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Abstract

An adaptive design is provided for phase III clinical trials where the treatment responses

are categorical. The proposed design extends the drop-the-loser rule (Ivanova [10]) which is

proposed for binary treatment responses only. It is illustrated that the proposed design is an

improvement over the existing design of Bandyopadhyay and Biswas [3] for such categorical

responses in terms of low variability. Some probability generating functions of the proposed

design are obtained. The applicability of the proposed design is illustrated by using some

real data from an trial of patients of rheumatoid arthritis.

Keywords: Immigration Ball, Limiting Proportion of Allocation, Ordinal Categorical Re-

sponses, Proportion of Allocation, Randomisation, Response-Driven Adap-

tive Design, Treatment Difference, Urn Model.

1. Introduction

Response-driven adaptive designs are used in phase III clinical trials with an objective

to treat a larger number of patients by the eventual better treatment. The objective of a

phase III trial is to compare the performances of two or more competing treatments where

the patients often arrive sequentially into the study. Quite often the patients are treated

one after another and thus it allows to use the past allocation-and-response history up to

that patient to determine his/her treatment. Thus, the adaptive designs have their role

to play in such a scenario to help us achieve some ethical gain by treating a larger number
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of patients by the better treatment. At the same time, we also need some significant

amount of allocation to the worse treatment as well to enable us to make meaningful

inference about the treatment difference in an efficient manner. Adaptive design is all

about the trade-off between ethical gain (which is achieved if a larger number of patients

are treated by the better treatment) and efficiency of the follow-up inference (which is

achieved if the allocation is balanced in a 50:50 way).

Quite a few real applications of adaptive designs are there with an increasing frequency

in the recent days. Some real applications of adaptive clinical trials for dichotomous

responses are due to Professor M. Zelen (in a breast cancer trial, reported by Iglewicz

[9]), Bartlett et al. [4], Tamura et al.[16], Ware [17], Rout et al. [15], Müller and Schäfer

[14] and Biswas and Dewanji [5]. Several adaptive designs are available in literature,

although most of them are suitable for binary treatment responses. Some of the well-

known designs are the play-the-winner rule (see Zelen [20]), the randomized play-the-

winner rule (see Wei and Durham [18]), the success driven design (see Durham et al.

[6]), the birth and death urn design (see Ivanova et al. [11]). For such designs, the

expected proportion of allocation to the better treatment arm is more than 50%, and

this proportion increases with the increase in treatment difference. However, most of

these designs are birth processes and accordingly the variability is too high. In fact, the

standard deviations of the proportion of allocation for these designs are so high that

an allocation which is less than one or two standard deviation(s) from the expectation

leads less than 50% patients treated by the better treatment, in case of a two treatment

experiment. Recently Ivanova [10] introduced a new adaptive design for two-treatment

allocation, called the drop-the-loser rule, which is a death process. Consequently, the

variation is quite low as it is known from the results of stochastic processes that death

processes have less variability than the birth processes. Hu and Rosenberger [8] observed

that the drop-the-loser rule has the smallest variability among the available adaptive

designs for binary responses.

It is not quite difficult to generalize the urn designs for a more complicated treatment

responses, say, when the responses are ordinal categorical. In several biomedical studies

the responses are pain, post-operative conditions, etc., which are often measured in

an ordinal categorical scale like nil, mild, moderate, severe, etc. Recently an adaptive

trial was conducted in the Indian Statistical Institute, Kolkata, which was a trial of the

pulsed electro-magnetic field therapy (PEMF) versus placebo on patients of rheumatoid
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arthritis. See Biswas and Dewanji [5] for details. It was a longitudinal trial as the number

of responses from each patient was more than one. Again the responses were multivariate

categorical in the sense that there were a few responses like pain, tenderness, swelling,

joint stiffness, and each of them were measured in ordinal categorical scale. But, due

to the unavailability of suitable designs, we transformed that multivariate categorical

responses to some univariate binary responses by using some prefixed norm and carried

out an urn model based adaptive design for that longitudinal binary responses. The

design was a generalization of the popular randomized play-the-winner rule (see Wei and

Durham [18]). Certainly, the design could be much better if the complete information

on the categorical responses could be used.

Bandyopadhyay and Biswas [3] provided a generalization of the randomized play-the-

winner rule to incorporate the categorical responses with possible values 0, 1, . . . , k, in

the design where initially the urn contains α balls of both types A and B, and for a

response j from treatment A (B), we add an additional jβ balls of kind A (B) along with

(k − j)β balls of kind B (A). But that is also a birth process and has the same problem

of high variability. In the present paper, we provide a version of the drop-the-loser rule

applicable for categorical responses. We present the design for a single response only

(not longitudinal) and we assume that the response is univariate.

The rest of the paper is organized as follows. In Section 2, a drop-the-loser rule for

categorical treatment responses, which we abbreviate as CatDL. Section 3 deals with

some properties, exact and limiting, of the design. The exact properties include the

proportion of allocation to the better treatment, its standard deviation, some probability

generating functions and also some inferential issues which are evaluated by numerical

simulations. Limiting properties include limiting proportion of allocation and limiting

distribution. A comparison with some existing competitors are done in Section 5. Section

5 provides an illustration with the real data on the PEMF trial, discussed earlier. Section

6 concludes.

2. Drop-the-loser Rule for Categorical Responses

Suppose we have the two competing treatments, say A and B, in a phase III clinical

trial. We have a set up where the patients enter into the set up sequentially and each

entering patient is treated either by A or by B using some randomisation where the

probability of allocating any treatment is adaptively determined according to the state
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of art based on the data up to that stage. Here we have a set up where the responses

are ordinal categorical.

Suppose we have n patients in the trial. Let Ti be an indicator which takes the value

1 or 0 according as the ith patient is treated by A or B. Consequently, let Yi be the

response. Here Yi can take the values 0, 1, . . . , k, where we assume that a higher value of

response indicate a better performance of the treatment. Assume that P (Yi = j|Ti) =

pAjTi + pBj(1 − Ti), which means that the conditional probability of Yi taking value j

is pAj or pBj depending on the ith patient is treated by A or B. Clearly,
∑k

j=0 pAj =
∑k

j=0 pBj = 1.

Note that, in our model above, the treatment difference (see Ware [17]; Wei et al.[19])

is µA − µB, where µA =
∑

j jpAj and µB =
∑

j jpBj , the expected responses for the

two treatments under consideration. Our allocation design should be such that it will

allocate a larger number of patients to treatment A if µA − µB > 0, and the allocation

proportion to treatment A should increase with the increase in the difference µA−µB. So

the allocation design will depend on the definition of treatment difference. Our proposed

allocation design is as follows.

We start with an urn having one ball each of type A, B and I, where I is the immi-

gration ball. For the (i + 1) st entering patient, i ≥ 0, we draw a ball from the urn,

and treat the patient by treatment A or B if the drawn ball is of type A or B. On the

other hand, if the drawn ball is of type I, we add one ball each of the types A and B

to the urn, replace the I ball, and draw one ball from the urn afresh. We continue this

procedure until we get a ball of A or B to treat the patient accordingly. Let the response

of the patient be Yi+1, and the indicator of allocation is Ti+1. We then replace the drawn

ball with a probability πu = πu(Yi+1) if the patient is treated by treatment u, u = A,B.

We then carry out the same procedure for the next entering patient. The all important

problem lies in determining πu(j). Due to the ordinal nature of the responses, we need

0 = πu(0) < πu(1) < · · · < πu(k−1) < πu(k) = 1. In particular, looking at the definition

of treatment difference µA −µB, we set πu(j) = j/k. We denote this rule as CatDL rule.

In case k = 1, the rule reduces to the standard drop-the-loser rule of Ivanova [10].

3. Properties and Comparison: Exact

In the urn design, let Zw = (ZIw, ZAw, ZBw) be the urn composition after w draws,

where Zjw be the number of type j balls, j = I,A,B. According to the urn design, we
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start with the initial urn composition Z0 = (1, 1, 1).

Since the proposed urn scheme is not analyzed in the usual way, the only specialized

technique required is that of embedding the urn into a continuous time 3-type Markov

Branching process (see Athreya and Ney [2], p.221). We can use some known results on

the continuous time process to characterize our urn process.

Let Zi(t) be the number of type i balls in the urn at time t for i = I,A,B. Suppose pi

be the probability of replacing a ball of type i and qi be the probability that the number

of type i ball is reduced by unity. In addition, let ri be the probability of increasing the

number of type i balls by unity. Clearly, pi + qi + ri = 1 for i = A,B. [For the proposed

design, ri = 0 for all i.] Note that, for the proposed allocation design, in any trial, for

any response Y by treatment i, the conditional probaility of replacing the ball to the

urn is πi(Y ), i = A,B. Consequently, pi = E(πi(Y )) =
∑k

j=0 πi(j)pij , i = A,B. We also

note that our design is such that the immigration rate remains unchanged throughout

the trial.

Defining τw as the wth draw time, w = 0, 1, 2, . . . with τ0 = 0, we assume that the

time intervals between draws are exponentially distributed with rate parameters equal

to the total number of balls in the urn at that time. Also assume that Zi0 = Zi(0),

i = A,B. Then we have the following theorem.

Theorem 1. The discrete time stochastic process {Zw, w = 0, 1, 2, . . .} and the

continuous time stochastic process {Z(τw), w = 0, 1, 2, . . .} are equivalent.

Proof. The proof follows exactly in the same way of Athreya and Ney [2], p.221.

Note that the time parameter is an artificial constant and has no particular relation

to the real time. We call it virtual time. As a consequence, we can consider the following

two sampling schemes. (a) Stop the sequence of trials at a certain virtual time t, and (b)

Continue the sequence of trials until a certain number of subjects are treated.

Joint probability generating functions:

We start with the embedded rule when there is no immigration ball in the urn. We

want to obtain the probability generating function in this set up. In this set up, we

define the following. Suppose Zi(t) be the number of type i balls by time t, Ni(t) be the

number of trials on treatment i by time t, and Xij(t) be the number of trials resulted

in j on treatment i by time t, i = A,B, j = 0, . . . , k. As the process corresponding to
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each ball type in continuous time are independent, we only consider treatment i. Note

that Zi(t) is a linear death process with immigration. The following theorem gives the

differential equation for the joint probability generating function. This equation is solved

only when there is no immigration and effect of immigration is considered later on.

Theorem 2. Given that Zi(0) = 1, the joint generating function Gi of Xij(t),

j = 0, . . . , k, Zi(t), Ni(t) satisfies

∂

∂t
G(s, t) = a(sk+1 − 1)Gi(s, t) +

k∑

j=0

pijπi(j)sjsk+1sk+2
∂

∂sk+1
Gi(s, t)

+
k∑

j=0

pij(1 − πi(j))sjsk+2
∂

∂sk+1
Gi(s, t) − sk+1

∂

∂sk+1
Gi(s, t), (3.1)

where

s = (s0, s1, . . . , sk+2), |sj| ≤ 1, for all j,

Gi(s, t) =
∞∑

s0=0

· · ·
∞∑

sk+2=0





k∏

j=0

s
xj

j



 sz

k+1s
n
k+2P (x0, . . . , xk, z, n, t),

with P (x0, . . . , xk, z, n, t) be the joint probability function and a is the number of immi-

gration balls in the urn [a = 1 in our case].

Proof. Here we consider the possible transitions which can occur in the time interval

∆t and results in xj responses of type j, j = 0, . . . , k, z type i balls and n trials on

treatment i. Define P (x0, . . . , xk, z, n, t) as the probability of getting xj responses of

type j, j = 0, . . . , k, z type i balls, n trials on treatment i, starting with xj0 responses of

type j, j = 0, . . . , k, z0 type i balls and n0 trials on treatment i. We have the following

possible cases.

(i) First, consider an immigration, i.e.

(x0, x1, . . . , xk, z − 1, n) → (x0, x1, . . . , xk, z, n)

with probability of occurrence a∆t.

(ii) Next, consider a response of type j and the ball is replaced, i.e.

(x0, . . . , xj−1, xj − 1, xj+1, . . . , xk, z, n − 1) → (x0, x1, . . . , xk, z, n)

with probability zpijπi(j)∆t, j = 0, . . . , k.
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(iii) Also consider a response of type j, but the ball is not replaced, i.e.

(x0, . . . , xj−1, xj − 1, xj+1, . . . , xk, z + 1, n − 1) → (x0, x1, . . . , xk, z, n)

with probability (z + 1)pij(1 − πi(j))∆t, j = 0, . . . , k.

(iv) In addition, a trial can result in occurrence of no composite events, i.e.

(x0, x1, . . . , xk, z, n) → (x0, x1, . . . , xk, z, n)

with probability 1 − (z + a)∆t.

Since Zi(t) is a linear death process with immigration, it can be shown that (see

Karlin and Taylor [12], p. 189), starting from (x∗, z∗, n∗),

P (x, z, n,∆t)/∆t = o(1)

for z∗ 6∈ {z, z + 1}. Then, for z > 0, we have

∂

∂t
P (x0, . . . , xk, z, n, t)

= a P (x, z, n, t) +
k∑

j=0

zpijπijP (x0, . . . , xj−1, xj − 1, xj+1, . . . , xk, z, n − 1, t)

+
k∑

j=0

(z + 1)pij(1 − πi(j))P (x0, . . . , xj−1, xj − 1, xj+1, . . . , xk, z + 1, n − 1, t)

−(z + a)P (x0, . . . , xk, z, n, t), (3.2)

whereas, for z = 0, we obtain

∂

∂t
P (x, 0, n, t) =

k∑

j=0

pij(1 − πi(j))P (x0, . . . , xj−1, xj − 1, xj+1, . . . , xk, 0, n, t)

−aP (x0, . . . , xk, 0, n, t). (3.3)

Multiplying both sides of (3.2) and (3.3) by
{∏k

j=0 s
xj

j

}
sz
k+1s

n
k+2 and summing over all

possible values, we obtain the equation in (3.1).

Writing

α =
k∑

j=0

pijπi(j)sjsk+2,

β =
k∑

j=0

pij(1 − πi(j))sjsk+2,
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and s = sk+1 and taking a = 0, we have from (2.1),

∂

∂t
Gi(s, t) = (−γs + δ)

∂

∂s
Gi(s, t)

with Gi(s, 0) = s and −γ = α − 1, δ = β. Thus, using the algorithm given in Anderson

[1], pp. 104-105, we obtain

Gi(s, t) =

(
δ

γ

) (
1 − e−γt

)
+ s e−γt.

Consequently, we find the probability generating function of Ni(t) as

GNi(t)(w, t) = Gi(s, t|sj = 1, j = 0, . . . , k + 1; sk+2 = w)

=
w

∑k
j=0 pij(1 − πi(j))

1 − w
∑k

j=0 pijπi(j)

{
1 − e

−(1−w
∑k

j=0
pijπi(j))t

}
+ e

−(1−w
∑k

j=0
pijπi(j))t.

Note that the above expression is the same as that of Durham and Ivanova [7] with pi

replaced by
∑k

j=0 pijπi(j) and qi replaced by
∑k

j=0 pij(1 − πi(j)). Using the technique

given in Durham and Ivanova [7], we obtain the joint generating function for a > 0 in

terms of the following theorem.

Theorem 3. The joint generating function for Xij(t), j = 0, . . . , k, Zi(t), Ni(t) for

the embedded CatDL rule with initial composition Z0 = (a, 1, 1) is

Gi(s, t|a) = e−at exp

{
a

∫ t

0
Gi(s, u)du

}
Gi(s, t).

In this Section, we also provide a detailed simulation study to examine the nature of

ethical gain obtained through this allocation design. In fact, we study the proportion

of allocation to the two treatments for different distributions of the responses. Some of

the simulation results are presented in Table 1. It is observed that we have considerable

larger allocation to the better treatment. We compare our results with the standard

allocation design for categorical responses provided by Bandyopadhyay and Biswas [3]

(henceforth called B&B rule) as that seems to be the only comparable adaptive design

with categorical responses in this case. This proportion is denoted by Prop(A). We

also study the standard deviation (SD) of the proportion, as the initial goal of the DL

rule is to reduce the variability. These are presented in Table 1 for different parametric

values. We also present the same for the 50:50 randomized rule, where every patient is

randomly allocated to either treatment irrespective of the accumulated data. The table
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also provides a comparison of the limiting proportion of allocation of the CatDL rule

with the same for the 50:50 rule (in which case it is always 0.5) and the B&B design.

Note that the limiting proportion of the B&B rule is same as that of the CatDL rule.

The natural question following the allocation is to carry out the inference. Here we

want to carry out a test for the null hypothesis H0 : µA = µB against the one-sided

alternative H1 : µA > µB . For simplicity, we carry out the test for a fixed-sample size n.

Quite naturally, a right-tailed test based on the test statistic µ̂An − µ̂Bn, the estimate of

the treatment difference based on the first n sample observations, is recommended. We

present the power of the test in Table 2 for the design CatDL. The null distribution of

the test statistic is symmetric about ‘0’, but the distribution depends on the null value

of µA = µB through the vecors pA = (pA0, . . . , pAk) and pB = (pB0, . . . , pBk). But

still we compare the powers of the tests from different competitive designs for the sake of

comparison just to see the comparative power structure for different designs. In practice,

one should arrive at a fixed cut-off point, irrespective of the null hypothetical parametric

value. This can be done theoretically either by integrating the cut-off points over the

empirical distribution or the prior distribution of the parameter. The details are under

study.

As a natural comparison, we compare the performance of our designs and the follow-

up tests with a test procedure which randomises the patients among the two treatments

in a 50:50 way. Note that the expected allocation proportion and the limiting allocation

proportion is 0.5 in such a randomized 50:50 procedure, whatever be the treatment

difference. Thus, although we can have more power in the follow-up test, we have ethical

loss in terms of treating a larger number of patients to the worse treatment than the

corresponding CatDL rule.

There seems only one adaptive design available in the literature which considers con-

tinuous treatment responses and also covariates. This is the design introduced and

studied by Bandyopadhyay and Biswas [3]. We compare the performances our proposed

designs in Section 2 with the design of B&B. The numerical computations are provided

in Tables 1-2. It is observed that our proposed design works well in terms of allocation

and power and too with a much lower variability. This establishes the superiority of the

proposed design.
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4. Properties: Limiting Distribution and Proportion

We are interested in the proportion of subjects assigned to the treatment i, i =

A,B, as t → ∞. As in Ivanova [10], in the present categorical response set up, it can be

shown that, as t → ∞,

Ni(t)

at
P→ 1

∑k
j=0(1 − πi(j))pij

, i = A,B.

Hence, as t → ∞,

Ni(t)

NA(t) + NB(t)
P→

1∑k

j=0
(1−πi(j))pij

1∑k

j=0
(1−πA(j))pAj

+ 1∑k

j=0
(1−πB(j))pBj

= D̄i, say.

Consequently, as in Ivanova [10],

√
t

(
Ni(t)

NA(t) + NB(t)
− D̄i

)
d→ N

(
0, D̄2

AD̄2
B

p̄A + p̄B

a

)

as t → ∞, where p̄i =
∑k

j=0 πi(j)pij .

In clinical trials, sampling is often made until a prefixed sample size, say n, predeter-

mined by using some power condition. In case of CatDL rule, the conditional distribution

of Ni(t) given NA(t) + NB(t) = n is not straightforward, but the limiting proportion of

allocation can be obtained by using the embedding theorem as

lim
n→∞

Nin

n
= lim

t→∞

Ni(t)

NA(t) + NB(t)

where Nin is the number of allocations to the ith treament. Consequently,

Nin

n
P→ D̄i, i = A,B. (3.1)

It is interesting to note that the above CatDL rule can be interpreted as the usual drop-

the-loser rule (Durham and Ivanova [7]; Ivanova [10]) with the unconditional probability

of replacing the ball
∑k

j=0 πA(j)pAj = µA/k or
∑k

j=0 πBpBj = µB/k depending on the

patient is treated by the treatment A or B. Consequently, the limiting proportion of

allocation to treatment A becomes

π∗ = (k − µB)/(2k − µA − µB).
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We also consider the asymptotic distribution of ∆̂. Note that a natural estimator of

µs, s = A,B, is

µ̂s =
k∑

j=0

wjνsjn/Nsn,

where wj = j, νsjn is the number of patients responded j in the treatment group s, and

Nsn is the total number of patients allocated to treatment s out of the first n patients.

Clearly, we can write νsjn =
∑n

i=1 W s
ij, where W s

ij takes the values 1 or 0 according as

the response from the ith patient by the treatment s is j or not, i = 1, . . . , n, s = A,B.

Writing Ws
i = (W s

i0, . . . ,W
s
ik)

T , for the ith patient we write the vector of observation

Wi = TiW
A
i +(1−Ti)W

B
i , i = 1, . . . , n, with

∑k
j=1 W s

ij = 1 for all (i, s). Clearly, Yi = j

if Wij = 1 and all other components of Wi are zero. Note that Ws
i follows a multinomial

distribution with parameters (1; ps0, ps1, . . . , psk).

Now we can write

∆̂ − ∆ =
k∑

j=0

wj

n∑

i=1

Ti(Wij − pAj)/NAn −
k∑

j=0

wj

n∑

i=1

(1 − Ti)(Wij − pBj)/NBn

=
k∑

j=0

wj∆̂Aj −
k∑

j=0

wj∆̂Bj ,

where

∆̂Aj =
n∑

i=1

Ti(Wij − pAj)/NAn, ∆̂Bj =
k∑

j=0

wj

n∑

i=1

(1 − Ti)(Wij − pBj)/NBn.

Note that, for the corresponding non-adaptive estimators ∆̃Aj and ∆̃Bj , say, j = 0, 1, . . . , k,

writing ∆̃s = (∆̃s0, . . . , ∆̃sk)
T , we have

√
n∆̃s

d→ Nk+1(0,Σs),

where Σs = (σs,jj′) with σs,jj = psj(1−psj) and σs,jj′ = −psjpsj′ when j 6= j′, s = A,B.

Now, using (4.1), it follows from a simple extension of Theorem 3.2 of Melfi and Page

[13] that

(
√

n∆̂A,
√

n∆̂B)
d→ (Z1,Z2),

where ∆̂s = (∆̂s0, . . . , ∆̂sk)
T , s = A,B, and Z1 ∼ Nk+1(0,ΣA) independently of Z2 ∼

Nk+1(0,ΣB). Using Cramer-Wold device, we immediately obtain that

√
n(∆̂ − ∆)

d→ N(0, σ2),
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where

σ2 =
wT ΣAw

D̄A

+
wT ΣBw

D̄B

,

with w = (w0, . . . , wk)T , which is the vector (0, 1, . . . , k)T in the present situation.

5. Illustration with Real Data

Here consider the PEMF trial described in the Introduction. We just want to illustrate

the applicability of our present approach. We, for simplicity, consider only one response

variable, pain, and moreover, we consider only one response by clubbing the longitudinal

responses. Our response is the worst pain-level (classified into nil, mild, low moderate

and high moderate) in the first two weeks. In the study, we have data from 22 patients of

which 16 are treated by the PEMF and 6 by placebo. We find the empirical distributions

of the treatment responses from the data and treat them as the true ones. Let these

responses-distributions for PEMF be CA and that for placebo be CB. From the PEMF

data, we obtain CA : pA = (0, 2/6, 2/6, 2/6), CB : pB = (2/16, 8/16, 6/16, 0). Using

these we carry out a simulation study of 10000 simulations to find the expected number

of allocations to the two treatments and the SD using our proposed CatDL rule. We

then carry out the same exercise using the generalized randomized play-the-winner rule

of B&B [3] and also for the 50:50 allocations. Also we find the expected allocations with

SD for a randomized play-the-winner (RPW) rule and the drop-the-loser (DL) rule where

the responses nil and mild are clubbed together as success and low moderate and high

moderate are clubbed together as failure and these probabilities of successes and failures

are obtained from the estimated distributions CA and CB . We also report the same

for a 50:50 randomized rule. The results are reported in Table 3. From the Table 3, we

observe that the proposed CatDL rule performs much better than the other two adaptive

alternatives with categorical responses in the sense that it has much less SD. Expected

proportion of allocation to the better treatment arm in case of CatDL is almost same

as that of the B&B rule. Each of the adaptive rule is better than the 50:50 randomized

rule in the ethical sense as more allocations are likely to the better treatment. But the

proposed CatDL is the best in the sense that the SD is minimum. If the first and last

two categories are clubbed together, the responses can be transformed to binary ones.

The corresponding results for DL, RPW (with α = β = 1) and 50:50 randomized rule

are also given in Table 2. But, the adaptive designs using the categorical responses are
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more sensible than the designs with transformed binary responses in any case as those

use complete categorical responses.

Table 1. Comparison of Prop(A) and SD (in parantheses) of the CatDL, B&B and

50:50 designs. Here k = 3 and pB = (0.2, 0.3, 0.3, 0.2). Limiting proportion of allocation

(π∗) for CatDL and B&B (the same) is also given.

n = 40 n = 100 π∗

pA CatDL B&B 50:50 CatDL B&B 50:50

(0.2, 0.3, 0.3, 0.2) 0.500 0.500 0.500 0.500 0.500 0.500 0.500

(0.069) (0.102) (0.078) (0.047) (0.067) (0.050)

(0.2, 0.2, 0.3, 0.3) 0.526 0.531 0.500 0.531 0.534 0.500 0.536

(0.072) (0.110) (0.079) (0.050) (0.072) (0.050)

(0.2, 0.2, 0.2, 0.4) 0.542 0.552 0.500 0.548 0.553 0.500 0.556

(0.073) (0.117) (0.079) (0.051) (0.079) (0.050)

(0.1, 0.2, 0.3, 0.4) 0.569 0.587 0.500 0.586 0.593 0.500 0.600

(0.075) (0.122) (0.080) (0.053) (0.080) (0.050)

(0.1, 0.1, 0.2, 0.6) 0.613 0.654 0.500 0.646 0.667 0.500 0.682

(0.075) (0.133) (0.078) (0.053) (0.091) (0.050)

Table 2. Comparison of power for the CatDL, B&B and 50:50 designs. Here k = 3 and

pB = (0.2, 0.3, 0.3, 0.2).

n = 40 n = 100

pA CatDL B&B 50:50 CatDL B&B 50:50

(0.2, 0.3, 0.3, 0.2) 0.050 0.050 0.050 0.050 0.050 0.050

(0.2, 0.2, 0.3, 0.3) 0.153 0.161 0.159 0.261 0.260 0.254

(0.2, 0.2, 0.2, 0.4) 0.245 0.253 0.248 0.434 0.422 0.434

(0.1, 0.2, 0.3, 0.4) 0.448 0.446 0.451 0.799 0.773 0.780

(0.1, 0.1, 0.2, 0.6) 0.781 0.765 0.795 0.989 0.984 0.986
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Table 3. Simulated number of allocations and SD’s for CatDL, B&B, RPW, DL and

50:50 rules for 22 patients using the empirical response distributions from the PEMF

data.

Allocation to PEMF

Design Expectation SD

CatDL 0.621 0.089

B&B 0.613 0.129

50:50 (Cat) 0.500 0.106

DL 0.590 0.024

RPW 0.607 0.145

50:50 (binary) 0.500 0.102

6. Conclusions

The design depends on the definition of the treatment difference. If the treatment

difference is defined in some other way, we need to modify the design accordingly. For

example, if the treatment difference is defined as

µA(α) − µB(α) =
k∑

j=0

αjpAj −
k∑

j=0

αjpBj,

where α0 < α1 < · · · < αk, then we set

πA(j) = πB(j) = α∗

j =
αj − α0

αk − α0
,

so that we have 0 = α∗

0 < α∗

1 < · · · < α∗

k = 1.

In this paper we introduced drop-the-loser type designs for categorical responses.

These designs yield adaptive allocation for categorical responses with smaller variability

than the existing adaptive design of Bandyopadhyay and Biswas [3]. The present work

assumes a very simple structure where there is no delayed responses, no staggered entry.

With the presence of all these practical logistics the method will be much more compli-

cated and we need to adjust the rules sensibly to carry out response-adaptive allocation.

The details are under study.
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