypergroups; among them are #-element
hypergroups &, such that the value of the dimension function on the kth
clement is the “Wenzl number’ (sinkx/n+ 1)/(sinn/n+1). It is our belief that
every hnite hypergroup admits an cuter action on the hyperfinite II; factor R.
If that were true, our examples would yield several old index numbers as well
as several new ones such as {1 +cosm/2n + 112 and (n+ (n? + H1732 /4.

The final section concerns the *hypergroup invariant’ of a bifinite bimodule
over a II; factor. We obtain a transparent proof of a fairly strong version—
cf. Proposition V.3.—of what Ocneanu terms ‘the extension remembering the
group’. We finally describe the inclusion matrices governing the maps T —
T @y idy , thus showing that the hypergroup invariant of the bimodule contains
the data of the 4F-algebra built from the spaces y.2%(H") of N-bilinear self-
maps of the nth tensor power (over N) of 5 in particular, the hypergroup
describes many of the ‘reflection symmetries” possessed by the Bratteli diagram
of the ‘tower of the basic construction’.

The author would like to thank Colin Sutherland for (@) pointing out that
Proposition ¥.3. was valid cven in the presence of a cocycle, and (b) for hav-
ing given me the opportunity to enjoy a very pleasant and fruitful stay at the
University of New South Wales, where a good portion of this work was done.

I. PRELIMINARIES

The symbols N and M will always denote II; factors with separable pre-
duals; Hilbert spaces will be assumed to be separable and will be denoted by
such symbols as § and ®. The symbol tr will denote the unique faithful
normal tracial state on any I, factor and the symbol L*(N) will denote the
Hilbert space underlying the regular representation of ¥N—1i.e., the completion
of N with respect to the norm ||x{|. = {trx*x}'/? . When convenient, we shall
use the symbol || | to denote the wsual operator norm on & . The canonical
antiunitary involution on L*{ N)—which restricts on & to the usual adjoint—
will be denoted by Jy ; as above, we shall regard N as a subset of L1{N).

1. Definition. {a} A& left- [resp. right-) N-module is a Hilbert space $ equip-
ped with a normal *-homomorphism 7 of N (resp., a° of N?_ the opposite
algebra of N) into £{f).

{b) An N-bimodule is a Hilbert space H equipped with normal *-homomor-
phisms 7 and #9 of N and N? respectively into £(5) satisfying n{N) C
(N, O

Usually, when a left- (resp., right-) ¥-module © is given, we shall simply
write a+& (resp., £-a) for the action of a in N (resp., of a” in N°, where
a — a° denotes the natural anti-isomorphism of ¥ on AY) on the vector &
in f.

2, Definition. [a) A left {resp., right) ~-module is said to be lefi- {resp., right-)
finite if =(N)' {resp., % N"}') is also a finite von Neumann algebra (in which
case, of course, it is antomatically a TI; factor).

(b) A bimodule is called bifinite if it is left- as well as right-finite. O

3. Facts, We gather together some well-known facts that may be found, for
instanee, in [J].
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Let 5 be a lefi-fnite left N-module and let the action of & on § be denoted
by 7.

(1} Let § € H be nonzero; let p; and p; denote the projections onto [m{N}¢]
and [x{N)&] respectively, where [.5°] denotes the closed subspace generated
by the set .%”; then (p; € N and p{ € N' and) the ratio (rpg/trpl) isa
finite positive constant which is independent of the vector £. This constant is
denoted by dimy 5.

{2) Two left-finite N-modules © and M are equivalent—i.¢., there exists
a unitary operator o : H — R which 15 N-linear in the sense that u(e - ) =
a-uf forall & in N and & in $H—if and only if dimy H = dimyR.

(3) dimy $ = (dimggp; )77

(43 If p € N is a projection, then dimyy, p$H = (trp) ' dimy &,

{3) If p' € N is a projection, then dimy y p'6H = (trp')dimy H.

{6) If A= C" is made a left N-module in the natural way—via 7 ® l—then
dimyH2C" =n.dimy H.

(Clearly there is also a right-version of each of the above facts.)

4. Notation. We shall write My,.,(4} for the set of m x 1 matrices whose
entries come from 4. For a Hilbert space 5, we shall consider My, ..(H) asa
Hilbert space with [|€]2 = ¥ ||&;]|°. As is customary, we shall write M,(-) for
My ..n(-}. 1tis clear that M, (N) isa I1, factor. When £ is a left- {resp., right-)
N-module, matrix multiplication naturally induces a left Af,{ VN )}-module struc-
ture (resp., a right M, [N }-module structure) on My ..(5).

We now consider matrices of nonintegral sizes. Suppose r, 5 are positive
real numbers. Fix any integer »a that is larger than both r and 5. Select
projections p and ¢ in AM,(N] such that trp = r/n and trg = s/n. We
then let M. {A) = {€ € M,(4) : & = pdg] where A denotes either & or
LA (N). When r =5, we shall pick p = ¢ and we shall abbreviate M,,.(-} to
M. (-). 1t is clear that M,(N) is also a I1; factor and that M,.;(L?(N)) has a
natural left M,(N)-module structure and right M, (& }-module structure. To be
accurate, we should perhaps call the above “an n —p — ¢ model for M,..(417,
but we may and do dispense with such subtletics for the following reasons: (1)
if M; = p;M,(N)p, where p; is a projection in M_ (N} with trp; = r/n;
for i = 1,2, then there exists a partial isometry u € M, .,,(N) such that
the map x — w*xu defines a von Neumann algebra isomorphism of M, onto
My (iiy if 5, is the n; — p; — ¢; model for M...(L2{N}), then there exists
partial isometries u, v € M, ... (N) such that x — w*xv defines a unitary
isomorphism of $; onto fs.

5. Examples. (a) L*(N) is naturally an N-bimodule; the vector 1 is cyelic
for the left- as well as the right-actions of N ; further, in this case, z%(N7)
agrees with z{N)'; it follows from the definitions that dimy L*(N) = 1 and
dimye L3N} = 1.

(b} As has already been noted, M,...(L2(N)) isa left M, {¥)-module; an easy
application of the facts listed in §3 shows that dimyyg;ny M, (L3N} = /7.

6. Finite extensions of & . By an extension of ¥ . we shall mean a II; factor
M containing & as a subfactor. (To be precise, we must consider a pair
(M, p) where p is a faithful normal unital *-homomorphism of & into A7)
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We shall say the extension A4 is finite if dimy £2(M) is finite. In fact, this
dimension is just the Jones index [ : ] and it should be recalled that if &
is a left M-module, then H is left M-finite if and only if $ is left N-finite
and that dimy 5 = [M : N]-dimys H .

Let 0 <r,5 < o0 and let o : ¥ — M (N} be a unital normal *-homomor-
phism. Then M,.,(L*(N)} is left-finite as an M. N)-module; it follows from
the last paragraph that M., (L[ N)) is lefi-finite as an N-module (where the
action is given by a-¢ = a{a)l} if and only if [M.(N): w(N)] < oc. It further
follows from the last paragraph that

(6.1) dimy, iy Mrws (L2N)) = [MAN) 2 a(N)] - 3/r .

7. Definitions and some notation. If o : ¥ — M (N} 15 a unital normal *-
homomorphism such that [M(N) : afN}] < 2. we shall call such an « a
‘cofinite morphism of ' and we shall write .Z°(r x 57 a) for M. (LN
viewed as a left N-module as in the last paragraph. Dually, we shall write
F(sxr,a) for M., (LX) viewed as a right N-module via . In conjunc-
tion, given a pair of cofinite morphisms o N — M. {¥) and §: N — MJN),
then the Hilbert space AM,..(L2(N)) acquires, naturally, the structure of an N-
bimodule which we shall denote by “#F(rxs5; e, 8. Given a cofinite morphism
i N — M.N), we shall write d, =r.

The symbols o, f, . ... will, in this paper, always denote cofinite mor-
phisms. The symbol 1 will also be used, when the context is clear, to denote
the identity automorphism, when viewed as a cofinite morphism—e.g., o, = 1.
Finally, we shall consistently use the notation £, = F(l xd,; 1, a). Thus, for
instance, if « is an automorphism of &, then $, is just £2(N) as a Hilbert
space, while the actions are given by a <& - b = afalh).

Also, if $ and % arc N-bimodulcs, we shall write .2 (H, ®), Z(H, R)
and ».#%(H, R) for the spaces of bounded operators from H to % which are,
respectively, left-, right- and bi-N-linear.

8. Lemma. (i) T € x2(5,) if and only if there exists a matrix T~ € My (N)
such that TE = ET™ (matrix multiplication) for all £ in 5,

(ii}y T € wZ%(H.) if and ondy if there exists a matrix T~ as in (1) above
which further satisfies T~ € My (N} na(NY.

Proof. Assume that we are working with ‘the n—1—g model’ of M, (L*(N)).
Let gt ..., ¢ denote the rows of the matrix g and note that—due to the
idempotence of g—each g may be regarded as a vector in §,; in fact, note
thai

(8.1} E=(Ghesat=Caei=) & 4.

Let Tg'" = {(r;)); the proof of the assertion, with T~ = {[r;;}), would be
complete once we show that T~ = g7 ™~g and that #;; £ N forall ¢ and j.
The first assertion follows from the definitions; as for the second, note that if
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xeNand i, j<n,then

et l3 < (E |Ixre;'ll§) < llx - T = | T0x - g1

A
suTHL(an@n% <TIE- | S Nl | I1x13
J i

it follows that each ¢; is a ‘right-bounded vector’ in L2(N) and must conse-
quently belong to N ; it is clear conversely that any T as above is necessarily
left-¥-linear,

As for the second assertion, suppose T € pZ4(L*(N)); it follows from (i}
that 7& = £T~ forsome T~ in My (N); itiseasily seen that T(-a) = (T¢)a
forall 2 € & if and only if a{a)T™ = T™n{a) forall g ¢ . The proof is
complete. O

In anticipation of the next and further results to come, we make the following
definition.

9. Definition. Two cofinite morphisms o and o' will be said to be outer
equivalent if there exists a (partial isometry) u in My .4 ,(N) such that o'(x) =
we(x)u forall x in N and ww® = «(l). (Note that then, necessanily o, =
tra(ly=tra'(l) =4, )

10. Proposition, Every bifinite bimodule is equivalent to 9, for some cofinite
morphism «; further under the above passage from bimodule to cofinite mor-
phism, isomorphism of bimodules corresponds precisely to outer equivalence of
cofinite morphisms.

Proof. Let d = dimy $ where $ is the bimodule under consideration. In
view of §3(2), we may assume that, as a Hilbert space, H = M. ,(L3(N)).
Deduce now from Lemma § that there exists a map « : N — My{N} such that
&ra=_Ealg) forall @ in N . It is a matter of routing verification to see that
rx 15 indeed a unital *-homomorphism—whose normality is ensured by that of
the right action—and it then follows that % 1s just §,.

As for the second assertion, begin by noting that dimy 5, = d, (cf. §5.(2)
and the definition of 4,). Tt follows that if #, =~ H. , then d, = 4., ; hence
we may assume that the underlying Hilbert space for 5. as well as $, is
M. ,(LAN)). Suppose that ©™ is a unitary operator that is N-bilinear. De-
duce from our reduction and Lemma & that there exists a vnitary w € M;(V)
such that & = ¢ for all £ £ . The right N-linearity of &~ ensures that

§al@u =u~(E-a) =u~{ a=qua'(a);
the desired conclusion follows immediately. O

{We remark here that there is a right version of the above proposition, namely
that each bifinite bimodule determines—uniquely up to outer automorphism—
a cofinite morphism o®* such that # = F(d. = 1; o', 1); we do not prove this
separately here since it will follow from general assertions about the contragre-
dient that we shall later establish.)

We now wish to discuss some representation-theoretic aspects of the theory
of bifinite bimodules. The starting point is the deduction from §8(ii)—and



32 ¥, 5, SUUNDER

the basic fact from Jones® theory of subfactors that a subfactor of finite index
necessarily has a finite-dimensional relative commutani—that if # is a bifinite
bimodule, then 4 = x4 ($) is 2 finite-dimensional C*-algebra of operators.
(If §~ 9H,,then A = M; (N}na{N'}).) Note that there is a natural bijection
between projections in 4 and sub-bimodules of % such that the Murray-von
Neumann notion of equivalence of projections corresponds to equivalence of
sub-bimodules. The following lemma must be obvious; its proof is omitted.

11. Lemma. (a) The following conditions are equivalent:
(i) 9. is an irreducible bimodule;
(ii) My (N)na(N) =C;
{b) The following conditions are equivalent:
(i) 5. isisonvpical—Ii e, any wo notzero submodules contain further
nonzero sub-bimodules which are equivalent,
(il) My (N)NalN)' = My,{C) for some integer m .

We shall say that a cofinite morphism « is irreducible or isotypical when £,
has that property.

12. Schur's lemma. If o is irreducible and § is arbitrary, then x.2%(9,. Hg)
consists only of scalar multiples of isometries.

Proof. If { € xZ%(9., Hg) has polar decomposition f = ul#|, it is easy to see
that ¥ € ¥ 2N (9., Hg) and |¢| € x.Zx(H,) and consequently |¢| is a nonnega-
tive scalar; it follows that # is either the zero operator or an isometry and the
proof is complete.

13. Theorem. Every bifinite bimodule 5 admits a decomposition.

n
n= @{ﬁr’ & C™)
=1
where each 5 is an ireducible bimodule and m; are integers. Such a decom-
position is unigque up to permutations and isomorphisms of the %;.

Progf. Assume, without loss of generality that % = 5, . As has already been
noted, bifiniteness ensures the finite-dimensionality of 4 = &y Z%(5..).

To prove existence of the decomposition, let {p,, ..., gy} be the partition
of 1 into minimal central projections of A; each p; can be decomposed as
p; = XL, 4}, where the g/ are minimal projections in 4. It follows fairly
easily that H = @,(D, 4/) is a decomposition of the desired sort.

Uniqueness follows from the fact that every partition of 1 into minimal
projections must necessarily refine any partition of | into central projections. In
fact, 1t is evident that the decomposition into 1sotypical summands 1s canonical,
while the decomposition into irreducible summands is determined only up to
conjugation by a unitary operatorin 4. 0O

We conclude this section with a brief discussion of the contragredient of a
module,

14. Definition. Let $ be a left- (resp., right-} N-module. By (a model of) the
contragredient of %, we shall mean any right- (resp., left-) N-module $* for
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which there exists an anti-unitary operator J: 5 — H* satisfying J{a-¢&) =
(JE)-a* (resp., J({-a)=a"-(J&)) forall g in N and £ in H.

If § isan N-bimodule, and if $* is any N-bimodule for which there exists
an anti-unitary operator J : § — §* satisfying J{a-&-by=pb* - JE-q* forall
a,bin N and ¢ in 9, then the bimodule $* will be called (a model for) the
contragredient of the bimodule 5. O

Note that the contragredient clearly exists and is determined up to unitary
isomorphism [since the composile of two anti-unitaries is unitary).

15. Lemma., F(d, xdy:a, B ~F(dy xd,; f.a).

Proof. Define J : My, .q (LXN)) = My g (L*(N)) by (JE);; = Jn€jis the
fact that Jy establishes the self-contragredience of the bimodule L*(N) to-
gether with a routine computation involving simple matrix-multiplication, suf-
fices to complete the verification that the above J does the required job. O

16. Notation. if o is a cofinite morphism of N, then, by (a model for) o,
we shall mean any cofinite morphism of ¥ such that 6. = (H.)*.

Note that if £ is a left N-module, then dimy 6 = dim $%; in particular
d = dim B, , and we see (cf. 6.1) that

doldye) = [My (N): a(N)] = (Mg, (N) 1 &*(N]],
the second equality following from the obvious fact that (*)*~5. O

II. BoUNDED VECTORS

Henceforth, the symbols & and R will always denote bifinite N-bimodules
and the symbols «, £, v, &, p, and 4 will be reserved for cofinite morphisms
of N.

1. Definition. A vector ¢ in H will be said to be lefi- (resp., right-) bounded
for {the right- (resp., left-) action of) N if there exists a constant C such that
1§+ all < Cllallz (resp., |la-<|| < Cllajlz) forall a in N.
2. Lemma. Suppose N C M are 11, factors such that [M : N] < . Let 5
be a left M-module (so that it can also be regarded as a left N-module). The
following conditions on a vector £ in § are equivaient:

(1) & is right-bounded for the lefi-action of M,

(i} & is right-bounded for the lfeft-action of X .
Progf. Since (i} clearly implies (ii), assume (ii). As is well known—cf. [PP]—
the assumption of finite index implies that there exists a finite set {4, ..., Ax}
in M and a positive constant K such that any element x in M has a repre-
sentation of the form x = 37 A;a; where a; € N and [|a:||; < K| x]2 for each
£ . It then follows that

Ix - &l < 37 Milles - Nl - €I
|

< Y llAillee - €+ a2
1

< O flxlla
where ' is an appropriate constant, thus completing the proof. 0O
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3. Lemma. The following conditions on a vector & in M,...(L*(N)) are equiv-
alent:

(i) & is right-bounded for the left-action of M {N};

(ii) &€ € M, (N},

Proof. Since (ii) clearly implies (i), assume (i). We are, thus, given an integer
n = r, s, and projections p, g € M,(N) satisfying trp=r/n and trg =s/n,
and we are given that & = pfg and that & is right-bounded for the left-action
of pM,(N)p on pM,(L3(N))g.

MNote, first that, for any # € M,(N}, the vector £ - F is right-bounded for
the left-action of pM,(N)p on pA, (L3 N)). Apply this to & = up, where
u is an arbitrary unitary element of AL, (N}, to find that the vector £-up is
right-bounded for the left-action of pM,(N)p on pM,(L:(N))p. However,
pM, (L (N))p is the standard left pAf,{N)}p-module and it follows that neces-
sarily, ¢ - up € pMy(N)p.

It follows, in particular that £ - upu™ © M,(N), and this is true for every
unitary # in M,{N). On the other hand, we can clearly find unitary elements
Hi, ..., My in My(N) such that @ = 3] u;pu; is an invertible element of
M,{N). We then deduce from the above that & .a € M,(N), and deduce
finally that & = (&-a)-a~! € My (N);since £ =p-&-g, we have £ c pM,(N)g .,
and the proof of the lemma is complete. O

Obvigusly, there is a dual proposition valid for vectors that are left-bounded
under an appropriate right-action. On the other hand, Lemma 2 implies that
a vector & in F(d, = dp;a, f) is left- (resp., right-) bounded for the right-
(resp., lefi-} action of & if and only if it is left- (resp., right-) bounded for the
right- (resp., left-) action of M, (N) {resp., My (N)). Coupled with Lemma
3. we have
4, Proposition, A vector § in a bifinite N-module § is left-hounded if and only

if it is right-bounded. If 5 =% (d, = dy; o, B). this happens precisely when all
the entries of the matrix & come from N

Proof. This follows easily from the preceding remark and §3.

5. Noration. (Given a bifinite N-bamodule #, we may thus ignore the quali-
fying adjectives left and right and simply talk about bounded vectors. We shall
denote the class of all bounded vectors in £ by Hg.

6. Proposition. Let H and W denote bifinite N-bimodules.

(1) $y is stable under both the left- and right-actions of N,

(11) $Hg is dense in 5§

(1ii) The association T — T\Hg sets up a bijection between operators T in
w20, M) and the class yLy(Hy, B) of finear maps § from 5y into Wy
that are N-bilinear in the sense that §(a-E-bl=a-SC-b forall a. b in N
and & in Hy.

Proagf. (1) Let a, be & and & ¢ Hy be fixed, for arbitrary x in N, we have
Hx-(a-&- bl = [Blo - ||l xa - £
< [blno « Cllxallz
< Chbliooballlx]l2 .
thus establishing that a-£- b € $p.
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(ii) This follows immediately from the obvious fact that M, ,(N) is dense
in My, (L3 (N},
(iil) If & € iy, the fact that TE « M, follows from the inequalitics

fa-Tell = Tta-M < 0T - lla-<ll < ST - Niallz:

thus the restriction of T maps %y to M;. Suppose conversely that we are
given a linear map 8 : Hp — Ry which is N-bilinear. We may, and do assume
that = 9, and that R = fig for some cofinite morphisms wand f of N.
Fix a suitably large integer » and assume that o, §: ¥ — M,(N) and satisfy
tra{l}) = d,/n and trf{1) = dg/n. Let A' denote the ith row of the matrix
a(l). Then, Al € My, (N} = $Ho and so SA' =5’ € Ry = M4, (N); suppose
§' = [Si1,..., %q). Since s' € Ry, it follows that 5 = s' . 8{1) and that
si; € Ninote now that if €= (&, ..., &) € (9.)0, then

SE=5 (Zﬁ:‘ 'li) =3 oo =E8"
I

where the last term denotes the matrix-‘product’ of the row-vector ¢ and the
matrix 8§~ whose (i, fjth entry 15 5, . Simply define T8 = {8~ for £ in
fi—noting that this makes sense since the entries 5;; belong to N, which acts
from the right on £2(N)—and note that 7 is a bounded operator from $ to
M which extends § and consequently inherits N-bilinearity from 5. 0O

We now relate bifinite N-bimodules with the theory of Hilbert modules.

7. Proposition. For any bifinite N-bilinear bimodule %, there exists a unigue
mapping Hg = Hg — N, denoted (£, ) — (&, wix which satisfies the following
relations, for arbitrary &, n,{ in Hy and a in N:

{a) (&, &y s a positive element of N that can be zero onfy if £ =10,

(b} &, niw={{n,SIn)*s

{G]I {54" 1, ‘::}N = ':‘:'s C}J\' + {’?- ‘:}.'\'5

(d) (@, myx=ail,.my:

(€) (€ a, M=, 0 ahn;

(f) (&.a-muw=1{, Mna*; and

{g) (&, m =1, mixn.

Proaf (Existence), Assume, with no loss of generality, that £ = %, where
a: N — M; (N) is a cofinite morphism. If & = (i), # = () € (o,
define &, nix = 3 &inf (= £n*) where the product occurring in the paren-
theses is matrix multiplication, The verification of the above conditions is a
painless triviality; the proof of (e), for instance, is: {£-a, niy = (Eafa)ly® =
§alg* ) n* = L(nula™})" =, n-a’)x.

{ Unigueness). Suppose ( , ) is another function from (H,)y % (H.)o to N
which satisfies conditions {a)-(g) above. Note, as before, that if we let A' denote
the ith row of a(l), then i’ € (f,)s; define p;; = (', A); then, forany &, »
in ($,)p, we have

€ om= (&2 02 =23 tiyn) =Eor’
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where, of course, the last product is a matrix-product and p denotes the matrix
with (f, fith entry py;.

It follows from the identity in the last paragraph and the definition of p that
piy= (4, 27} = ApA’*,

which, in turn, implies that p = a{1)pa(l).
Appeal to condition (¢) to deduce that, for all &, 1 in (5,)p, we have

Cala)pn” = (E-a,. n)=(L, n-a") =Lp(gala’]}" = Cpala)n”;

by allowing ¢ and #» to range over A’ and A, we easily deduce that this must
imply that pe{a) = w{a)p for every a2 in &. Thus p is a projection in
M, (N)na(N)' . Condition (g} can now be translated as saying that tr{pn® =
(¢, x) ; in other words the operator, which is defined on ,, as multiplication on
the right by the matrix p, induces the same sesquilinear form as the identity
operator; this last conclusion forces p to be the matrix «f1) (which is the
matrix which corresponds to the identity operator on $,,). Hence, if £, n € 5y,
then, (¢, i} = tréa{1)y* = tr{y*, and the proof is complete. O

It goes without saying that there is a corresponding left-handed version of
the above result, which we state here since we will later need this form.

7 (left version). Proposition. There exists a unique map from $ipx Hy to N,
denated (£, n) — {E, 0y, that satisfies the following conditions, forall &, 5, ¢
in Hg and a in N

(a) wi&€, & is a positive element of N that can be zero ondy if € =10,

(b} i€, m=(win. &1

(€) wi€+n, O =nic, O +uin,

{d} N{a'é! ﬂ} = ."'l'{és el '”:’;

(e) wig-a,n) =i, ma;

(f) wi,a-q)=ayll.n; and

(g} tra(l, m = (5, m).

Further, if 5% is a contragredient of %, and if £ — £* is the ‘implementing’
anti-unitary operator, then &, 0t = {g*, &y

Progf. The reader should have no difficulty in verifying the proposition either by
perfectly reflecting the proof of the right-handed version or by taking a cue from
the final assertion of the proposition and converting the problemn concerning
the ‘right-handed N-valued inner-product’ on £ to the problem concerning the
“left-handed ¥-valued inner-product” on $* . In terms of the model, if & = 5, ,

then w({, M =3n'¢;. O

For convenience of later reference, we give here a suitable formulation of the
Riesz representation theorem.

8. Proposition. (a) Efach 5 in Hy induces a unigue operator T, in
N (5, LN such that T,& = (&, gy forall & in 5y,

(b) Conversely every operator in x.Z{$, LX{(N)) is of the form T, for a
untigue » in Hg.

Proof. Assume that f =9, forsome o, {(a) Define 7,5 =% &) for £ in H
and observe that T, fits the bill.
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(b) Conversely, if T € 5.7°(H, L2(N}), note first that 7 maps §;, the set
of bounded vectors in %, into the set of bounded vectors in L3(N) which is
just N, Let af = Tif, where as usual we write i’ for the ith row of a{l);
thus, &’ € N forall {, and if & ={&) € Hy, we then have

TE=T(3&-#)=Y ¢ a;

write @ for the column vector with ith entry &, define # = a*a(1), and note
that # = (1) so that 5 € Hip; further, if £ € 7p, then

TE=da=(a(l))a=<Cn = {C, mx;

thus T agrees {on the dense subspace $;, and consequently on all of ) with
the bounded operator 7,. O

9. Remarks. Note that, dually, every element n of £y determines a unigue
operator 7™ in Ly{$y, N) such that ,7~& = x(&, #) forall £ in Hy, which
operator, in turn, extends uniquely to an element ,T of #4 (5, LN}y ; and
conversely, any operator I~ in Ly($H;, N} extends uniquely to an operator T
in (5, L}(N}) which in turn is ,T for a unique # in £ .

[1I. TENSOR PRODUCTS

Recall—cf. IL6&{1i) and its proof—that if % and ™ are bifinite N-bimod-
ules, the association 7 — T;, sets up a bijection between 5.Z%(H, M) and
wLy(Hg. Mg); further, if H = H, and R = Hy, then every operator T in
W2ZN (D, Ng) is given by 'L = LT for a uniquely determined matrix 7™ in
My, <a,{N) that satisfies a(a)7™ =T~f(a) forall a in N.

1. Proposition. Given any two bifinite N-himodules 5 and R, there exists a
bifinite N-bimodule, denoted by H @y W, satisfying
(1} There exists a surjective linear transformation from the algebraic tensor-
product Hy@Wy onto (@ R)g—the image under which map of £ & n we shall
denote by & sy n—such that, for all (&, n) e Hy xRy and a, b e N, we have
{ragnp=CBxa-n and a-(@vn-h=a-(faxn) b

(i) if § is any linear map from SRy into My—where I is any bifinite N-
bimodule—satisfying 8(&-awn) = S(Eza-n) and S(a-an-b) = a-S{Ean)-b, for
arbitrary a, be N and (&, #) € (5 x By}, then there exisis a unique operator
S~ in y Ayl ey R, M) such that

S~Eann)=San) forall({,n) € HoxHy.

Froof. Assume $ = £, and | =5y, where o, f: N — M (N).
Assertion: F(da x dg;a*, §) is a model for £, @y Hy.
Note, 10 start with, that £, ~ (5} ~ B (d. % 1;a*, 1]. Let

(€1 ln) = (E) =€ € Ha e (£7) =87 € My o (LX(N))
denote such an isomorphism. For & € (9,)p and #n € (fz)q, define

C@nn=(({""n)) € Ma(N)
and note that
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(e ()& @x NIB(1Ny = > a1~ mf;(1)
k.t

={7'n = &N )iy,

so that £ @ # does indeed belong to My, .q, (V).

The equations of (i) are easily seen 10 be verified; as for the assertion concern-
ing surjectivity, begin by noting that the columns of o*(1) belong to M,,# wii N
thus we may find 4; in 9, such that i} is the jth column of a®(17. Also, let
w denote the dth row of #{1). For « € NV, compule thus:

(hjra@y e = A a) @)y = (A7 @) (1) = af (a1}
also, if £ =({y) e M,fa,xd,wj = [Fdqsx dﬁ st Ao, then,

En = (oM DEBe =3 el 1)EBull):
if

and hence ¢ =3 (A, - &) ®» #', thereby establishing the asserted surjectivity
and completing the proof of {1).

As for {11), if § 15 given as in the proposition, simply define 5™~ by 5™& =
55 S((2Ei) @ ') forany & in (9aBaHp)o = My g, (N) s i is casily verified
that 5™ € yLy((H, @x HBglo, Pig); it follows from the remark preceding the
proposition that 5™ extends wniguely to an V-bilinear bounded operator from
Fi. @ Ay to M. This extension, that we shall continue to denote by 5™,
clearly has all the desired features. O

It follows easily from the above proposition that the tensor-product f &y R
is uniquely defined up 10 isomorphism.

2. Corollary., dimy(5 @y R) = dimy H - dimy M, and dim(H gy Ry =
dim iy - dim Ry .

Proof.
dimpy B (dy x dg; o, f) = diman My, (LH(N)
=My n 0 (N)] dim My (M) My g, (LF(N))
=dydy - dpfd
e d“ £ dﬂ [

thus proving the first identity. The second identity can be proved in exactly the
same manner, or may be deduced from the first by considering contragredients
and appealing to the next result. O

3. Corollary. (H oy R =0t ay 64,
Progf. Assume that § = ), and % = fj; , and note that
(Ao By Hg)* = (F(de xdg; a®, 1)
:-@(dﬂ X dwi B r}”}
= f]ﬁh e ﬁa* .0

We now wish to give an alternative description to the tensor-product which
brings to focus the relationship between the cofinite morphisms involved.
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4. Definition. If & : N — M, (N) and f : N — M,(N) are maps, we shall
use the symbol n® f for the map from N into M., (N )—where the rows and
columns are indexed by {1, 2, ... . m}=x{1,2, ..., n}—defined by

(@ B pila) = o (Biyla)).

5. Lemma. If o and B are faithfil normal *-homomorphisms, sois a@ §.

Proof. This is an easv and routine verification: for instance, the verification
of the adjoint condition runs as follows: (o @ ) wla*) = au(fula*)} =

e {fij(a)”) = gl Brjla))” = (e @ Bl ,la)”. O

We shall establish, by a somewhat indirect argument, that o & # inherits
cofiniteness from & and £ ; we proceed in several steps. Note, 10 start with,
that

(e ® B)(1) = (mn)~' Y trey,(B,(1)
Pa)
g Z Iag,00) a(.ﬁ_{jl:l ”
i
=m~" Y (ra{l)jir f,;(1) (by uniqueness of trace)
i

= (traf1)) - (tr B(1))
and hence, $,.4 is a left-finite N-module with d,q5 = d.d; .

6. Proposition. If « and £ are cofinite morphisms, then $,.4 15 a model for
N, @y Hg and in particular, o ® s cofinite.

Praaf. To begin with, we recall the following facts concerning left-finite -
bimodules:

{a) If © isleft-finite, then H =~ F(1xd,; 1, y) =5H, where y 1 N - M, (N}
is some normal unital *-homomorphism, which is cofinite precisely when 5 is
also right-finite.

{b) Arguing exactly as in the proof of Lemma LB(i), we see that a vector in
%, 1is right-bounded for the lefi-action of N precisely when all its entries come
from N, consequenily, M, .4 (N) is the set of bi-bounded vectors in .

{¢) Deduce from (b) above—and arguing exactly as in the proof of Lemma
1.8.(i}—that if a, #: N — M,(N) are normal *-homomorphisms {not neces-
sarily unital or cofinite}, then a typical element I of (%, . H;) is induced
by multiplication on the right by a matrix T in My ., (N); thus, T¢ ={T™
t“r& S ﬂu 4

{d) It follows from {c) above that if f and M are left-finite N-bimodules,
and if welet f; and M, denote the collections of bi-bounded vectors in 5 and
R respectively, then, the association T — Ty, sets up a bijection between
wZy(f. M) and the linear space ~Ly{fp. M) of N-bilinear maps from #qg
10 My,

(e} It is easily deduced from {d) above that Proposition ITL 1(ii} remains valid
even when M is only required to be lefi-finite, provided that M, is interpreted
as the set of bi-bounded vectors in Mt.
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We complete the proof by showing that $,.4 satisfies the conditions of
Proposition I1I.1, when condition (ii} is modified as in (e} above, and by in-
voking the uniqueness imposed by that universality condition. We begin by
defining T': (Ha)o @ (Hp)o — (Hagply (= Mieg,q,(N)} by the prescription

[TE @y = Eanln);

we then verify as follows:

(1) (TE@na@ ;=Y (TESnhled B, 1)

L)

= Z Erover (M) @y ﬁ!’_; )= Z‘:rﬂ’rr{mﬁf;{l}

kd,.r

= zfrﬂn (Z Bl ) ér“ra (1) ={T(E @ mli:

r

[T a@mly =Y (£ aloiln)
(ii) = Z{fata}lr;rf{ml
- éﬁsantalarf{nﬂ = [Ee(a)nin,)
= [éa(am—ﬂ:- = er»:,an-t{a ) =T ®a- )y

and

(i) [T(a-Een-b); = (a-Eanlln-b)))

= ztzﬁrmf (Z ?i'.t}?ﬂ':b})

= Z A& 0erp [ Ms eepi Bos(B))

FoEp

=a ) [T(E & n)lps{ex® Bl 1j(b)

Fa

=[a-T{{an) - bl;.

We now show that T((9.)o x (5g)a) = My.qe, (N). As before, we let !

and p/ denote, respectively, the ith row of «{1) and the jth row of B(l}:
observe then that

[T @)y = 3 Aapuf) =Y i fy(1))
I

n

= Gri':ﬁ:j{]” =@ By, (1),
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also,
& e Mg, (N = E=¢lamB)1)
= &= Erla® Bles, 1i(1)

F.x
¢ = ZGs - T @ u')
F.8

”(Zéu-rw)

and hence T does have the asserted range.

Suppose now that MM 18 a left-finite N-module and that 5: (H. )0 x {(Hgly —
My—where, of course, M, denotes the set of bi-bounded vectors of M—is a
linear map satisfving S(&-a2q) = 5(aa-n) and S(a-San-b)=a-Slzn)-b;
simply define 87 : Myyq,4,(N) = (Hugplo — My by §7¢ = E;,jﬁij'su‘@ﬁj}}
an easy computation verifies that 87~ € y La({f,z4)0. M) . By the observation
(d) made in the first part of the proof, the operator 5~ extends uniquely to an
operator 87 € y.Ew(Huwp . V). Itis clear from the definitions that § = 5T .

In particular, take M to be the model of 5, &y Hy described in Proposition
IIL.1—or any other model which satisfies the strengthened version of condition
(i1) as described in comment (e} at the start of this proof. Deduce from the
above that there exists a unique map 8 € y#%(H.55, D) such that

S(Ti¢an)=Cayn forall in ($,)and 7 in (Hglo.

MNow interchange the roles of M and f,z; to find a bounded N-bilinear
operator R from 9 to $,gs such that R(& @y #) = T{E @ n). It follows
that Ra§ =idg .., since RoS fixes the range of T which has already been
vertfied to be dense in 6,55 ; similarly we can sec that § o R = idm. Thus
f and § are invertible operators; it 15 not hard to see that if R = U|R| is
the polar decomposition of R, then U is an N-bilinear unitary isomorphism
of (M=) $H, @y Hp onto N.gp. In particular, H,5s is right-finite, thereby
establishing the cofiniteness of o & # and completing the proof. O

7. Corollary. If 5, M and M are bifinite N-himodules, then
(HaxyR oy M= Hoy (Rey M.
Froof. If e, § and y are cofinite morphisms, then (axf)ey =ax(fzy). O

Before proceeding further, we identify the ‘Hilbert-module’ structure on the
tensor-product.

8. Proposition. If Hand B are bifinite N-bimodules and if &, &' ¢ Hpand
n.n € Ry, then

{'z S, {I BN '?r}!v' = {é 3 {.H! ”J‘}N ’ é‘r}."‘r'
and

vigasn. S avn) = wiv€. oo,



142 ¥._ 5 SIINDER

FProof. Assume that § = ), and M = f;; then we may take HEy R = H,ap =
M1 xd,a, (). Compute thus:

Eenn, & onniv=Y (& 2w nylE oy 7))
0

3" Enopeln) (Egi(n)))?

fodopr.g

E Sotrpil M) )exig ':??:“ -]{:;

e

Z Spltpg (Z Hj "'-'I'_:'*) 7
n,q ¥

= 2 i NSy

g

={{-im i, Cin.

A similar computation, using the fact that (& @y #)* may be naturally iden-
tified with (#* 24 £%), vields the sccond identity. D

Using our first model for the tensor-product, it is seen that
N—?.?“r' [LE[N} 1 ﬁa' 'E'N -Fj.ﬂ;l

is isomorphic, as a vector space, to the space ¥ (n, f§) of all those matrices
T € My, q,[N) which satisfy a(a)T = TF{a) forall g in N ; the latter space
has already been seen to be isomorphic to %[, H5). Instead of employ-
ing the above reasoning {which has the disadvantage of being basis- or model-
dependent), we shall use the underlying Hilbert-module structure to exhibit the
abowve as well as other (natural) isomorphisms between spaces of intertwiners.

We shall consistently use the notation & — £* to denote the anti-unitary
isomorphism of an N-bimodule onto its contragredient that satishes (q-&-b)* =
b* - & . g* for all vectors € and forall a, b in N

9. Proposition. Ler 5, R and M denote hifinite N-bimodules.

{a) The equation (T*E1* = T*E* sets up a vector-space isomorphism between
."-"—I'zi'i' (5 » ﬁ} end j‘ll-%::;f.{mﬁ ¥ ‘ﬁ'ﬁ}

{b) The equation x{T¢, n) = T~ (n*wx{) sets up a vector-space isomorphism
of wZEn(H, R) onto nFu(W an 5. L*(N)), and

(c) The equation {TE, niy = T~ (Eann®) sets up a vector-space isomorphism
between (0, M) and »Fyih ey R, LHN)Y.

Froof. (a) Clearly, T € y.2%(H, R = 1 € xF(R, H);s01f 5 R, then
Ta-g*-By=T*(b"-n-a ] = [T - n-a*)]*
Z[&"T‘ﬁ'ﬂ*]#:a'ﬁf?#'b,

so that 7% € L2 (®*, #"). Tt is clear that (T*)* = T and that the assign-
ment T — T* is linear; it follows that the assignment defines a vector-space
isomorphism.
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{b) Given T € xx(5H, M), just define T M@ Hy - N by T'ig* ) =
x{T¢, ) and perform the necessary verifications thus:
T'in*awd)=n(T¢ a'n) = wla-TE, n)
=n{Tla-&.m =T aa-&):
a similatf computation shows that 7(a-#* 2 &-b) =a-T{n* 2 &) b, hence
T’ extends uniquely to a bounded ~-bilinear operator T defined on all of
R* 2y 9 itis quite painless to verify that T — T~ defines a linear map between
the appropriate vector spaces. 'We now show that the map is onto, and since
the vector spaces in question are finite-dimensional, that is all we have to do.
Suppose we are given T~ € ». 7% (M* &y A); fix & in Hy and consider the
map Ry — N given by  — [T~(n* 2y &)]* ; note that
fea— [T~ gt ey & = [T (a* - (7* ax &N = T (0" ax &)a;
so the above map defines a member of Ly(MRq, N}, Deduce from Remark 11.9.
the existence of a unique vector, call it 7€, in My such that [T~ (#* 2x )] =
yin, TEY, or equivalently, »(T¢, ) = T~(#* 25 &), forall # in ;. Observe
now that : :
WT(@-&-b), ny=T(n" @n (@& - b))
=T~{(a"-n)* &x (- b))
= T((a* - g)* 2x )b
TS, a - nib
wla- TS, mb
=nla-TS-b.m,
the aforementioned unigqueness imposed on *TE by its defining condition im-
plies now that necessarily T € xLy{%y, M) ; hence 7 extends uniquely to a
bounded N-bilinear operator from all of 6 to %, that we shall continue to de-
note by T . This establishes the desired surjectivity thus completing the proof
of (b).
{¢) This is proved in exactly as (b) above, except that »{ . )} is replaced
throughout by { , 5. O
10. Corollary. If 5, % and ™ are any bifinite Mmodules, then the vector
spaces wZy(Hay R, M), vZ5(R, ¥ ey M) and vZN(H, MeyR*) are nat-
urally isomorphic and consequently have the same dimension (over C).

f

Proaf. Two applications of (b) of the previous proposition yields
NER(H BN R, M) = Ty (P @y (A ey R). LHNY)
= w2 ((H* wa M wx R, L(N)
= (R, 5 @y M),
similarly, two applications of {¢} of the previous proposition yields
NE (BRI = n F(H, MayR*). O

IV. HYPERGROUFS

The term hypergroup has been used in the literature with somewhat differing
definitions (cf., for instance, [MP and Ro]); while the basic structure is almost
identical in all cases, what differs is the amount of commutativity, finiteness and
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other such features that is assumed. We present here the version that seems 1o
be most natural in the context of bifinitc bimodules over II; factors. In order
to avoid conflicting with other definitions, we should probably call the object
defined here by some amended version such as II,-hypergroup or some such
thing; however, we shall never refer to any other kind of a hypergroup in this
paper, so we go ahead and make the following definition.

1. Definition. By a (discrete) hypergroup is meant a set ¢ equipped with a
function & x & x & — Z, (= {0,1, 2, ...})—which shall be denoted by
{ee. B, 71— {o® f#, yi—that satisfies the following conditions:

(a) (local finiteness): for all o, # in &, {a® #,y) # 0 for only finitely
many ¥

(b) {associativity): forall o, f,  and k¥ in &,

Ylaep, Ay k)= (a®d, K)Boy, i),
i A
{c) (identity): there exists an element 1 in & such that, forall o, § € &,
‘:lg'a!ﬁ}:{‘:*@l!ﬁ}:ﬁuﬁ:

(d) (contragredient): there exists a self-map of &, denoted by o — a*, such
that forall «, B,y €@, {ox g, p)={n*ayp, f). O

Remark. The symbol appearing on the rght of the identity axiom is the
Kronecker delta symbol and will be used in the sequel without further com-
ment.

The two sides of the equation in the associativity axiom should be thought
of as the two different ways of computing ‘(e @ # &7, &)™

The contragredient axiom would be a little more natural if we thought of the
right side as {#, a* @ v} ; the condition would be just an adjoint condition.

2. Examples, {a) Groups: if & is a group, define {x® f, ») to be | precisely
when v is the (group-} product «f, and to be zero otherwise; also define
o* = n~! and venify that this defines a hypergroup structure on &.

{b) Duals of compact groups. The dual object of a compact group, i.c., the
collection of equivalence classes of irreducible representations of the compact
group, has the structure of a hypergroup, with (7 @ n’, p} denoting the mul-
tiplicity with which the irreducible representation p features in the tensor-
product 7@ ' of the irreducible representations & and =n', 1 denoting the
trivial 1-dimensional representation, and #* denoting the contragredient of the
representalion 7.

(¢} The hypergroup of a 11, factor: If N is a II; factor, let &(N} denote
the collection of isomorphism classes of irreducible (bifinite N-bimodules or
equivalently) cofinite morphisms of N. If {a® §, 7} is interpreted as the
multiplicity with which %, features in %, @y £, . and if the contragredient
is interpreted as the notion already introduced. then &{N) becomes a hyper-
group. The associativity follows from associativity of tensor-products [over V)
and distributivity of tensor-products over direct sums, the validity of the con-
tragredient axiom 1s an immediate consequence of Corollary TTIL10. (In fact,
that result shows that, in &(N), we also have {a® £, = {(r @ ¥, n): we
shall soon see that this equalily 1s valid in any hypergroup.) 0
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Given an abstract hypergroup &, we denote by C® the class of finitely
supported complex-valued functions on & . The space C& comes equipped
with a distinguished basis {f.: o € &}, given by f,(§) = d,4; thus, [ =
Yl f, forall f in C&. We make C& into an algebra by demanding
that f,=fe(y)=(a® f, y}; more generally, for f, g € C¥F  define f+g(y) =
B 5 Flalg{friazf, v}, it is easily seen that the associativity axiom is precisely
what is needed to ensure that C® is an associative algebra with respect to
the ‘convolution’ product defined abave. Finally, we can make C® into a
pre-Hilbert space by demanding that {f, : @ € &} is a {necessarily maximal)
orthonormal set of vectors. We shall write ¥ for the inner-product space so
obtained.

Consider now the ‘lefi-regular representation’ of C&: if [ € €&, define
the associated left-multiplication operator Ly on V defined by Lyg=f+g.
Clearly, f — L is an algebra-homomorphism of C& into L{V} which is
gasily seen to be unital—i.e., L, = idy—and faithful (since £, is an identity
for C#). Further, if we define /(o) = [ f{a*))*—where we write {* for the
conjugate of the complex number {—we see that the contragredient axiom is
just what is needed to ensure that (L, g, h) = (g.Lp.h) for . g, h in
Ce& . Appealing now to the injectivity of the regular representation and to the
fact that identities and adjoints are unique in operator algebras, the following
proposition is seen to immediately follow, and we shall say nothing more about
its proof.

3. Proposition. Ler & be any hypergroup.
(a) The identity element 1 of & is unigque and 1" = 1;
) (o =a forevery o in &. O

4. Propesition. The equation () = f(1) defines a faithful positive trace on
the involutive algebra C® | for any hypergroup &,

Proof. Clearly t{f) = {L¢fi. fi}, and hence,

W« ) =(Lproghi, fiy = Ly Lok, i)
=(Lpf, A= L) ={1. 1},

and hence the faithfulness and positivity of t. Finally, the trace condition
follows from

Wf+gi=(f+g, fi={g. fF+h)=1g. "}
= gle)fla*) = fiBe*) =1g+/). O
o [

5. Notation, If u., RO E & where & is some hypergroup, define
foey @ @ g, K fa, - # fo )(x), noting that this definition agrees with
the already exlstmg notion when n=2. 0O

6. Proposition. If v, B, 7. %, . ...,y denote elements of an arbitrary hy-
pergroup &, we have:

(@) la®@f,1)=0g o

(b} (ag 8.7} = (7 & p*, a};

(c) {a@ B, ) ={f* @, ),

{d) if m < n, then
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(01 ® - Ban, K} =D (01 @ @ am, FHomn 8- Baq, 2y, K}
o

Proof. (a) (s B, 1)=*sl, 8) =044
(b)

e B,y =t{fas for fgh=tlfg=Ffor L)
e w foo g = () Sy # o)
={y®pt. 0y = (yx pt, o)
since the inner product in question is (integral and hence) real.
(c} fam B, 0 =1fa=Tg* fn);
notice that if g mm C® sausfies g{1} e R, then (g} = 7(g"*); hence,
(x@ B, ph =t fgex fr) = (fF we®, %),
(d)Put f=f, % -2f . 8=/t * - * [, and notice that
(freik) =" flBiglripey, k)
oy
by the definition of the convolution product. O

il

7. Definitions. (a) A subset # of a hypergroup ® is said to be a sub-
hypergroup if # is closed under taking contragredients and “products’ in the
sense that if o, f € #, then o* ¢ # and y € /& for any y € & such that
fed f, ) =0,

{b) A map 7 :® — ® between hypergroups is called a homomorphism if
a(l)=land (zla) @ r{F), (7)) ={ex f,y forall o, §,r in &, and if
a(®) is a sub-hypergroup of &'.

{c} An {(outer equivalence class of an) action of a hypergroup & on a 1,
factor N is a homomorphism of & into &N}, O

8. Remarks. (a) It is a conscquence of Proposition TV.6{a) that homomor-
phisms of hypergroups preserve contragredients.

(b)Y If o is an automorphism of ¥, the associated bimodule 5, is just LN
with the actions given by a-¢ - b = afalb); clearly $, is irreducible. Let [ex]
denole the clement of &(N) given by §,. If # is another automorphism
and if £ is also viewed as a cofinite morphism of &, it follows from the
definition of the tensor-product of cofinite morphisms that a2 ff = ne §.
Since [1] is the identity of ®&(N), it follows that o — [«] is 2 homomorphism
of Aut(N), viewed as a hypergroup, into &{N). {It is truc, although it requires
some proving, that any homomorphism of a finite group G into &(N) factors
through Aut(N). One proof uses Theorem 10 below.) O

9. Definition. A function a — &, from & to (0, o) is called a dimension
function for the hypergroup & if, for all «, #, 7 in &, we have

dody = fa® §,7)d;. O

¥

10. Theorem, Every finite hypergroup admits a unique dirmension function,
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FProof. Let & denole a finite hypergroup. If V' denotes the fnile-dimensional
inner-product space C® with orthonormal basis {f, : 7 € &}, we shall identify
a linear operator ' on V with the matnix {f,5) given by f5 = (Tfz. fu):
thus the symbol L, will be thought of as a matrix—with rows and columns
indexed by G-—whose entry in position (f, ¥} is {e®y, #). We shall also
make use of an auxiliary matrix A defined by Afa, y) = Eﬂ{rx @ f,7). (The
reason for considering this matrix will become clear later.) We begin by making
the following
Assertions (a} A commutes with L, for alf o in &;

(b) Lolp =% la@f, L, forall o, f in &: and

(c) AMa,¥) =0 forall o,y in &

Proof of the assertion. {a) For arbitrary «, f in &, compute thus:

(ALo)B, 7) =Y A(B, K} Lo(k, ¥)
= Ki{ﬁ-ﬁ»‘-#, K)o @y, K)
= f(ﬁﬁﬁt, w)e® @K, 7)
= Z,:#*["-I*@ﬁﬁlh ¥}
(LaA)(B. ) = iLr.h& x)Alk, ¥)
= i{ﬂ-ﬁ-x, Blik @ p, ¥)

©,

St e, kg u, v

£,

=Y @afau .

{b) This follows from f, * fy = 3, {2 8, 14y . and the fact that f— L,
is an algebra-homomorphism.

{c} If Afe,y) = 0, then necessarily {ax .9 = 0 forall § € &, or
equivalently, {a*@y, #) = 0 forall § in ®: this says that f.+ f, = 0; hence,
fox fa % fp# fo = 0. Since functions of the form f; » f, have nonnegative
values and since f, * f(1) = | for all g, we find that the conclusion of the
previous sentence 1% untenable; this contradiction completes the proof of the
assertion.

Existence. Since A is a square matrix with strictly positive entries, the Perron-
Frobenius theorem asserts the existence of a positive eigenvalue 2 of A with
both geometric and algebraic multiplicity one, the corresponding eigenspace be-
ing spanned by a vector v with strictly positive entries. Since any operator
that commules with A must necessarily leave each eigenspace of A invariant,
it follows from the previous sentence that ¢ is an eigenvector of each nonneg-
ative mairix L,; consequenily, v is also, necessarily, the Perron-Frobenius
gigenvector of each L., and so L,v = d.v, say, for some &, that is (strictly}
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positive (since each row of L, is nonzero—by (c) of the assertion above—and
nonnegative, and since v is strictly positive). Now, deduce from (b} of the
earlier assertion that
dodpt = L,Lgv =Y (a@ f, 1Ly =5 (a@ f. v}y,
'I.l }u

thus showing that a choice of the dimension function for & is given by the
Perron-Frobenius eigenvalue of the associated operator in the left regular rep-
resentation of & .

Unigueness. If o — d, is a dimension function for &, let @ be the element
of V¥ whose ath coordinate is given by 4, and notice that © is a vector
with strictly positive coordinates which is an eigenvector—and hence the
Perron-Frobenius eigenvector—of A. (Reason: {Ad}(a) = 3 Ale, y)d;
=%, le® B, )d, = Lydadp = A0(0), where 1= ¥ ;dg.} It follows that
© is that positive multiple of v for which the {'-norm is the Perron-Frobenius
eigenvalue of A and consequently there exists at most one dimension function
for . O

11. Remarks. (i) We wish to emphasise some facts thrown to light by the proof
of the previous theorem; with the preceding notation, we thus have:

{a) All the matrices L,, as well as the matrix A, have a common Perron-
Frobenius eigenvector,

{(b) The naturally scaled version of this eigenvector has coordinate 4, at the
ath place;

{c) The Perron-Frobenius eigenvalue of L, is also 4, .

{2)If ® isagroup &, adimension function on  is easily seen to be nothing
but a homomorphism of G into the multiplicative group R} of positive real
numbers. For groups, the previous theorem is a consequence of the fact that
the only finite subgroup of RY is (1}, further, the proup case shows that the
previous theorem is false for infinite @ ; if ® = Z, such homomorphisms are
determined by the image of 1 which can be any 4 > 0; it is an interesting
aside that for any 4 > 0, there eaists a homomorphism 7 ¢ Z — &({R)—
where R denotes the hyperfinite II; factor—such that 4., = 4. {Reason: let
o denote an isomorphism of N onte M{N) and notice that the surjectivity
of o implies that &,4, = 1 and hence that the desired ®; may be defined
by sending the integer n to "l where ol? denotes the n-fold tensor power
of (the irreducible cofinite morphism} o or o® according as n is positive or
negative (and of course, sending 0 to 1.}

(3) If & is a finite hypergroup, then « — 4,4 is also seen to be a dimension
function, and hence d,» =d, forall » in G, O

We return now to 11 factors, and make the following conjecture:

12. Conjecture. Every finite hypergroup admits an action on the hyperfinite 11,
Sactor. O

Cwur interest in the above conjecture is primarily motivated by the following
considerations. Suppose a finite hypergroup & admits a homomorphism ey —+
o' into ®(N}, for some II; factor N : it is easily checked that o — d. is
a {and hence the) dimension function for ¢ . Notice, on the other hand, that
the irreducible cofinite morphism «' of & determines the I, factor M, (N)
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which contains (the copy of o'({N) of) N as a subfactor with trivial relative
commutant and index equal to (d,d,) = d2, as a result of Theorem 10 and
Remark 11(3) above. Thus, given a finite hypergroup & which is known to
admit an action on N, then each o in & will give rise to a 11} factor M,
that contains a copy of N as a subfactor with trivial relative commutant and
index given by 4.

We now pass 1o some nontrivial examples of finite hypergroups which are
not groups or group-deals. In fact, all the examples we shall exhibit will cor-
respond to finite ‘cyclic’ hypergroups that are 2-hypergroups in the sense that
every element is self-contragredient. We begin by translating the problem of
constructing finite hypergroups into one of constructing certain kinds of sets of
nonnegative integral matrices.

13. Proposition. There is an essentially one-to-one correspondence between fi-
nite hypergroups with cardinality n on the one hand, and sets {Ay. ..., A,} C
MAZ,) satisfying the following conditions:

{a) 4, =1, the n x n identity matrix,

{b) the colfection {A;} is linearly independent and selfadjoint—i.e., closed
under the formation of transposes;

[C} AEAJ = Zk A!(k:—j]flk ﬁ}!‘ l<i, j<n.

Proof. Given a finite hypergroup &, order the elements as w) = 1, ey, ..., ¥y
and let A; denote the matrix representing the operator L, with respect to the
ordered orthonormal basis {f, , ..., f.}. The standard facts about hyper-
groups—developed earlier—show that the 4;'s satisfy the conditions {a)-(c) of
the proposition.

Suppose, conversely, thal we are given A, ..., 4, satisfying {a)-(c}. Simply
define {a;®a;, o) = Ai(k. 7). We need to verify that {ey, ..., o,} becomes
the hypergroup & if the ‘product’ is defined as above, if o is Laken as the
identity, and if’ of is defined as that unique element an for which 4. = 47 .
Put j = 1 in {c) to deduce that 4; = ¥, Ai(k, 1)4;; it follows from the
assumed linear independence of the A;s that (e & o, o) = Ay ; similarly,
{a) in conjunction with (¢) implies that {a; ® a;, ay) =4, , thus verifying the
‘identity” axiom of a hypergroup. Associativity of matrix-multiplication, the
definition of {o; ® «;, oy} and (¢} imply that the associativity axiom is also
satisfied. As for the contragredient axiom, note that {af@ak, a) = Asli, k) =
A(f, kY= Ak, f) = {0, ® o, oy} and the proof is complete. O

14. Example. This is a sequence of 2-element hypergroups. Define Ag"} to be
the 2 x 2 identity matrix and let

Al [ﬂ 1

I n

These matrices satisfy the conditions of the proposition, and the corresponding
hypergroup &, = {1, a,}, where f, +f; = fi+nf, in C&, it isclear that the
Perron-Frobenius eigenvalue {= operator-norm) of A{;}—whieh is the same as
d, —is equal to {n+(n?+4)/21/2 . (It must be remarked that the case n =1 of
this example has been known to Ocneanu (cf. [Oy]); in fact, it follows from his
description of his paragroup invariant for the inclusion R ¢ M, where M 18
the II; factor constructed by Jones which has the hyperfinite 1, factor R asa
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subfactor with index 4cos®#/5, then &, admits a homomorphism into B(R),
that sends o; to an element o of &{R) such that L*(M) is isomorphic, as
an R-bimodule, to & & H, , where of course ), denotes the ‘trivial’ bimodule
LYRy) DO

15. Example. This is a sequence of examples indexed by a positive integer .
As a sample, consider the case # =4; the matrices A4; are given by

‘10 0 0 001 0 07
L_lo 100 L1
pat Y O O T N I O o B O
00 0 1l 00 1 0.
000 1 0 000 0 1-
01 0 1 0010
A=l101 0/ “=lo1 00
01 0 0 1 0 0 0.

In fact, the matrices A; and A; generatlc a 2-clement hypergroup that 18 iso-
morphic to the hypergroup &, of the preceding example.

For a general n, it is still the case that 4, is the n x n identity matrnix and
that 4, is the matrix with 1’s on the ‘skew-diagonal’ and (Vs elsewhere; for a
general & < n, form a diamond whose vertices are (at those entries of an nxn
matrix that correspond 10) (1,4}, (k. 1), (v, n—k+1) and (n—-&+1,n),
and on each row, mark off every second entry of the matrix, starting and ending
with the entries on the aforementioned diamond; fnally, define A, 1o be the
matrix with 1’s on the eniries marked off as per the above prescription, and
with s elsewhere. It 15 not hard to sec that each 4, is a symmetric and entry-
wise nonnegalive matrix. A look at the first row of the A4,%s is enough 1o see
that the A, ’s are linearly independent. A not very difficult, although somewhat
tedious case-by-case, analysis reveals that the A,°s satisfy the condition (¢) of
Proposition 13 also and hence give risc 1o an n-element hyvpergroup. Let o
denote the p-vector whose &th coordinate is

{(sin{kain+ 11/ (sinim/n+ 1)}

it is an easy consequence of basic trigonometric identitics that © , whose co-
ordinates are clearly strictly positive, is an eigenvector for 4, with eigenvalue
2cosim/m + 1); thus v is the Perron-Frobenius cigenvector of A it follows
from Remark 11.1 that 4, has ¢ as the Perron-Frobenius eigenvector with
eigenvalue {sin(km/n + 1)/sin(n/n + 11}. Thus, if Conjecture 12 is proved,
this example would say that the hyperfinite factor admits subfactors with triv-
ial relative commutant and index equal to {sin’(kx/n + 1)/sin’(z/n + 1)};
this latter fact is known and is one of the significant conclusions of [W]. As
has been remarked by Wenzl, these numbers include the Jones numbers—when
k=2. O

16. Example. For each #, there exists a unique collection {4, . ..., Ay} that
satisfies the conditions of Proposition 13, such that A4- is tridiagonal, has 1's

on the sub- and super-diagonals, and such that the main diagonal of A, is given
by (0,1,1,....1).
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In fact, this hypergroup is isomorphic to the sub-hypergroup {og, 1 0 <
k < n} of the 2n-element hypergroup {og., ..., gz, } discussed in the preceding
example. This example is also known to Ocneanu. In fact, i1 follows from his
description of the paragroup invariant for the inclusion B c M, where M is
the TI; factor constructed by Jones which contains the hyperfinite II, factor
R as a subfactor with index 4cos®n/(2n + 1}, that the hypergroup given by
the previous paragraph admits an action on R, in such a way that, if o is the
element of the hypergroup corresponding to A:, then £2{A) is isomorphic, as
an R-bimodule, to $, % 68,.. O

Before concluding this section, we pause to mention that we have only dis-
cussed examples of some cyclic 2-hypergroups (meaning every element is self-
contragredient). In fact, there is a S-element hypergroup of the above form,
which does not appear in the lists of examples covered by Examples 15 and 16
{or even in the more general cxamples treated in [BS]), in which the value of the
dimension function on the generator is (1 + +/12)/2. The point that is being
made is that if Conjecture 12 were to be proved, the above method, together with
a better understanding of Anite hypergroups, would yield a plethora of numbers
that can arise as the index of a subfactor with trivial relative commutant.

V. THE HYPERGROUF OF A BIMODULE

1. Notation. Throughout this section, the symbol $ will denote a fixed but
arbitrary bifinite N-bimodule. Then $ uniquely determines—via Theorem
1.13—a finite subset &; of (M) and a ‘multiplicity’ function m;: &, = N =
{1,2,3,...} such that i~ @aE@I(ﬁa-ﬁ-C“"“]} ; for the sake of typographical
convenience we shall write § ~ (&, m;) to signify that £ has the above de-
composition. The sub-hypergroup ® of &{N) thatis generated by &, is clearly
an (isomorphism-) invariant of % and will be referred to as the hypergroup of
.

2. Example (The group case). Suppose a finite group & admits an outer ac-
tion + — o, on N. Let M denote the crossed product N x, Gand let
f = L*(M). By definition, M contains the image of a unitary representation
t — u,; of ¢ satisfying w,a = o{a)s, forall @ in & and ¢ in . Then, £ =
DBl Mt] = By Do, 18 a decomposition of H into irreducible N-bimodules.
Notice however that A, =.%(1x1; 1, n;} on the one hand, while on the other,
we have figgy = Hgo, for any pair of automorphisms £ and y of N. Tt fol-
lows easily thal—in view of the assumed outerness of the action—in this case,
B =08 = {0 7€ &} and that m{e,) = 1 forall ¢. In other words, the
hypergroup ® of H and the group ® are isomorphic as abstract hypergroups.
This is an instance of what Ocneanu terms ‘the crossed product remembering
the group’; he has remarked—cf, [O;]—that if &;and G» are groups acting
outerly on the hyperfinite factor &, and if the extensions M; = R =, ; of R
are isomorphic—meaning that there is a von Neumann algebra isomorphism of
M onto M, that fixes R, then &, and (- arc isomorphic as groups. Our
considerations yield something slightly stronger. For one thing, we do not need
10 assume hyperfiniteness. For another, even if one had started with a twisted
crossed product of &, the hypergroup of the bimodule given by the extension
would be identifiable with the group (7. (Reason: the cocycle comes intoe play
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only when two group elements are multiplied.) Since the statement is quite
striking, we isolate it as the next proposition; of course, no more need be said
about the proof.

3. Proposition. For i = |, 2, let o; denote an outer action of a finite group
G; onany Il factor N, let 0; G x G — T be a torus-valued 2-cocycle, and let
M; denote the twisted crossed product of N by G; given by o and o;. Then
the groups G; are isomorphic if the N-bimodules L2(M;) are isomorphic. O

(Of course, the above statement can also be imterpreted as stating that the
hypergroup does not detect certain cohornological data and consequently cannot
be expected to tell the whole story about the inclusion of one II; factor into
another, as a subfactor of finite index. We have chosen to look at the positive
side of things, since, as has already been stated, consideration of the hyper-
group invariant of the bimodule yields a transparent proof of the preceding
proposition. )

We turn next to tensor-products. Suppose £;, { = 1, 2, are bifinite M-
bimodules with 5, ~ {Eﬁﬂ” \ m&”} as in §1 above. Thus t‘-!fri]” are finite subsets
of &(N) and mgﬂ are nonnegative integer-valued elements of the hypergroup
algebra C&(N) with support i;';'n[['1J . It is not hard to see that

5105~ (@) -0 m{ « m?)

where the second term is just convolution in the hypergroup algebra, and the
product # - F of two subsets of a hypergroup & is defined naturally as the
set of those y in & for which there exist « in # and § in & such that
{a® f,¥) > 0. Thus, for instance,

memPp= 3 mimP(B)es By
wEE, , FE®,

We wish, in particular, to examine the invariant corresponding to the tensor
powers of /. The underlying structure becomes much more transparent if we
make some mild assumptions on 5. We assume in the rest of this section that
£, apart from being required to be a bifiniie N-bimodule, will be assumed to
satisfy the following conditions:

(i} 5 is self-contragredient; and

(ii) # contains the trivial N-bimodule $, = L*(¥) as an N-submodule.
(Motice that if A isa II; factor containing & as a subfactor of finite index—or
more generally, if A is any finite von Neumann algebra containing N asa von
Neumann subalgebra such that dimy L3(M , tr) < oco—then the N-bimodule
L?(M) satisfies the above conditions.)

4, Proposition. Let 7 ~ (&, my) and suppose 5" = Q" H ~ (B, m,); then
(A} led CcBC-- - CH C By C--0
(b} each B, is closed under taking contragredients,
(¢) muly) = EaEﬂk E,&Eﬁr my (o (B)-le@ 8. »), whenever k£, 1> 0 and
k+l=mn:
(d) for y € BIN), yE B, if and ondy if m,{3) = 0;
(&) my(a?) = myla) forall @ in &,.
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Proof. The assumptions (i) and (ii) on $ are clearly equivalent to the require-
ments ‘1 € &, and *®; and m; are invariant under taking contragredients,’
Since H" clearly inherits properties (i} and (ii) from $, the validity of (a), (b)
and (e) follow. The assertions {c} and (d) follow from the remarks made above
concerning the *multiplicity function’ associated with a tensor-product, and the
associativity of the convolution product in any hypergroup algebra. O

5. Lemma. With the notation as above, define Ay @ox®, — I by Mg, ¥)
= Yogen, m(Bllaw B, ). Then

(a) if we think of m, as a row-vector (of size 1 x &,) and A, as a matrix
{of size @, x Boyq), then Mg = Mgl

(b) Aplae, )= Appa(?. @) Yac®, and v € Gpyy;

(e) Apler, P = Amio, ¥) Yo e ®, aid y € By, Ym 2 0.

Proof. (a) This follows easily from {c} of the previous proposition and the
definition of A, .

{b}) Note to starl with that the right side of the equality to be proved makes
sense since &, C B,.;. We have

Agla, ph= Y m(Bllag B, 7)
few,

= Y By B*, o) = Awnr(r, o),
[

thanks to (e) of the previous proposition.
{c} This is clear from the definition of the A.'s. O

6. Proposition. Let &, = #(&,\&,_;) (with &y = @). Then there exist sym-
metric matrices 4, € My (ZY) and rectangular matrices B, € My .. (Z%)
such that the mawrix A, has the block decomposition

A B 0 0 - 0 0 0
Bl 4 B, 0 -~ 0 0 0
Ap=|0 B A3 By - 0 0 O
O 0 0 0 ose Way Ay o8

Jor all n. where of course we write C' for the transpose of the matrix €.

Progf. Write T, = ®&,\®,_, and express A, in terms of the block-decomposi-
tion arising from the partition &, = [, U..-uT,. The desired conclusion
follows from the previous lemma. For instance, (c) and (b) of the lemma show
that Agle, ¥) = Ap{y. o) for «, y € &,, whence the symmetry of the first
n (blocks of) columns; on the other hand, it is clear that if o € &, § £ &,
TE G, and if m > k4!, then (e f.y) = 0, thereby explaining the tri-
{block)-diagonality of A,. D

(The preceding proof shows that it is the contragredient axiom for hyper-
groups that is responsible for much of the *reflection’ symmetries found in the
Braticli diagrams associated with the tower of the basic construction.) The fol-
lowing corollary 15 seen to follow casily from the last proposition. We continue
with the preceding notation.
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7. Corollary. The folfowing conditions are equivalent:

(a) & is finite,

(b) In such that B, = B, ;

(c) 3n suchthat 8=8, =06, forall k= 0.

If these conditions are satisfied, then there exisis a symmetric matrix A—of
size #O—such that Ay, = A forall £ =0 (n = #® will suffice); further the
matrix A" has strictly positive entries.

Froof. Recall that {®,} is an increasing sequence of self-contragredient subsets
of the hypergroup &(N) and that &; - &, C &,,,. Consequently, the sub-
hypergroup ¢ generated by &) is clearly the (increasing} union of the &,'s.
Since &, is finite, the equivalence of {a)-(c) is obvious.

If these conditions are satisfied, the last column in the block-decomposition
of A, given by the above proposition 18 nonexistent, and the resulting matrix,
which is the same for all large #, is clearly symmetric. As for the last assertion,
it suffices to show that A"(c, 1) = 0 we shall show, by induction, that more
generally, it is true that A"(e, 1) > 0 if 0 € &,,. If m=1,%0 nc &,
hence Aln, 1) = E,EEG. py(Bllas f, 1) = 1 dn®oe*, 1) = 0. Suppose the
assertion holds for m and supposc o € By, then there exists k& € &, and
B &, suchthat {k ® #, ) > 0; hence {a = #*. k) > 0, whence il follows
that Ale. k) = m (") {a@ %, k) > 0; on the other hand, we know from the
induction hypothesis that A™(x, 1) = 0; the desired inequality follows from
the obvious inequality: A™H (w, 1) > Afe, K)A™ (i, 1),

Although the proof is complete, we would like to point out that an esscntially
identical reasoning shows that even if ¢ 15 not Onite, if we let £, denote
the square matrix obtained by restricting A, to &, x &,—or equivalently, by
deleting the last column in the block-decomposition of A, given by Proposition
6—then Z2" has strictly positive entries, O

It turns out that there is a natural relationship between the matrices A, and
the tensor powers of £ . We continue to work with the notation of Proposition
4,

8. Proposition. (a} xn(9") = D,cn, Mm,i5(C), so that the minimal central
projections of 5 55%(5") are parametrised by G, ;

{b) The inclusion of yZ5(H™) into x 2% (O™ given by T — Ty idg i
governed by the inclusion matrix A, defined earfier.

Proaf. (a) By definition, we have #* =~ @, ., (6, ® Crmirly - since distinet ele-
ments of &, yield inequivalent irreducible X-bimodules, and since imeducible

-bimodules admit only the scalars as bounded N -bilinear self-maps, it is clear
that xZ%(H") = @1,.5@“ Mm..{}'}{c:' .

{b) It is easily verified—cf. [(']. for instance—that if 9% and R are bifinite
N-bimodules and if T . Z5(T0) , there exists a unique operator T &y idg in
wZn (M@ N) which sends £y to TE 25y whenever £ € Mpand n € Ry,
and that, furthermore, the map T — T &y idw is & unital =-monomorphism of
N-Zx (T into &% (M @x R). For typographical convenience, we shall write
T @l in the sequel for T sy idy for 7 in 4z 5% (6™} for any m. If we tem-
porarily let A} denote the inclusion matrix corresponding to the inclusion map
F—Tal,andif o € &, and y € &,y then by definiion Aj{e«, ¥) is the
maximum number of pairwise orthogonal minimal projections of x 2% (H"!)
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that are subordinate to (p, ® 1)e., where p, denotes any minimal projec-
tion of %% (5" that belongs to the central summand corresponding to «,
and e, denotes the minimal central projection of ».#% (771} corresponding
1 7. A moment's thought shows that fixing a p, amounts to fixing an isom-
ciry in x2%{9H,, H"), while finding pairwise orthogonal minimal projections
of yFy(H™') that are all subordinate to ¢, amounts to finding isometries in
N-Zx($H, , 5] with pairwise orthogonal ranges. Since ran7 C rane, for any
T in w5%(H,, ) and since (p,21)(H"') is isomorphic as an N-bimodule
to (A, @y H), it follows

h:g{ﬂs T) = dl]l'l{' JH'-?N{f]P ¥ E:J(Prt i ”{ﬁ‘H-IH
= dimg xZ3(H; . H. By H)

djm(' N*gj\'- (f-'ﬂ H @ (ﬂa '@'H {ﬁﬁ‘ @C Cmi{'ﬂ]))

e,

Y mi(B)as B )

Hed
=Aylee, y), asdesired. O

9. Remarks. (1) The data about the tower {4557 : n = 1} is completely
contained in the abstract hypergroup &, its generaling {finite} subset &; and
the multiplicity function s : %, — Z* ; the point being made is that & need
not be realized as a sub-hypergroup of (N }—or equivalently, it is not necessary
‘a priori’ 1o be given a faithful action of & on N—in order to make sense of
the above A4F-algebra.

(2) In case the hypergroup & of £ is finite, it follows from Corollary 7
that the tower {y#%(%")} admits a unique normalized tracial state; in partic-
ular, the completion of the above 4F-algebra with respect to the trace is the
hyperfinite I1; factor.

(3) We have considered the ‘left’, rather than the ‘right’ inclusion T — 12T
in building the tower. It is more than likely that it is possible to imitate the
work of Doplicher and Roberts—cf. [DR]—with the role of the group dual of
a compact group being replaced by more general hypergroups. O

We conclude with a list of questions (of varying levels of difficulty) which,
for the sake of emphasis, we start with what was carlicr staled as Corgjecture
V.12,

V1. SOME QUESTIONS

{a} Does every Anite hypergroup admit a fanhful action on the hyperfinite
II, factior, and if so, what 15 the extent of uniqueness of such an action?

(b) Is there a classification of finile abelian hypergroups? What about finite
cyclic hypergroups? 2-hypergroups?

{¢) What are some nontrivial examples of finite nonabelian hypergroups
which are not groups?

{d) If aand o' are penerators of finite hypergroups & and &, is it possible
for & and & to be nonisomorphic and yet admil faithful actions on a TI;
factor N in such a way that the cofinite morphisms corresponding to nand o'
yield isomorphic extensions of & 7 {The reason for this question is that there
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are instances—the cases / = (0 and / = 1, for instance—of nonisomorphic
® and &' such that the generators have the same value for the dimension

function.)
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