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multiplicative. The noise may be signal dependent or

signal independent as well. As a result, a noise re-

moval scheme or algorithm cannot be identically e�-

cient in removing all kinds of noise from images.

There are various noise removal schemes each hav-

ing their own merits and demerits. Some of these are

spatial domain techniques while others are frequency

domain techniques. The spatial domain techniques,

usually, smooth noise by employing the knowledge

acquired from the neighborhood of each pixel in the

noisy image. For example, the well known mean �lter

[29] replaces intensity at each pixel of the noise cor-

rupted image by the average intensity computed over

a prescribed neighborhood. In other variants of mean

�lters this average is computed by assigning intuitive

weightages to the pixels contained in the neighbor-

hood.Median �lters [29], on the other hand, compute

median in lieu of the average. While mean �lters

have the problem of blurring the edges present in the

image, median �lters, by and large, preserve them by

reducing the e�ect of statistical outliers present in the

local neighborhood. Crimmins [8] developed a

geometric �lter which has proved to be e�cient in

removing speckle noise from satellite image data.

Restoring an image from its noisy version is per-

formed in frequency domain by means of low pass

�ltering, inverse �ltering,Wiener �ltering [29]. How-

ever, almost all conventional noise removal algo-

rithms mentioned above do not take care of shapes and

scales of the objects or features present in the image.

The application of mathematical morphology

[23,35] to image processing and analysis has initiated

a new approach for solving a number of problems.

This approach is based on set theoretic concepts of

shape. The speciality of morphological processing

is that it treats the objects present in an image as

sets. The identi�cation of objects and object features

through their shapes makes mathematical morphol-

ogy a useful approach for various machine vision

systems and recognition processes. The popularity of

morphological processing has led to hardware imple-

mentation of morphological operators. These include

Golay logic processor [12], Leitz texture analysis sys-

tem (TAS) [17], CLIP processor arrays [9], and Delft

image processor DIP [19]. The extension of concepts

of morphological operations like dilation and erosion

(also known as Minkowski addition and subtraction

[25], respectively) of binary objects to the arena of

gray level images using max and min operations may

be found in [37,15]. Since its inception mathematical

morphology has observed a steady growth, and dur-

ing last two decades various morphological operators

and processing techniques have been proposed. These

include area (size) morphology [40,41], soft morphol-

ogy [11,28], regulated morphology [10], directional

morphology [1], etc. Morphological operations are

interpreted as set–set processing, function–function

processing, function–set processing [21], etc.

Morphological techniques are being used for solv-

ing various image processing problems including

noise smoothing. The most common noise removal

techniques using mathematical morphology are open-

ing and closing [14] or their cascades known as alter-

nating sequential �lters [36]. Safa and Flouziat [30]

have used mathematical morphology in removing

speckle from radar images. Schonfeld and Goutsias

[33] have done an optimal morphological pattern

restoration from noisy binary images. Lin et al. [7]

have used morphology in reducing noise of VQ en-

coded images through anti-gray coding. A scheme

for morphological anisotropic di�usion for smoothing

noise from gray-scale images has been suggested by

Segall and Acton [34]. In this paper we have devised

a noise smoothing technique using multiscale mor-

phology that also preserve edges. In the following

description we use similar notations of digital image

processing and mathematical morphology as used in

[14]. Section 2 gives a brief discussion on mathe-

matical morphology and multiscale morphology. In

Section 3 we have described the proposed method.

Section 3.1 describes the theoretical formulation of

noise smoothing technique using multiscale morphol-

ogy. Section 3.2 gives a simpli�ed illustration of the

proposed formulation on one-dimensional function.

Section 3.3 presents elaborately various steps of the

implementation of the proposed algorithm. The exper-

imental results and discussions are given in Section 4.

A modi�cation of the proposed scheme considering

the noise statistics is presented in Section 5. Finally,

concluding remarks are given in Section 6.

2. Multiscale morphology

Mathematical morphology is a potential tool for

solving a wide range of problems in the �eld of image
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processing and computer vision. It is used for extract-

ing, modifying and combining image features that are

useful in the representation and description of objects

or shapes. Morphological operations are by and large

set theoretic operations de�ned between two sets: the

object and the structuring element (SE) [35,14]. The

shape and the size of SE play crucial roles in such

types of processing and are therefore chosen accord-

ing to the associated application. The two basic mor-

phological operations are erosion and dilation, and the

opening (closing) operation is the sequential combi-

nation of erosion (dilation) and dilation (erosion). In

this work, we adopt, the function- and set-processing

(FSP) system an elaborate description of which

may be found in [21]. FSP dilation of a gray-level

image g(r; c) by a two-dimensional point set B is

de�ned as

(g⊕ B)(r; c)= max
(k;l)∈B

{g(r − k; c − l)}: (1)

Similarly, FSP erosion of g(x; y) by B is de�ned as

(g	 B)(r; c)= min
(k;l)∈B

{g(r + k; c + l)}: (2)

The shape of the structuring element B plays an im-

portant role in extracting or processing shape-based

features or objects present in the image. An SE of

a given shape, however, cannot treat objects of sim-

ilar shape, but of varying size identically. Thus, for

a categorical processing based on the shape as well

as size of objects in the image, we incorporate a sec-

ond attribute to the structuring element called scale.

A family of SEs consisting of the primitive SE and its

higher order homothetics is capable of processing fea-

tures based on shape and size. Such a scheme of mor-

phological operations where a structuring element of

varying scale is utilized is termed as multiscale mor-

phology [35,21]. Multiscale opening and closing [38]

are de�ned, respectively, as

(g ◦ nB)(r; c)= ((g	 nB)⊕ nB)(r; c); (3)

(g • nB)(r; c)= ((g⊕ nB)	 nB)(r; c); (4)

where B is a point set representing the structuring ele-

ment of a de�nite shape and n is an integer represent-

ing the scale factor of the structuring element. If B is

convex, we obtain nB by dilating B recursively n− 1

times with itself as shown below.

nB=B⊕ B⊕ B⊕ · · · ⊕ B
︸ ︷︷ ︸

n−1 times

: (5)

By convention nB= {(0; 0)} when n=0. Multiscale
processing system should have the properties like (i)

causality and (ii) edge localization [27,20,3]. By the

term ‘causality’ we mean no regional extrema and,

consequently, no edge is introduced as the scale in-

creases. ‘Edge localization’ means an edge should not

drift from its original position. The system is also ex-

pected to be scale-calibrated, i.e. at a particular scale,

all features of only that scale are present in the output

image.

The multiscale opening produces at regions by re-

moving bright objects or its parts smaller than the SE.

The properties: g◦B6 g and g◦ iB¿ g◦ jB for i¡ j

imply that new relatively darker pixels may result at

higher scales due to opening. In the case of multiscale

closing, new relatively brighter pixels may result at

higher scales. Secondly, removal of parts of an ob-

ject introduces new edges. Thus, conventional open-

ing and closing do not satisfy the causality property.

This is elaborated in the next paragraph.

The basic assumption that the proposed algorithm

takes in smoothing noise is that the image contains

planar intensity patches corrupted with noise grains.

In one dimension, a translation invariant morpholog-

ical operator preserves the slope of the signal [4]. In

fact, a ‘single-slope signal’ — linear function — is

left unchanged by any morphological operator with

the exception of a translation of the function. How-

ever, in case of opening with a horizontal straight

line segment, i.e. the SE, the edges are �rst drifted

inward due to erosion which is followed by dilation

that drifts the edges outward by the same amount.

This avoids any displacement of edges. In the case

of non-linear functions some peaks having width

smaller than the length of the SE vanish completely.

As a result, some edges may not be present in the

opened image. However, other edges are present in

their original positions. In the case of two or higher

dimensions the situation is not, in general, so. Since

we are dealing with image processing problems, our

discussion is con�ned to two dimensions only. The

SE we use is a disk of certain radius. Aforementioned

analysis is valid (i.e., edge localization problem does

not arise) only where the radius of curvature of the
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Fig. 1. (a) Original image; (b) result of conventional opening of

(a) using a disk SE; and (c) result of opening by reconstruction

of (a) with same SE.

edges is not less than that of the SE or the features

are not too narrow [6]. Otherwise, the features are

either completely removed or pruned. In the latter

case we see the edges are drifted inwards. For ex-

ample, if a rectangle is opened with a disk SE of

diameter less than the smaller side of the rectangle,

the rectangle is pruned at its corners. As a result,

corner edges are drifted inwards introducing an edge

localization problem [see Fig. 1(a) and (b)]. Similar

analysis holds for closing also in the complement

sense. Bangham et al. [3] suggested a scale-space

operator, called M - and N -sieves, which satis�es

causality and edge localization properties. However,

his operator relies only on the size of the features

and completely ignores the shape. On the other hand,

morphological multiscale opening (closing) by recon-

struction [18,31], as de�ned below, considers both

shape and size, and satis�es those properties.

Geodesic dilation of size one, i.e. the smallest size

in discrete domain, is de�ned as the minimum of the

dilation of the original function g with an SE X of

size one and a reference function � and is denoted by

�1X (g; �). Hence

�1X (g; �)=min(g⊕ X; �): (6)

Similarly, geodesic erosion of size one is de�ned as

the maximum of the erosion of the original function

g with an SE X of size one and a reference function

� and is denoted by �1X (g; �). Hence

�1X (g; �)=max(g	 X; �): (7)

Now geodesic dilation and erosion of size larger than

one may be de�ned as

�iX (g; �)=min(�
(i−1)
X (g; �)⊕ X; �); (8)

�iX (g; �)=max(�
(i−1)
X (g; �)	 X; �) (9)

for i=1; 2; 3; : : : . Conceptually this may con-

tinue inde�nitely, but for all practical purposes

iteration is terminated at an integer n such that

�nX (g; �)= �
(n−1)
X (g; �) and, similarly, when �nX (g; �)

= �
(n−1)
X (g; �), because no change would occur after

that. Let us call this stable output reconstruction by

dilation and denote it by �(rec)(g; �), i.e.,

�(rec)(g; �)= �nX (g; �)

and, similarly, we have reconstruction by erosion de-

noted by �(rec)(g; �), i.e.,

�(rec)(g; �)= �nX (g; �):

Based on this operation, opening by reconstruction

of opening or, simply, opening by reconstruction de-

noted by g �◦B may be de�ned as

g �◦B= �(rec)(g ◦ B; g) (10)

and closing by reconstruction denoted by g �•B may be
de�ned as

g �•B= �(rec)(g • B; g): (11)

Therefore, the ‘opening by reconstruction’ can recon-

struct the whole feature through geodesic dilation if

at least a part of it can contain the SE. Thus the basic

di�erence between conventional opening and opening

by reconstruction is as follows: Conventional opening

removes the parts of the bright features or objects that

do not �t in the SE, whereas opening by reconstruc-

tion either removes the features completely or retains

the whole of it. The situation is evident in the exam-

ple shown in Fig. 1 generated following Pizer [20].

Similar analysis holds for ‘closing by reconstruction’

in case of dark features. As a result, problems like

introduction of new edges and edge displacement do

not arise in the case of opening by reconstruction and

closing by reconstruction. Hence, a multiscale sys-

tem designed with these operators satis�es causality

and edge localization properties. However, it should

be noted that conventional opening and closing oper-

ations are far more e�cient in removing noise than

opening by reconstruction and closing by reconstruc-

tion, respectively.

If these operators, i.e., opening and closing by re-

construction, are used with multiscale SEs, the output

image should contain only features of that scale and
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higher. The di�erence between the outputs at succes-

sive scales then contains features of a particular scale

only. In essence, in the di�erence image the features

which can contain the SE at that scale are present

completely and others are removed. Thus, the system

can be termed as scale calibrated. Another property

desirable for any �lter, known as rotation invariance

property, is satis�ed by these systems because of use

of a disk SE which is isotropic up to the accuracy at-

tainable in discrete domain.

In the following discussion, unless otherwise men-

tioned, ‘open’ means ‘open by reconstruction’ and

‘close’ means ‘close by reconstruction’, and conse-

quently ‘◦’ stands for ‘ �◦’ and ‘•’ stands for ‘ �•’.

3. Proposed method

3.1. Noise smoothing using multiscale morphology

The noise smoothing technique using multiscale

morphology proposed here makes use of weighted av-

eraging of a sequence of morphologically �ltered im-

ages stacked in di�erent layers of morphological tow-

ers [26] as depicted in Fig. 4. In general the presence

of noise over a region in an image is manifested in

terms of abrupt variation in the intensity as compared

to the relatively smoother variation of the desired sig-

nal and consequently the edges. This key feature helps

us discriminate noise from the image data. However,

features of smaller size are a�ected more as compared

to that of larger size. Hence, features of various sizes

must be separated out prior to the application of any

technique for reducing the noise.

In morphological �ltering a bright top-hat transfor-

mation [24] extracts bright objects of size smaller than

the size of the structuring element present in image as

given by the following equation:

gtop(r; c)= g(r; c)− (g ◦ B)(r; c); (12)

where (g ◦ B)(r; c) is opening by reconstruction of
gray-level image g(r; c) by a disk structuring element

B and i=1; 2; : : : ; n is an integer representing the scale

of the structuring element.

The bright top-hat image resulting after �ltering by

a SE of size i contains all bright features along with

noise that are smaller than i. In this sense the bright

top-hat transformation is scale calibrated. Also, using

the following equation the original image may be re-

covered as follows.

g(r; c)= (g ◦ iB)(r; c) + (g(r; c)− (g ◦ iB)(r; c)):

(13)

Modifying Eq. (13) with a notion of multiscale �lter-

ing we get

g(r; c) = (g ◦ nB)(r; c) + ((g ◦ (n− 1)B)(r; c)

−(g ◦ nB)(r; c)) + ((g ◦ (n− 2)B)(r; c)

−(g ◦ (n− 1)B)(r; c)) + · · ·+ (g(r; c)

−(g ◦ B)(r; c)) (14)

or,

g(r; c) = (g ◦ nB)(r; c) + FoB(r; c)

+Fo2B(r; c) + · · ·+ F
o
nB(r; c); (15)

where

FoiB(r; c)= (g ◦ (i − 1)B)(r; c)− (g ◦ iB)(r; c): (16)

Similarly a dark top-hat or a bottom-hat image result-

ing after �ltering by an SE of size i contains all dark

image features along with noise that are smaller than i.

In this sense dark top-hat transformation is, too, scale

calibrated. Proceeding in the similar way, we have

g(r; c) = (g • nB)(r; c)− FcB(r; c)

−Fc2B(r; c)− · · · − F
c
nB(r; c); (17)

where

FciB(r; c)= (g • iB)(r; c)− (g • (i − 1)B)(r; c): (18)

Adding Eq. (15) and Eq. (17) and dividing the result

by 2 we get

g(r; c) = 1
2
{(g ◦ nB)(r; c) + (g • nB)(r; c)}

+ 1
2
�n1F

o
iB

︸ ︷︷ ︸

part1

− 1
2
�n1F

c
iB

︸ ︷︷ ︸

part2

: (19)

Each (FoiB)(r; c) in part1 of Eq. (19) represents the

image consisting of bright features at scale i present

in the input noisy image. Similarly, each (FciB)(r; c) in

part2 represents the image consisting of dark features
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at scale i present in the input noisy image. In the re-

construction process equal emphasis is given to each

of these feature images through equal weights (which

is 1) as suggested by Eq. (19). However, according

to our assumption the e�ect of noise is more in the

lower scales. That means noise dominates in the fea-

ture images of Eq. (19). So, it is expected that the ef-

fect of noise in the reconstructed image gets reduced if

we reconstruct the image by giving weights less than

one to the feature images. With such views we can

modify Eq. (19) to obtain a smooth image as given

below.

g̃(r; c) = 1
2
{(g ◦ nB)(r; c) + (g • nB)(r; c)}

+ 1
2
�n1k

o
i F

o
iB

︸ ︷︷ ︸

part1

− 1
2
�n1k

c
i F

c
iB

︸ ︷︷ ︸

part2

; (20)

where 06 koi ¡ 1 and 06 kci ¡ 1.

Now the problem is to estimate the values of the

parameters koi s and k
c
i s. One simple way of estimat-

ing these parameters is to maximize some goodness

criterion measured on the smooth image. The noise

smoothing algorithm generally aims at reducing the

abrupt changes and to maintain gradual changes (if

any) in the intensity surface of the image. The abrupt

changes in the intensity surface pro�le is manifested

in terms of edginess. Based on this we consider the

Euclidean norm of Laplacian of the smooth image as

a suitable goodness criterion to be minimized. How-

ever, minimization of such type of objective function

without any constraint usually leads to trivial solu-

tions. So we need to incorporate certain constraint in

the objective function to be minimized. Suppose, the

image is corrupted by additive noise as given by

g(r; c)=f(r; c) + �(r; c):

In that case
∑

r

∑

c(g(r; c)−g̃(r; c))
2=

∑

r

∑

c �
2(r; c)=N (�2� + �

2
�) could be used as the

constraint, where �� and �� are the mean and the vari-

ance of noise term, respectively and N is the number

of pixels in the image. Thus the objective function to

be minimized takes the form

E(ko1 ; k
c
1 ; : : : ; k

o
n ; k

c
n)

=
∑

r

∑

c

{∇2g̃(r; c)}2

+�

{
∑

r

∑

c

(g(r; c)− g̃(r; c))2 − N (�2� + �
2
�)

}

;

(21)

where, � is the Lagrange multiplier, and 06 koi ¡ 1

and 06 kci ¡ 1. Di�erentiating Eq. (21) with respect

to the parameters ko1 ; k
c
1 ; : : : ; k

o
n and k

c
n and equating

them to zero, we get 2n number of simultaneous equa-

tions. Solving them we get
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where
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Table 1

An example of estimated values of the parameters

Scale Type of feature

Bright feature Dark feature

Parameter Value Parameter Value

1 ko1 0.003480940 kc1 0.007203650

2 ko2 0.012613741 kc2 0.018714545

3 ko3 0.065167400 kc3 0.039894422

4 ko4 0.072803162 kc4 0.058386658

and

A(r; c)= 1
2
{(g ◦ nB)(r; c) + (g • nB)(r; c)};

Loi (r; c)=∇
2Foi (r; c);

Lci (r; c)=∇
2Fci (r; c);

LA(r; c)=∇
2A(r; c);

Loi L
c
j =

1

(ht ∗ wd)
�htr=1�

wd
c=1L

o
i (r; c)L

c
i (r; c);

Foi F
c
j =

1

(ht ∗ wd)
�htr=1�

wd
c=1F

o
i (r; c)F

c
i (r; c);

AFoj =
1

(ht ∗ wd)
�htr=1�

wd
c=1AF

o
i (r; c);

AFcj =
1

(ht ∗ wd)
�htr=1�

wd
c=1AF

c
i (r; c);

gFoj =
1

(ht ∗ wd)
�htr=1�

wd
c=1gF

o
i (r; c);

gFcj =
1

(ht ∗ wd)
�htr=1�

wd
c=1gF

c
i (r; c);

LAL
o
j =

1

(ht ∗ wd)
�htr=1�

wd
c=1LA(r; c)L

o
i (r; c); and

LAL
c
j =

1

(ht ∗ wd)
�htr=1�

wd
c=1LA(r; c)L

c
i (r; c):

Value of � is chosen iteratively so as to satisfy

the given constraint [5,13,29]. The experiment has

been carried out on quite a few images corrupted

with various types of noise; however, for the sake

of presentation, we have taken an example image

along with its Gaussian noise corrupted version. The

Fig. 2. Illustrates Gaussian noise grains at di�erent scales:

(a) noisy image, (b) scale 1, (c) scale 2, (d) scale 3, and (e)

scale 4.

values estimated are shown in Table 1. Fig. 2 shows

the noise corrupted version and the noise grains

present in it at di�erent scales. The parameter values

follow an increasing order, i.e., ko16 ko26 ko3 · · ·6 kon
and kc16 kc26 kc3 · · ·6 kcn , which conform with the

observation that introduction of random noise, in

general, generates perturbation at lower scales [38].

However, estimation of the parameters incurs a

huge computational cost. To avoid such huge com-

putational cost and also to use �xed point arithmetic

operations (for further speed up of the algorithm), we

have chosen kon = k
c
n =

1
2
; koi−1=

1
2
koi and k

c
i−1=

1
2
kci

for i= n; n − 1; : : : . However, these weights are

set heuristically guided by the experimental results.

Therefore this algorithm is suitable for a class of im-

ages that satisfy the monotonies of the noise contents

with scale. The e�cacy of this selection is established

in Section 4.
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This selection leads to

g̃(r; c) =
1

2
{(g ◦ nB)(r; c) + (g • nB)(r; c)}

+
1

2

1
2
Fo1+F

o
2

2
+Fo3

2
+Fo4

...

+···

2
+ Fon

2

−
1

2

1
2
Fc1+F

c
2

2
+Fc3

2
+Fc4

...

+···

2
+ Fcn

2
: (23)

Let us de�ne

goav1(r; c)=
1
2
{FoB(r; c)} (24)

goavi(r; c)=
1
2
{goav(i−1)(r; c) + F

o
iB} (25)

gcav1(r; c)=
1
2
{FcB(r; c)} (26)

gcavi(r; c)=
1
2
{gcav(i−1)(r; c) + F

c
iB} (27)

and

�g(r; c)= 1
2
{(g ◦ nB)(r; c) + (g • nB)(r; c)}: (28)

Then Eq. (23) can be rewritten as

g̃(r; c)= �g(r; c) + 1
2
goavn(r; c)−

1
2
gcavn(r; c): (29)

Eq. (29) can be implemented on morphological

towers as described elaborately in the next sub-

section.

In the proposed scheme the scale speci�c feature im-

ages are extracted using top-hat transformation based

on multiscale opening by reconstruction and closing

by reconstruction. There exist other methods for ex-

tracting scale speci�c features from images which use

median �lter [2], stack �lter [22], alternate sequen-

tial �lter [32,39],M - and N -sieves [3,16]. Second, we

have reconstructed the image from the decomposed

ones by their linear combination. However, non-linear

combinations are also employed for the purpose; for

example, Toet [38] used max operator to reconstruct

the image from morphological tree.

3.2. A simple illustration in one dimension

A simpli�ed illustration of the proposed scheme ap-

plied to one-dimensional signal is shown in Fig. 3

for easy understanding. The function f(t) has salient

features manifested as crests and troughs of di�erent

height (or depth) and width located at di�erent posi-

tions. The noise in the function is manifested in terms

of the narrow peaks and troughs at di�erent positions.

Our objective is to smooth the noise of the function

g(t). The line segment L of unit length and its higher

order dilates kL (where k =1; 2; 3) are used as struc-

turing elements (SE) for extracting the salient fea-

tures at di�erent scales from the function as described

below.

• The opening operation with the SE kL removes the
crests which are narrower than the width k while

the closing operation �lls up the troughs narrower

than the width k.

• The function Fok (t)= (g◦ (k−1)L)(t)− (g◦ kL)(t)
contains only the crests of width smaller than k

but larger than (k − 1) and the function Fck (t)=
(g • kL)(t) − (g • (k − 1)L)(t) contains only the
troughs of width smaller than k but larger than

(k − 1). Proceeding in this way we construct the
function Fo1 (t); F

o
2 (t); F

o
3 (t) and F

c
1(t); F

c
2(t); F

c
3(t)

(see Fig. 3).

• We take recursive averaging of the functions ob-
tained in the previous steps. We �rst construct

the function goav1(t)=
1
2
[Fo1 (t)]; then the functions

goav2(t)=
1
2
[goav1 + Fo2 (t)] and g

o
av3(t)=

1
2
[goav2 +

Fo3 (t)]; respectively. In a similar way the function

gcav3(t) is constructed.

• The function �g(t) is obtained by averaging

(g ◦ 3L)(t) and (g • 3L)(t).
• The smoothed function is then formed by combin-
ing the functions �g(t); goav3(t) and g

c
av3(t) as shown

below:

g̃(t)= �g(t) + 1
2
goav3(t)−

1
2
gcav3(t): (30)

Comparing g̃(t) with f(t) at each sample point t it

is readily seen that the height (depth) of the crests

(troughs) have decreased but disproportionately. The

change in height is more for crests of narrower width.

This is true for crests also. This would not be possible

using mean �ltering. The smooth function is found to

be less a�ected by noise spikes without any noticeable
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Fig. 3. Multiscale morphological noise smoothing of a function.
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Fig. 4. Noise smoothing scheme using morphological towers.

change in sharpness and location of valid edges. The

scheme explained for this one-dimensional case may

as well be extended to two dimension as described

below.

3.3. Implementation

The implementation of Eq. (29) describing feature

based noise smoothing scheme involves construction

of a number of morphological towers.

3.3.1. Construction of morphological towers

The noisy image to be smoothed is made to undergo

a sequence of gray-scale morphological opening by

reconstruction with a disc structuring element and its

higher order homothetics. The resulting sequence of

images is kept in a stack called the opening tower as

shown in Fig. 4. An identical tower, called closing

tower, is constructed with the sequence of the images

resulted from multiscale closing by reconstruction of

the input noisy image. Therefore, the ith entry in the

opening (closing) tower contains the image opened

(closed) with the structuring element iB as given

below.

(g ◦ iB)(r; c)= ((g	 iB)⊕ iB)(r; c) (31)

(g • iB)(r; c)= ((g⊕ iB)	 iB)(r; c) (32)

for i=1; 2; : : : ; n.

3.3.2. Construction of di�erence towers

As stated earlier the image resulting after morpho-

logical opening using a structuring element iB contains

only those features of the original image that are equal

to or larger than the size of the structuring element

iB. Likewise the image resulting after a morphological

opening using a structuring element (i+1)B contains

all those features of the original image that are equal

to or larger than the size of the structuring element

(i+ 1)B. Thus a di�erence of these two images gives

rise to another image which contains only those fea-

tures of the original image that have size greater than

or equal to that of iB but less than that of (i+1)B. This

holds good for the multiscale closings of the images

also.

Accordingly, two di�erence towers for opening and

closing are constructed by carrying out di�erence op-

erations between all successive pairs of images result-

ing after morphological opening (closing) operations.

Fig. 4 shows two such di�erence towers. Thus the ith

layer of the di�erence tower corresponding to bright

and dark features contain the images obtained by
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following operations.

FoiB(r; c)= (g ◦ (i − 1)B)(r; c)− (g ◦ iB)(r; c); (33)

FciB(r; c)= (g • iB)(r; c)− (g • (i − 1)B)(r; c) (34)

for i=1; 2; : : : ; n.

3.3.3. Construction of smooth image

• A recursive averaging of the images stacked in dif-
ference tower corresponding to opening (closing)

is carried out. We start with a null image and select

the image at the lowest layer of the di�erence tower

and form another image by averaging them. Then

the average of the resulting image and the image in

the next higher layer of the corresponding di�erence

tower is computed to form another image. This is

continued until the top of the tower is reached. This

is described mathematically by Eqs. (24)–(27).

• The average of the images resulting after opening
and closing of the input image by the largest ho-

mothetic of the SE is also computed as described

by Eq. (28). Note that the average, everywhere, de-

notes pixel-wise average of images.

• Finally, the smooth image is obtained by combining
three images as given by

g̃(r; c)= �g(r; c) + 1
2
goavn(r; c)−

1
2
gcavn(r; c): (35)

The ‘+’ and ‘−’ operations are applied on corre-
sponding pixels of three di�erent images.

4. Experimental results and discussion

The proposed algorithm has been tested on sev-

eral images. However, the results are shown here

for a single image corrupted with di�erent kinds of

noise as shown in Fig. 5 [1(a)–7(a)]. Various kinds

of noise considered in the experiment include expo-

nential, Gaussian, Poisson, Rayleigh, shot, uniform

and speckle noise — the details of which are listed

in Table 2. For generating noise we made use of im-

age processing software Khoros210. The results of

proposed algorithm are shown in Fig. 5 [1(b)–7(b)].

We have compared our results with those of me-

dian �lter (see Fig. 5 [1(c)–7(c)]). Crimmins �lter

(see Fig. 5 [1(d)–7(d)]), and Anisotropic di�usion

smoothing [27,42] (see Fig. 5[1(e)–7(e)]). In the

experiment we have chosen n=6 for our proposed

method. For median �lter and Crimmins �lter the mask

size used is 7×7. For anisotropic di�usion smoothing
the value of �t; � and number of iterations are taken as

0.5, 1.0 and 20, respectively. The values of all these

parameters are chosen to obtain visually optimum re-

sults.

Qualitative evaluation (by human observer) reveals

that median �lter has more or less blurred the thin

features of the image. Results of Crimmins �lter are

better than those of median �lter and it has proved

to be the best for smoothing speckle noise. Results

of the proposed method show relatively less blurring

of thin features with appreciable noise cleaning and it

has greatly outperformed other methods in smoothing

shot noise. However, the proposed method has higher

space complexity as compared to others. Consider-

ing overall performance it can be said in essence, that

the proposed multiscale morphological technique is a

good edge-preserving smoothing technique. For quan-

titative comparison of performances of the methods

referred here we have studied the followings measures.

4.1. Signal-to-noise ratio

Suppose I(r; c) and In(r; c) denote noise-free and

noisy image of the same scene. Signal-to-noise ratio

(SNR) is de�ned as the ratio of signal power to the

noise power as given below.

SNR=
�r�cI

2(r; c)

�r�c{I(r; c)− In(r; c)}2
: (36)

The more the value of SNR the better is the noise

smoothing method. It may be measured as ratio or in

terms of dB. In Table 3 we have presented SNR values

(as ratio) of the smooth images resulting from various

methods. We also have ranked the methods depending

on the SNR values. Higher relative score is assigned to

better method. From Table 3 it is evident that the total

score of our proposed method is the second highest

among all other methods. In most of the cases the SNR

value is either the highest or the second highest.

4.2. Mean busyness

Busyness pro�le of an image gives an idea of spa-

tial variation in intensity. Mean busyness value is an

average of busyness values of all the pixels in the
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Fig. 5. (a) Original noisy image; (b) result of proposed multiscale morphological noise removal �ltering; (c) result of median �ltering;

(d) result of Crimmins algorithm; (e) results of anisotropic di�usion smoothing. (1) Exponential noise; (2) Gaussian noise; (3) Poisson

noise; (4) Rayleigh noise; (5) shot noise; (6) uniform noise; (7) speckle noise.
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Table 2

Di�erent types of noise and their parameters used in the experiment

Fig. no. Type of noise Parameter attributes Values of the Whether additive or

parameters multiplicative

1(a) Exponential Variance 255.0 Additive

2(a) Gaussian Mean 0.0 Additive

Variance 255.0

3(a) Poisson Amount of time 2000 Additive

Variance 75.0

4(a) Rayleigh Variance 255.0 Additive

5(a) Shot Percentage of spikes 70 Additive

Real value of spike 255.0

Imaginary value of spike 0.0

6(a) Uniform Minimum value −50:0 Additive

Maximum value +50:0

7(a) Speckle Mean 1.0 Multiplicative

Standard deviation +0:28

Table 3

Signal-to-noise ratio (SNR) for di�erent noise removal schemesa

Noise type Input Signal-to-noise ratio and scores
SNR

MMS MF CA ADS

SNR Score SNR Score SNR Score SNR Score

Exp 60.695696 107.092369 3 128.374554 4 84.032957 1 101.385678 2

Gus 110.967612 521.394035 2 359.873484 1 554.378836 3 664.503600 4

Pos 6.323838 12.321112 1 13.584419 2 14.199405 4 13.864437 3

Ral 25.231925 30.637288 3 29.966759 2 26.847579 1 30.924575 4

Sht 2.597885 5.025113 4 2.479764 1 3.920223 3 3.184999 2

Uni 35.734041 249.829078 3 178.546900 2 390.640388 4 131.178951 1

Spk 17.507818 101.459861 3 89.792234 2 106.833882 4 30.123955 1

Total 19 14 20 17

aNoise type: Exp: Exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni: uniform

noise, Spk: speckle noise. MMS: multiscale morphological smoothing, MF: median �ltering, CA: Crimmins algorithm, ADS:

anisotropic di�usion smoothing.

image. In general, the presence of noise in an im-

age raises the mean busyness value of the image. A

noise removal algorithm should reduce this raised

mean busyness value and bring it as close to that

of the original noise-free image as possible. In this

section we have studied the smoothing ability of the

algorithms in terms of deviation in mean busyness

(DMB) values of the noisy images and compared that

with other methods.

Wu et al. [43] computed busyness at each pixel in

an image as the median of the absolute vertical and

horizontal di�erences in gray values over a 3×3 mask.
The busyness values of all the pixels are then averaged

to get the mean busyness value of the image. Thus,

mean busyness MB is computed as

MB=
1

N
�r�cMedian{|dk(r; c)|}; (37)

where dk(r; c) is the kth vertical and horizontal dif-

ference in a 3× 3 mask of the image. Finally, devia-
tion in mean busyness value of a smooth image g̃ is

obtained by subtracting the mean busyness value of
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Table 4

Deviation in mean busyness value (DMB) for di�erent noise removal schemesa

Type of noise Deviation in mean busyness value and score of the scheme

NI MMS MF CA ADS

DMB DMB Score DMB Score DMB Score DMB Score

Exp 10.921769 1.776302 1 0.061684 4 −0:663406 3 1.085721 2

Gus 14.009873 2.513388 1 0.228851 4 −0:670080 3 1.416486 2

Pos 3.561615 0.076848 4 −0:519846 2 −0:869204 1 −0:343052 3

Ral 12.423284 1.810181 1 0.213318 4 −0:672295 3 1.106729 2

Sht 56.100977 −0:485336 4 2.166444 3 15.512188 2 35.877724 1

Uni 26.590066 3.531104 2 1.396079 3 −0:540330 4 7.273403 1

Spk 31.357986 5.062269 2 1.696948 3 0.053672 4 14.632311 1

Total 15 23 20 12

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:

uniform noise, Spk: speckle noise. NI: noisy image, MMS: multiscale morphological smoothing, MF: median �ltering, CA: Crimmins

algorithm, ADS: anisotropic di�usion smoothing.

Table 5

Correct processing ratio value CPR for di�erent noise removal schemesa

Type of noise Correct processing ratio value and score of the scheme

MMS MF CA ADS

CPR Score CPR Score CPR Score CPR Score

Exp 0.894104 3 0.912628 4 0.883774 2 0.882538 1

Gus 0.922318 3 0.930511 4 0.920120 2 0.902786 1

Pos 0.550140 2 0.636810 3 0.542679 1 0.755737 4

Ral 0.962555 3 0.973022 4 0.908737 1 0.941376 2

Sht 0.509003 4 0.503113 3 0.268234 1 0.501587 2

Uni 0.964340 3 0.970032 4 0.951797 2 0.933578 1

Spk 0.950699 3 0.957886 4 0.939911 2 0.921738 1

Total 21 26 11 12

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:

uniform noise, Spk: speckle noise. NI: noisy image, MMS: multiscale morphological smoothing, MF: median �ltering, CA: Crimmins

algorithm, ADS: anisotropic di�usion smoothing.

the ideal noise-free image from that of the smoothed

image (see Eq. (38)).

DMB(g̃)=MB(g̃)−MB(f): (38)

For each kind of noise we have computed the abso-

lute di�erence between the mean busyness values of

the noisy image and the smooth images resulting from

di�erent methods. A method is ranked by its score.

Lower the magnitude of DMB better is the perfor-

mance of the smoothing algorithm and higher is the

score awarded to it. A negative value of DMB implies

the over-smoothing performed by the associated algo-

rithm and it also indicates the loss of certain edge fea-

tures. Table 4 summarizes the observation. From the

table it is evident that the overall (as well as individ-

ual) score of the proposed method falls behind those

of MF and CA. However, in almost all cases CA has

performed over-smoothing.

4.3. Correct processing ratio

A pixel in a smooth image is said to be noisy if its

gray value is not same as that of the ideal noise-free

image. This di�erence in gray value can be due to some

amount of noise still present or due to degradation
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of feature. The basic purpose of a noise smoothing

algorithm should be to modify the gray value of the

noisy pixels keeping those of the noise-free pixels un-

altered as far as possible. In this context the correct

processing ratio CPR is de�ned as [43]

CPR=
1

N
�r�c{IB(r; c) + IC(r; c)}; (39)

where N is the total number of pixels in the image,

and IB(r; c) and IC(r; c) are de�ned as

IB(r; c)

=

{

1 if g(r; c)=f(r; c) and g̃(r; c)= g(r; c);

0 otherwise

(40)

and

IC(r; c)

=

{

1 if g(r; c) 6=f(r; c) and g̃(r; c) 6= g(r; c);

0 otherwise;

(41)

where f(r; c), g(r; c) and g̃(r; c) are, respectively,

the ideal noise-free, noisy and the smooth image. A

good edge-preserving smoothing algorithm should

have CPR value very close to unity. Accordingly, we

have given scores to the methods. From the Table 5

it is evident that our proposed method has the second

highest ranking in terms of its overall score.

5. Modi�cation of the proposed scheme considering

noise statistics: MMS-2

As mentioned earlier that the noise grains are ex-

pected to predominate in the lower range of scale.

With such view we have assigned progressively lower

weightages to the feature images of low scale. How-

ever, though it is agreed upon by many researchers

(e.g., [3,38]) that random unstructured noise domi-

nate at the lower scale, the way we assign weightages

to the feature images during reconstruction is purely

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 6 (a) Original noisy image; (b) result of proposed multiscale

morphological noise removal �ltering (MMS-1); (c) result of

proposed multiscale morphological noise removal �ltering using

noise statistics (MMS-2). (1) Exponential noise; (2) Gaussian

noise; (3) Poisson noise; (4) Rayleigh noise; (5) shot noise;

(6) uniform noise; (7) speckle noise.

ad hoc in nature. On the other hand, estimating the

weights through optimization of goodness criterion as
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Table 6

Signal-to-noise ratio (SNR) for MMS-1 and MMS-2a

Noise type Input SNR Signal-to-noise ratio and scores

MMS-1 MMS-2

SNR Score SNR Score

Exp 60.695696 107.092369 2 106.637728 1

Gus 110.967612 521.394035 1 526.863226 2

Pos 6.323838 12.321112 2 12.008656 1

Ral 25.231925 30.637288 1 30.986411 2

Sht 2.597885 5.025113 1 5.242757 2

Uni 35.734041 249.829078 1 258.817539 2

Spk 17.507818 101.459861 1 106.344694 2

Total 9 12

aNoise type: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise,

Sht: shot noise, Uni: uniform noise, Spk: speckle noise. MMS-1: multiscale morphological smoothing,

MMS-2: multiscale morphological smoothing using noise statistics.

suggested in Eq. (22) incurs a huge computational cost

for each image. A compromise between these two ap-

proaches might be assigning weightage depending on

the amount of noise present at a scale. Since we have

no a priori knowledge of noise statistics at individual

scale, we suggest an empirical formula for computing

weightages for bright and dark feature images at scale

i, respectively, as

koi =
�oi

�ni=0�
o
i

; (42)

kci =
�ci

�ni=0�
c
i

; (43)

where

�oi =
(image size)(size of iB)

∑

r

∑

c F
o
iB(r; c)

; (44)

�ci =
(image size)(size of iB)

∑

r

∑

c F
c
iB(r; c)

(45)

for i=1; 2; 3; : : : ; n. However, if the denominators of

Eqs. (44) and (45) are zero, we assign zero value

to koi and k
c
i . Finally, smooth image is reconstructed

using Eq. (16). Let us call this scheme MMS-2 and

the previous one MMS-1.

We have reconstructed new sets of results following

this method and compared these with that of MMS-1

obtained previously. The images resulting after

executing MMS-2 on the same set of input noisy im-

ages are shown in Fig. 6.

5.1. Comparison between MMS-1 and MMS-2

Qualitative comparison by human observer reveals

that the performance of MMS-1 and MMS-2 are

almost same. Apart from visual judgment we have

compared the SNR, DMB and CPR values of the

images resulting from MMS-1 and MMS-2 for each

type of noise. The same convention of ranking a

method is followed. The measures are summarized in

Tables 6–8 as follows.

Table 6 shows the SNR values of the images result-

ing from MMS-1 and MMS-2 along with the ranks.

The SNR values in most cases are found to improve

when noise statistics is considered. Table 7 shows the

DMB values of the images resulting from MMS-1 and

MMS-2 along with the ranks. From the table it is evi-

dent that the performances of MMS-1 and MMS-2 in

terms of deviation in mean business value are almost

same. However, very precisely speaking the overall

performance of MMS-1 is slightly better. Again as be-

fore, we have computed the CPR values of the images

resulting from MMS-1 and MMS-2 and compared

them assigning ranks. Table 8 shows the CPR val-

ues of the images resulting from MMS-1 and MMS-2

along with the scores. The overall correct processing

of MMS-2 is found to be slightly better than that of

MMS-1.
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Table 7

Deviation in mean busyness values (DMB) for MMS-1 and MMS-2a

Type of noise Deviation in mean busyness value and score of the scheme

NI MMS-1 MMS-2

DMB DMB Score DMB Score

Exp 10.921769 1.776302 2 1.760339 1

Gus 14.009873 2.513388 2 2.580885 1

Pos 3.561615 0.076848 2 0.079354 1

Ral 12.423284 1.810181 2 1.898009 1

Sht 56.100977 −0:485336 2 −0:600246 1

Uni 26.590066 3.531104 1 3.470512 2

Spk 31.357986 5.062269 2 5.118432 1

Total 13 8

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh

noise, Sht: shot noise, Uni: uniform noise, Spk: speckle noise. NI: Noisy image, MMS-1: multiscale

morphological smoothing, MMS-2: multiscale morphological smoothing using noise statistics.

Table 8

Correct processing ratio value (CPR) for MMS-1 and MMS-2a

Type of Correct processing ratio value and

noise score of the scheme

MMS-1 MMS-2

CPR Score CPR Score

Exp 0.894104 1 0.894684 2

Gus 0.922318 2 0.921860 1

Pos 0.550140 2 0.549713 1

Ral 0.962555 2 0.961853 1

Sht 0.509003 1 0.509415 2

Uni 0.964340 1 0.964981 2

Spk 0.950699 1 0.950806 2

Total 10 11

aType of noise: Exp: exponential noise, Gus: Gaussian noise,

Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:

uniform noise, Spk: speckle noise. MMS-1: multiscale morpho-

logical smoothing, MMS-2: multiscale morphological smooth-

ing using noise statistics.

6. Conclusion

In this paper we present a method for edge preserv-

ing smoothing of gray-scale images using multiscale

morphology. The method is based on manipulat-

ing the intensity of scale-speci�c features present

in the noisy image. The proposed scheme has been

illustrated in one dimension. Then it has been imple-

mented using morphological towers to smooth noise

in 2-D images. The algorithm has been tested on sam-

ple images corrupted with various kinds of noise. The

results have been compared with those of other stan-

dard methods. A comparative study of performance of

various methods have been carried out through some

standard performance measures, like signal-to-noise

ratio, deviation in mean busyness and correct pro-

cessing ratio. It is found that the performance of the

proposed method is satisfactory and in some cases

superior to other methods referred in this paper. The

proposed method is then modi�ed considering the

noise statistics.
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