


274 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

space complexities. The space complexity of the problem has recently been improved

to O(n) [14]. The preprocessing time of that algorithm is O(n log n), but the query

time is O(n0:695). In the same paper, it is shown that if the query line passes through a

speci�ed point, that information can be used to construct a data structure in O(n log n)

time and space, so that the nearest neighbor query can be answered in O(log2 n) time.

In this paper, we address a natural generalization of the above problem where the

objective is to report k nearest neighbors of a query line in the same environment. We

use geometric duality for solving this problem. Our algorithm is based on maintaining

the levels of the arrangement [8] of the duals of the points in P. The preprocessing time

and space required for creating the necessary data structure are O(n2) and O(n2= log n),

respectively; the query time complexity is O(k+log n), where k is an input at the query

time. The same data structure can be used to report k farthest neighbors of a query

line with same time complexity.

We have considered the following three constrained cases where k is known at

the time of preprocessing. For all these cases the time and space complexities for

preprocessing can be reduced signi�cantly, but the query times remain same.

(i) If k¿ log n then for the k nearest neighbors problem, the size of the data structure

can further be reduced to O(n2=k) keeping the preprocessing and query time

complexities unchanged.

(ii) In particular, when the query line is known to pass through a �xed point q,

we use a randomized technique to construct a data structure of size O(kn) in

O(kn+min(n log2 n; kn log n)) expected time, which answers k nearest neighbors

of such a query line in O(k+log n) time. Thus, for the nearest neighbor problem

(i.e., k =1), our algorithm is superior with respect to both space required and

query time in comparison to the algorithm proposed in [14]. The preprocessing

time complexity remains same as that of [14].

(iii) For the k farthest neighbors problem, the preprocessing time and space complex-

ities can be reduced to O(kn+n log n) and O(kn) respectively, and the query can

be answered in O(k + log n) time.

2. Applications

Apart from being a variation of the proximity problems in computational geometry,

the problem of �nding k nearest=farthest neighbors is observed to be important in

di�erent applications as mentioned below.

• Consider that the points are distributed on the 
oor, and each point is attached with
a pattern characteristics (a quantitative measure). In pattern classi�cation and data

clustering [14], the query line is considered as a partition line between two classes

of patterns. Here, k nearest neighbors of the query line are considered, and the sum

of squares of the pattern characteristics for between and within the partitions are

analyzed to give an idea about the stability of classi�cation.

• Another application of k nearest neighbors problem is the linear facility testing.

Suppose we need to install a linear facility, e.g., pipeline, conveyor belt for plant

layout, corridor for light-rail commuter system, etc., with a speci�ed capacity k.



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 275

Here the problem is to �nd the sum of distances of k nearest neighbors of a query

line from itself; the query line indicates the linear facility.

• The k farthest neighbors query has wide spread applications in Statistics, where
the objective is to remove the farthest k elements from the query line. These are

considered as outliers in the data set.

3. Geometric preliminaries

First we mention that we need to maintain an array with the points in P, sorted

with respect to their x-coordinates. This requires O(n) space and can be constructed in

O(n log n) time. If the query line is vertical, we �nd the position of its x coordinate

by performing a binary search in the array P. To �nd its k nearest neighbors, a pair of

scans (towards left and right) are required in addition. So, the query time complexity

is O(k + log n). It is easy to understand that k farthest neighbors of a vertical query

line can be obtained in O(k) time by scanning the array P from its left and right ends.

We now consider the case where the query line is non-vertical. We use geometric

duality for solving these problems. Here, (i) a point p=(a; b) of the primal plane

is mapped to the line p′: y= ax − b in the dual plane, and (ii) a non-vertical line
l: y=mx− c of the primal plane is mapped to the point l′=(m; c) in the dual plane.
The incidence and order relationships between a point p and a line l in the primal

plane remain preserved among their duals in the dual plane [12].

Let H be the set of dual lines corresponding to the points in P. Let A(H) denote

the arrangement of the set of lines H . The number of vertices, edges and faces in

A(H) are all O(n2) [8]. Given a query line l, the problem of �nding its nearest and

farthest point can be solved as follows:

Nearest-neighbor algorithm: Use the point location algorithm of [9] to locate the

cell of A(H) containing l′ (the dual of the line l) in O(log n) time. As the cells of

the arrangement A(H) are split into trapezoids, the lines p′
i and p

′
j lying vertically

above and below l′, can be found in constant time. The distance of a point p and the

line l in the primal plane can be obtained from the dual plane as follows:

• Draw a vertical line from the point l′ which meets the line p′ at a point �(l′; p′)

in the dual plane. The perpendicular distance of the point p and the line l in

the primal plane is equal to d(l; �(l′; p′))=
√

1 + (x(l′))2, where d(·; ·) denotes the
distance between two points, and x(l′) is the x-coordinate of the point l′.

Thus, the point nearest to l in the primal plane will be any one of pi or pj de-

pending on whether d(l′; �(l′; p′
i))¡ or ¿d(l′; �(l′; p′

j)). The preprocessing time and

space required for creating and storing A(H) are both O(n2) [9]. From now onwards,

d(l′; �(l′; p′)) will be referred as the vertical distance of the line p′ from the point l′.

Farthest-neighbor algorithm: We construct the lower and upper envelopes of the

lines in H , and store their vertices in two di�erent arrays, say A1 and A2. This requires

O(n log n) time [11]. Now, given the line l, or equivalently the dual point l′, we draw

a vertical line at x(l′) which hits the edges ea∈A1 and eb∈A2. Edges ea and eb can
be located in O(log n) time. If ea and eb are, respectively, portions of p

′
i and p

′
j, then

the farthest neighbor of l is either pi or pj which can be identi�ed easily. Thus for



276 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

level-0(λ0)

level-1(λ1)

level-2(λ2) level-3(λ3)

Fig. 1. Demonstration of levels in an arrangement of lines.

the farthest neighbor problem, the preprocessing time and space required are O(n log n)

and O(n), respectively, and the query can be answered in O(log n) time.

We follow almost the same approach for locating k nearest=farthest neighbors of

a query line. The data structure used in our algorithm stores di�erent levels of the

arrangement A(H), as stated below.

De�nition 1 (Edelsbrunner [8]). A point � in the dual plane is at level � (06�6n)

if there are exactly � lines in H that lie strictly below �. The �-level of A(H) is the

closure of a set of points on the lines of H whose levels are exactly � in A(H), and

is denoted as ��.

Clearly, the edges of �� form a monotone polychain from x=−∞ to x=∞. Each
vertex of the arrangement A(H) appears in two consecutive levels, and each edge

of A(H) appears in exactly one level. In Fig. 1, a demonstration of levels in an

arrangement A(H) is shown. The thick chain represents �1. Among the vertices of

�1, those marked with empty circles appear in �0, and those marked with black circles

appear in �2.

4. Algorithm

In order to make the presentation clear to the reader, we �rst describe a preprocessing

strategy which can be performed in O(n2) time and using O(n2) space, and it reports

k nearest=farthest neighbors of a query line in O(k + log n) time. Next, we modify

our data structure to achieve O(n2= log n) space bound; the preprocessing and query

algorithms are also modi�ed accordingly but the time complexities remain unchanged.

4.1. Data structure

We create a balanced binary search tree T , called the primary structure, whose

nodes correspond to the levels {� | �=1; : : : ; n} of the arrangement A(H). Each node,
representing a level �, is attached with a secondary structure, which is a linear array



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 277

level-θ

level-θl � � �
:|V

e
l |=0

� � �
:|V

e
l |=1

� � �
:|V

e
l |>1

Fig. 2. Augmentation of secondary structure.

containing the vertices and edges of �� in a left to right order. From now onwards,

the secondary structure of a node containing level � will be referred as ��.

To facilitate our search process, we follow a technique similar to fractional cascading

[5] for augmenting the secondary structures of all the non-leaf nodes in T as described

below.

Consider an edge e∈��. Let �l be the level attached to the left child of the level � in
T . Let V el be the set of vertices of ��l whose projections on the x-axis are completely

covered by the projection of e on the x-axis. If |V el |¿1 then we leave the leftmost
vertex of V el and vertically project the next vertex on e, and do the same for every

alternate vertices of V el as shown in Fig. 2. All these projections create new vertices at

level �. We consider all the edges of ��, and for each edge e∈��, we select a subset
of vertices of ��l whose projections on e create new vertices at level �. Similarly, a

selected subset of vertices of �� r (the right child of �) will also contribute new vertices

at level �. Now we have the following lemma.

Lemma 1. After the augmentation step

(i) the projection of an edge of �� on the x-axis can overlap on the projections of

at most two edges of ��l and at most two edges of �� r on the x-axis.

(ii) If the projection of an edge e∈�� on x-axis overlaps on that of two edges of
��l , they share a common vertex of ��l . The same result holds for �� r also.

(iii) The number of edges at level � is increased to at most |E�| + |E�l | + |E� r |=2,
where E� is the set of edges in ��.

Proof. (i) Consider the projections of a selected subset of vertices of ��l on the edges

at level �. For each edge e∈��, the following three situations may arise.
|V el |=0, i.e., the edge e is completely covered by an edge at level �l (Fig. 2(a)).
|V el |=1, i.e., the edge e overlaps on exactly two edges at level �l (Fig. 2(b)).
|V el |¿1. In this case the truth of the lemma follows as we have projected every

alternate vertex of V el on e (Fig. 2(c)), and edge e is split into parts after the aug-

mentation.

The same result follows for the projections of the vertices of ��r on the edges

of ��.

(ii) Follows from part (i) of this lemma.

(iii) Follows from the fact that at most half of the vertices of each of ��l and ��r
are projected on the polychain at level �.



278 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

From the original secondary structures of all nodes in T , we create new secondary

structures as follows:

• The secondary structures for all the nodes appearing at the leaf level of T will remain
unchanged. We propagate a selected subset of vertices appearing in the secondary

structure of each leaf node to that of its parent as stated above, and mark the leaf

nodes as processed.

• We select a non-leaf node which is not yet processed but both of its successors
have already been processed, and construct a linear array with the enhanced set of

vertices and edges formed by the original vertices that are present in its existing

secondary structure, and the vertices contributed by its both left and right children

due to their projections. The members in the array are ordered from left to right.

This new array will now serve the role of the secondary structure. We mark the

node as processed. If the node is not the root, we propagate a selected subset of its

vertices (after augmentation) to its parent.

• This method of propagation of vertices is continued in a bottom-up manner until
the root of T is processed.

Lemma 1 remains valid for all the edges appearing in the new secondary structure of

all non-leaf nodes. The augmented structure will be referred as A
∗(H). Its primary

structure T remains the same; from now onwards, �� will denote the modi�ed secondary

structure of node �.

Lemma 2. The total number of vertices in the secondary structures of all the levels

of A∗(H) is O(n2).

Proof. All the vertices of A(H) contribute to A
∗(H). We now show that the num-

ber of vertices created in the secondary structures of all the nodes in T due to the

augmentation remains O(n2). Here we use the term layer to denote the di�erent depth

levels of the tree T . For the sake of notational simplicity, let h=(dlog ne). The tree
T has h layers, layer-1 corresponds to the root of T and the layer indices increase as

we proceed towards the leaves of T .

Let ni and n
∗
i denote the number of vertices present in the secondary structures of

all the nodes in the ith layer of the tree T before and after the augmentation process,

respectively. Since the secondary structures of the leaf nodes of T are not augmented,

n∗h = nh. At most nh=2 nodes are propagated to the secondary structures of the nodes

appearing in the (h−1)th layer of T . So, n∗h−1= nh−1+nh=2= nh−1+n
∗
h =2. Proceeding

in a similar manner, n∗i = ni + n
∗
i+1=2. Thus, the total number of vertices in A

∗(H)

is
∑h

i=1 n
∗
i = nh + (nh−1 + nh=2) + (nh−2 + nh−1=2 + nh=4) + · · · + (n1 + n2=2 + n3=

4 + · · ·+ nh=2
h−1)62

∑h
i=1 ni=O(n

2).

Each edge in the secondary structure of a non-leaf node is attached with two pointers,

namely �1 and �2. Let � be a non-leaf node, and �l and �r be its left and right children,

respectively. By Lemma 1, the projection of an edge e∈�� overlaps on that of at most
two edges of both ��l and �� r . If e overlaps on one edge, say e

∗∈��l then the �1
pointer of edge e, points to e∗ . If e overlaps on two edges, say e∗; e∗∗∈��l then �1
pointer of edge e points to the vertex common to e∗ and e∗∗. The pointer �2 of edge



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 279

e is set to point an edge or a vertex common to two adjacent edges of �� r in a similar

manner.

4.2. Sketch of the query algorithms

Given a query line l, we compute its dual point l′. Next, we identify a pair of

adjacent levels of A∗(H) and their corresponding edges which appear vertically above

and below l′, using the procedure described below.

De�nition 2. Let e be an edge in A
∗(H) and � be an arbitrary point in the dual

plane. The coordinates of the left and right end points of e be (xle ; y
l
e) and (x

r
e ; y

r
e),

respectively, and the coordinates of the point � be (x�; y�). The edge e is said to span

horizontally on the point � if the projection of the edge e on the x-axis contains the

projection of the point � on x-axis, i.e., xle6x�6x
r
e.

We start from the root of T . Let �root be the level (of A
∗(H)) attached to it. We use

binary search to locate the edge e∈�� root which spans horizontally on l
′. If l′ is below e

we proceed towards the left child (�l) of �root in T ; otherwise, we proceed towards the

right child (�r). If search proceeds towards �l, we can �nd the edge e
∗∈��l spanning

horizontally on l′ in O(1) time using the pointer �1 attached to the edge e. Similarly,

we use the pointer �2 for the same purpose if search proceeds towards �r . Proceeding

in a similarly manner, we can identify a level � in the leaf layer of T , and an edge

in its secondary structure �� which is just above or below l
′. The other edge de�ning

the cell can easily be identi�ed from ��−1 or ��+1. This step requires O(log n) time.

We shall refer this traversal in T as forward traversal.

4.2.1. Reporting of k nearest neighbors

Let ea∈�� and eb∈��−1 be the two edges which are vertically above and below l
′,

respectively, in the cell (of A∗(H)) containing l′. We compute the vertical distances

of ea and eb from l′, and report the nearest one. If ea is closer to l
′ than eb, we need

to reach an edge of ��+1 whose horizontal span contains l
′. On the other hand, if eb

is closer to l′ than ea, we need to reach such an edge of ��−2.

In order to reach an appropriate edge in the inorder predecessor or successor of a

node during the reporting, we maintain two stacks S1 and S2. They contain the edges

(along with the level-id) of A∗(H) through which the search proceeded from the root

to level �−1 and �, respectively. Initially, these two stacks are prepared during forward
traversal. At the time of reporting, these stacks will dynamically change as described

in the proof of following lemma.

Lemma 3. After locating a pair of edges in two consecutive levels of A
∗(H), say

�− 1 and �, whose horizontal spans contain l′, the edges in k levels vertically below
�− 1 (vertically above �) can be reported in O(k + log n) time.

Proof. Without loss of generality, we consider the method of visiting of the edges in

k consecutive levels above the level � whose horizontal span contains l′.



280 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

If the level �+ 1, which is the inorder successor of level � in T , is

(i) in its right subtree, then we traverse all the levels that appear along the path

from � to � + 1 in T . In each move, we use pointers �1 and �2 to reach an

edge in the next layer whose horizontal span contains l′ in constant time. We

need to store all these edges in the S2 stack for backtracking, if necessary.

(ii) in some predecessor layer, then we may need to backtrack along the path through

which we reached from � + 1 to � during forward traversal. This can be done

by popping elements from S2 stack until we get an edge of level �+ 1. Let the

number of elements popped be �.

Note that, after visiting level �+1, if it needs to proceed to the level �+2, we again

have to move forward � layers towards leaf. During this forward traversal, the edges

on that path will be pushed in the S2 stack. But such a forward movement may again

be required after visiting all the levels in the right subtree rooted at level �+ 1. Thus

apart from reporting, this extra traversal in T may be required at most twice, and the

length of the path may be at most O(log n). This implies that, each of the k nearest

lines of l′ can be reported in amortized O(1) time.

In order to visit the edges in k consecutive levels below � − 1, whose horizontal
span contains l′, we need to use the stack S1 in the same manner.

Thus Lemmas 2 and 3 lead to the following result stating the time and space com-

plexities of our algorithm.

Theorem 1. Given a set of points on a plane, they can be preprocessed in O(n2) time

and space such that the problem of reporting k nearest neighbors of a given query

line can be solved O(k + log n) time.

4.2.2. Reporting of k farthest neighbors

In the farthest neighbor problem, we �nd two edges ea∈�1 and eb∈�n, whose hori-
zontal span contains l′, by traversing the tree T from its root to the leaves containing

levels 1 and n. The farthest neighbor of l′ is either the line containing ea or the line

containing eb as mentioned in Section 3. In order to get the next farthest neighbor, the

search progresses in T to the inorder successor of level 1 or the inorder predecessor

of level n depending on which one is reported currently. The process continues until

k lines are reported. Here also we need to maintain two stacks S1 and S2, whose role

is same as that of the earlier problem. In each level, the desired edge can be located

in amortized constant time using these stacks.

Theorem 2. Given a set of points on a plane, they can be preprocessed in O(n2) time

and space such that the problem of reporting k farthest neighbors for a given query

line can be solved in O(k + log n) time.

In this connection it needs to mention that, an alternative method for �nding the k-

nearest neighbors of a query line can be devised using the (1=n)-cutting tree in the

dual plane [2,13] keeping the preprocessing time and space complexities O(n2) and the



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 281

Fig. 3. Demonstration of Lemma 4.

query time complexity O(k + log n). But this method cannot solve the other problems

addressed in this paper.

We now discuss some modi�cation of our existing data structure to achieve better

space complexity.

4.3. Further re�nement

The following result helps in reducing the space complexity of the preprocessed data

structure keeping the preprocessing and query time complexities invariant.

Lemma 4 (Pach and Agarwal [16, Lemma 11.4]). Let �1; �2; : : : ; �u be disjoint col-

lections of levels in an arrangement of n lines. If each �i contains at least v levels,

then we can pick a level �i∈�i ; 16i6u, such that
∑u

i=1 |E�i |6n
2=v. Here E� denotes

the set of edges at level �.

We now describe a method of reporting m nearest=farthest neighbors of a query line.

In order to answer the queries in di�erent cases (as mentioned in Section 1), we have

to choose the value of m appropriately.

Consider dn=me disjoint sets of levels, namely �1; �2; : : : ; �dn=me; �i is a collection of

m consecutive levels {(i−1)m+1; (i−1)m+2; : : : ; im} for i=1; : : : ; bn=mc, and �dn=me

consists of a set of (n−m∗bn=mc) consecutive levels {mbn=mc+1; mbn=mc+2; : : : ; n}.
The partitioning of levels is demonstrated in Fig. 3. We choose levels {�i ; i=1; : : : ;
dn=me}, where �i∈�i and |��i |= minj∈�i |�j|, and construct the data structure as de-
scribed below.

4.3.1. Data structure

Our primary structure is a height balanced tree T whose nodes correspond to the

levels {�i ; i=1; : : : ; dn=me}. The secondary structure attached with level �i is an array
containing the vertices and edges on the polychain ��i . The augmentation step remains

same as described in Section 4.1. The role of the two pointers �1 and �2, attached



282 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

with each edge of the augmented structure, remain same as mentioned earlier. The

modi�ed data structure will be referred as B∗.

Lemma 5. The total number of vertices generated in all the levels ��1 ; ��2 ; : : : ; ��dn=me
after the augmentation step is O(n2=m) in the worst case.

Proof. See Lemma 4 and the proof of Lemma 2.

Consider a vertex v∈��i , and draw a vertical line � from vertex v upwards till it

hits the polychain ��i+1 . Let Q(v) be the set of lines of H that are intersected by

�. As we are not storing all the levels, we need to maintain Q(v) with each vertex

v∈B
∗. This will facilitate the query answering. Note that, 06|Q(v)|62m (|Q(v)|=0

is attained if �i is the highest level in �i, and �i+1 is the lowest level in �i+1;

similarly, |Q(v)|=2m is attained if �i is the lowest level in �i and �i+1 is the highest
level in �i+1). Thus, the total space required for storing Q(·) for all the vertices of
B

∗ may be O(n2) in the worst case (see Lemma 5). In order to reduce the space

complexity, we store Q(·) with a selected subset of vertices in each level of B∗. Let

V�i = {v0; v1; : : :} be the set of vertices of ��i after the augmentation step. We split V�i
into two subsets V 1�i = {v0; vm; v2m; v3m; : : :} and V

2
�i
=V�i − V

1
�i
. The number of vertices

in V 1�i is O(bn=mc). Each of the vertices in the subset V
1
�i
is attached with the list Q(·).

While answering a query, if Q(·) is required for a vertex vj∈V
2
�i
, it will be computed

online from that of its nearest vertex in V 1�i (i.e., the vertex vmb j=mc). For this purpose,

we attach two scalar information with each vertex vj∈V
2
�i
: (i) a pointer � which points

to the vertex vmb j=mc(∈V
1
�i
), and (ii) an integer 	 containing either �i − 1 or �i +1 in

which vj appears in addition to level �i in A(H). If the vertex is created due to the

augmentation, it cannot appear in two levels of A(H); so the 	 �eld attached to that

vertex contains 0.

Each edge e∈B
∗ is attached with the identi�er of the line (line-id) contributing that

edge. If e is a part of the line p′
i (dual of the point pi), its line-id is i.

In addition to the data structure B∗, we need to maintain an array L of size n which

contains all the lines in H . Its elements are ordered arbitrarily. Each element contains

(i) a pointer �eld and (ii) a mark bit. The pointer �eld is used to point the corre-

sponding element in a temporary list TEMP which is used during the preprocessing,

and will be de�ned in the next subsection. The mark bit is used for query answering.

Lemma 6. The space required for storing the additional information attached with

all the vertices and edges in B
∗ is O(n2=m) in the worst case.

Proof. |V 1�i |= d|V�i |=me6|V�i |=m + 1. The total number of vertices with which Q(·) is

attached, is
∑dn=me

i=1 (|V�i |=m + 1)= n
2=m2 + n=m in the worst case (by Lemma 5). The

lemma follows from the fact that the size of Q(·) for each of these vertices is less than
2m. It needs to mention that the total extra space consumed for the set of vertices in

{V 2�i ; i=1; : : : ; dn=me} and for all edges in B
∗ is O(n2=m) in the worst case.



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 283

4.3.2. Preprocessing

We construct the aforesaid data structure in three major steps:

Step A1: Using topological line sweep [1], we can construct the levels of the ar-

rangement in O(n2) time. By observing the number of vertices in each level, we can

identify {�1; �2; : : : ; �dn=me}. Note that, we don’t need to store the levels explicitly in
this step, so O(n) space is enough.

Step A2: Again, we perform topological line sweep [1] to explicitly identify the

vertices and edges on the polychains {�0; ��1 ; ��2 ; : : : ; ��dn=me ; �n}; here �0 and �n rep-
resent the lower and upper envelopes of H , respectively. With each edge, its line-id

is attached. We then augment the data structure as described in Section 4.1 to get the

desired structure B∗. Next, we consider each level �i, and identify two sets of vertices

V 1�i and V
2
�i
. The pointers attached to the vertices in V 2�i are appropriately set. The entire

step can be completed in O(n2) time.

Step A3: In the last step, we process each pair of consecutive levels (�i ; �i+1) for

i=0; 1; : : : ; dn=me, and prepare list Q(v) for each vertex v∈V 1�i . The processing of this
step is done using the following substeps.

Step A3.1: [Initialization step]

The pointers attached with all the members in the array L are initialized to NULL.

Create a new list by merging the vertices of the polychains ��i and ��i+1 in increasing

order of their x-coordinates.

Consider a vertical line segment � at the leftmost vertex of the new list between the

polychains ��i and ��i+1 , and create a temporary list TEMP with the lines in array L

that intersect �. The pointer �eld attached with each element in the array L is set with

the address of the corresponding element in the list TEMP.

Step A3.2: We process the vertices of the list created in Step A3.1 by sweeping

the vertical line segment � towards right. During the sweep, the two end points of �

will always touch ��i and ��i+1 , and TEMP contains the lines of L that intersects �.

For a vertex v∈A(H), let lbelow and labove be the line-ids of two edges which are

incident to v from left as shown in Fig. 4. Now, the following four situations need to

be considered.

(a) If v appears in levels �i and �i − 1 (see Fig. 4(a)), no change in the list TEMP
is required.

(b) If v appears in levels �i and �i + 1 (see Fig. 4(b)), then after processing vi, the

line labove leaves �, and lbelow appears on �. We use line-ids attached to lbelow
and labove to reach the corresponding elements of array L. The pointers attached

to these two lines help in accessing them in the list TEMP. TEMP is updated by

deleting labove and adding lbelow. Finally, the pointers attached to lbelow and labove
in the array L are updated accordingly. This step requires O(1) time.

(c) If v appears in levels �i+1 and �i+1 − 1 (see Fig. 4(c)), lbelow goes out and labove
enters in the list TEMP. Here also, the necessary updates can be done in O(1)

time.

(d) If v appears in levels �i+1 and �i+1 + 1 (see Fig. 4(d)) no change in TEMP is

required.

Step A3.3: If v∈V 1�i , a copy of the list TEMP is attached with the vertex v as Q(v).



284 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

 � � �
 �

 � � 	
 � � �

 � 
 	
 �

 � � �
 �

 � � � 
 	 � � �
 � � � � � 	

� � 
 � � �� 
 � � � �� � 
 � � �� 
 � � � � � � 
 � � �� 
 � � � �� � 
 � � �� 
 � � � �
��

��
� � � � � �

� � �� � �

θ� � �
θ �

θ� � 	
θ� � �

θ� 
 	
θ�

θ� � �
θ�

θ� � � 
 	θ� � �
θ�θ� � � � 	

� � 
 � � �� 
 � � � �� � 
 � � �� 
 � � � � � � 
 � � �� 
 � � � �� � 
 � � �� 
 � � � �
��

��
� � � � � �

� � �� � �
Fig. 4. Updating of TEMP list.

Lemma 7. The preprocessing step requires O(n2) time in the worst case.

Proof. Steps Al and A2 require O(n2) time. The total time complexity of Step A3 for

all pairs of levels {(�i ; �i+1); i=1; : : : ; dn=me} is calculated as follows:
(i) the initialization process (Step A3.1) requires O(n2) time in total;

(ii) O(n2=m) vertices are considered in total (Lemma 6) in Step A3.2, and processing

each vertex needs O(1) time, and

(iii) Step A3.3 needs to be executed for O(n2=m2) vertices in total. For each of the

vertices, we need to create Q(·) by copying the list TEMP in it. As the number
of lines in TEMP at any instant of time can never exceed 2m, Step A3.3 takes

O(n2=m) time during the whole execution.

4.3.3. Query

Given a query line l, we compute its dual point l′, and locate the edges of B∗ which

are just above and below l′ using the same technique as described in Section 4.2. Let

l′ lies in the region bounded by the polychains ��i+1 and ��i . We draw a vertical line

segment �∗ from l′ upwards till it hits the polychain at level min(�i+3; n), and another

line �∗∗ from l′ downwards till it hits the polychain at level max(1; �i−2). Here also,

we need to create an array A which contains the lines of H that are intersected by �∗

and �∗∗. The m nearest lines of l′ are obtained by searching the members of A with

respect to their vertical distances from l′.

Lemma 8. m6|A|68m.



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 285

Proof. Consider the two extreme situations: (i) �i+1 is the maximum level in �i+1
and �i+3 is the minimum level in �i+3 and (ii) �i+1 is the minimum level in �i+1 and

�i+3 is the maximum level in �i+3. The number of lines hitting �
∗ between ��i+1 and

��i+3 in case (i) is at least m and that in case (ii) is at most 3m. Same result holds for

the set of lines intersected by �∗∗ between the levels �i and �i−2. The total number

of lines hitting �∗ and �∗∗ between ��i and ��i+1 may be atmost 2m. Hence the result

follows.

We consider six pseudo vertices {wj ; j=1; 2; : : : ; i + 3}, where wj is the point of
intersection of the polychains ��j with the vertical line drawn at l

′, i.e., with either

of �∗ and �∗∗. Lemma 8 indicates that, in order to �nd k nearest neighbors of l′, we

need to consider Q(wi−2); Q(wi−1); Q(wi); Q(wi+1) and Q(wi+2).

Lemma 9. Q(wj) can be constructed in O(m) time.

Proof. Let v∈��j is closest and to the left of wj. If v∈V
1
�j
then Q(wj)=Q(v). If v∈V

2
�j

then we choose a vertex v∗∈V 1�j which is closest and to the left of v. v
∗ can be reached

from v using the pointer � attached to v. We initialize Q(wj) by Q(v
∗) and process

the vertices of ��j and ��j+1 starting from vertex v∗ towards right until v is reached.

While processing each vertex we use Step A3.2 (see Section 4.3.2) to update Q(wj).

The result follows from the fact that the number of vertices to be processed between

v∗ and v is at most m, and processing each vertex requires O(1) time.

The major steps in the query algorithm are listed below.

Step Bl: Locate the edges of B∗ which are just above and below the point l′ (dual

of the query line l) as described in Section 4.2.

Step B2: Use the method described in Section 4.2.1 (using �1 and �2 pointers

attached with the edges of B
∗) to obtain the points wj∈��j for j= i − 2; i − 1; i;

i + 1; i + 2; i + 3.

Step B3: Create Q(wi−2); Q(wi−1); Q(wi); Q(wi+1), and Q(wi+2).

Step B4: Create the array A with the members in Q(wi−2)∪Q(wi−1)∪Q(wi)∪
Q(wi+1)∪Q(wi+2). The mark bit of a line is checked prior to its inclusion in A, and
after the inclusion of a line in array A its mark bit is set. This ensures that no line is

included more than once in A.

Step B5: Compute the vertical distances of all the lines in A from the point l′, and

�nd exactly m lines closest to l′ using median �nd algorithm [7] in O(m) time.

Step B6: Next, each element in array A is considered; its line-id is used to access

the same line in the array L in O(1) time. Finally, the mark bit attached to it in the

array L is reset to zero. This step is required for the subsequent query on the same

data structure.

Lemma 10. For a given set of n points we can construct a data structure of size

O(n2=m) in O(n2) time, which can report m-nearest neighbors of a query line l in

O(m+ log n) time in the worst case.



286 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

Proof. The preprocessing time and space complexities follow from Lemmata 6 and 7,

respectively. In the query algorithm, Step Bl requires O(log n) time. As mentioned in

the algorithm, all other steps can be completed in O(m) time.

Theorem 3. If k is not known prior to the preprocessing then for a given set of n

points we can construct a data structure of size O(n2= log n) in O(n2) time, and it can

report k nearest=farthest neighbors of an arbitrary query line in O(k + log n) time.

Proof. We choose m= log n to achieve the space complexity result. In order to report

k nearest neighbors, we need to consider the following two situations:

• If k¡log n, then we need to apply the query algorithm only once; so the query

time complexity follows from Lemma 10.

• If k¿log n, then we need to locate l′ (the dual of line l) in the appropriate cell of
B

∗ only once. In order to report k nearest neighbors, we may need to apply Step

B2–B5 of the query algorithm at most k= log n times. Each application returns at

least log n points in O(log n) time. Hence the query time complexity follows.

5. Constrained query: k is known prior to the preprocessing

5.1. Reporting of k nearest neighbors of a query line

The following theorem states that if k¿ log n, then the space complexity of the k

nearest neighbors problem can be improved further.

Theorem 4. If k is known prior to the preprocessing and k¿log n, then for the given

set of n points we can construct a data structure of size O(n2=k) in O(n2) time, and

it can report k nearest neighbors of an arbitrary query line in O(k + log n) time.

Proof. We choose m= k to achieve the preprocessing time and space complexity re-

sults. Only a single application of the aforesaid query algorithm returns k nearest

neighbors in O(k + log n) time.

5.2. Reporting of k nearest neighbors when query line passes through a �xed point

We show that if the query line l passes through a speci�ed point q, then the

preprocessing time and space complexities may further be reduced. Here, the point

l′ (dual of the line l) will always lie on the line h= q′ (dual of the point q).

We split each line hi∈H into two parts hai and hbi , where h
a
i is the portion

of hi above h, and h
b
i is the portion of hi below h. Let H a={ha1; h

a
2; : : : ; h

a
n} and

H b={hb1; h
b
2; : : : ; h

b
n}. We use A6k(H

a) and A6k(H
b) to denote (6k)-levels above

and below h, respectively.

In [18], the zone theorem for line arrangement [15] is used to show that the com-

plexity of both A6k(H
a) and A6k(H

b) are O(nk). A randomized algorithm is pro-

posed in [18] which computes A6k(H
a) and A6k(H

b) in O(kn+min(n log2 n; kn log n))

expected time.



S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288 287

Next, we compute the augmented data structure A
∗
6k(H

a) and A
∗
6k(H

b) as follows:

start from level k and proceed up to level 1; at each level, select the set of alternate

vertices and project them into its next lower level, and create new vertices at that

level. The polychain (secondary structure) at level � of A∗
6k(H

a) is denoted as �a� and

that of A∗
6k(H

b) is denoted as �b�. We attach a pointer � with each edge e, which

points to the vertex=edge in its next higher level that is contained in the horizontal

span of edge e. The size of the augmented structures will remain O(nk) (see the proof

of Lemma 2).

Given a query line l, its dual point l′ lies on the line h. Its nearest neighbor is

one of the edges e1∈�
a
1 and e2∈�

b
1, and they are obtained using binary search in the

respective arrays. To report the next nearest neighbor, we move to the next level of

either A∗
6k(H

a) or A∗
6k(H

b) using the � pointer attached to e1 or e2. This process is

repeated until k lines are reported.

Theorem 5. If the query line is known to pass through a speci�ed point q, and k is

known in advance, then for a given set of n points we can construct a data structure

of size O(nk) in O(nk + min(n log2 n; kn log n)) expected time, which can report k

nearest neighbors of such a query line in O(k + log n) time.

5.3. Reporting of k farthest neighbors of a query line

In this case, we need to maintain only (i) k levels from bottom starting from level-1

up to the level-k, denoted by A6k , and (ii) k levels at the top starting from level-

(n − k + 1) up to level-n, denoted by A¿(n−k+1), of the arrangement A(H). The

number of edges in the A6k of an arrangement H of n lines in the plane is O(nk)

(see Corollary 5.17 of [17]) and it can be computed in O(nk + n log n) time [10].

After constructing A6k we start augmenting the data structure from level-k and

proceed up to level-1. The process of augmentation, and the role of the pointer attached

to each edge of the augmented data structure are same as that of the earlier problem.

A similar method is followed to augment A¿(n−k+1); it starts from level-(n − k + 1)
and proceed up to level-n.

After augmentation, the size of the data structures will remain O(nk). As mentioned

in Section 3, the farthest neighbor of a point l′ (dual of the query line l) is either an

edge at level-1 or an edge at level-n, and these can be located using binary search.

The remaining k − 1 farthest neighbors are obtained in a similar manner as described
for the previous problem. Thus we have the following theorem:

Theorem 6. If k is known in advance, the given set of n points can be preprocessed

in O(nk + n log n) time and O(nk) space, such that for any arbitrary query line, its

k farthest neighbors can be reported in O(k + log n) time.

6. Conclusion

The problem of �nding k nearest neighbors of a query line among a set of points

distributed arbitrarily on a two-dimensional plane is studied. Our preprocessing scheme



288 S.C. Nandy et al. / Theoretical Computer Science 299 (2003) 273–288

creates a data structure of size O(n2= log n) in O(n2) time, and the query can be

answered in O(k+log n) time, where k may be speci�ed at query time. Some restricted

cases of the problem are also studied when k is known prior to the preprocessing.

The average space complexity of the problem may be improved to O((n=k)2) using

(i) the idea of �-approximation of the labeling of arrangement [3] or (ii) the result in

Theorem 11.6 [17]. But the preprocessing time may be worse than that of ours (see

[4, Theorem 14]).

Acknowledgements

The authors wish to acknowledge the Prof. T. Asano and Mr. T. Harayama for helpful

discussions. The critical comments and suggestions given by the referees helped the

authors to improve the presentation of the paper.

References

[1] P.K. Agarwal, M. de Berg, J. Matousek, O. Schwarzkopf, Constructing levels in arrangements and

higher order Voronoi diagram, SIAM J. Comput. 27 (1998) 654–667.

[2] B. Chazelle, Lower bounds for orthogonal range searching, II: the arithmetic model J. ACM 37 (1990)

439–463.

[3] B. Chazelle, The Descripancy Method: Randomness and Complexity, Cambridge University Press,

Cambridge, 2000.

[4] B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry,

Combinatorica 10 (1990) 229–249.

[5] B. Chazelle, L.J. Guibas, Fractional cascading—II. Applications, Algorithmica 1 (1986) 163–191.

[6] R. Cole, C.K. Yap, Geometric retrieval problems, Proc. 24th IEEE Symp. on Foundation of Computer

Science, 1983, pp. 112–121.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,

1990.

[8] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Berlin, 1987.

[9] H. Edelsbrunner, L.J. Guibas, J. Stol�, Optimal point location in monotone subdivision, SIAM

J. Comput. 15 (1986) 317–340.

[10] H. Everett, J.-M. Robert, M. van Kreveld, An optimal algorithm for the (6 k)-levels, with applications

to separation and transversal problems, Int. J. Comput. Geom. Appl. 6 (1996) 247–261.

[11] J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process. Lett.

33 (1989) 169–174.

[12] D.T. Lee, Y.T. Ching, The power of geometric duality revisited, Inform. Process. Lett. 21 (1985)

117–122.

[13] J. Matou�sek, Range searching with e�cient hierarchical cutting, Discrete Comput. Geom. 10 (1993)

157–182.

[14] P. Mitra, B.B. Chaudhuri, E�ciently computing the closest point to a query line, Pattern Recognition

Lett. 19 (1998) 1027–1035.

[15] K. Mulmuley, Computational Geometry: An Introduction through Randomized Algorithms, Prentice-Hall,

Englewood Cli�s, NJ.

[16] J. Pach, P.K. Agarwal, Combinatorial Geometry, Wiley, Inc., New York, 1995.

[17] M. Sharir, P.K. Agarwal, Davenport-Schinzel Sequence and their Geometric Applications, Cambridge

University Press, Cambridge, 1995.

[18] C.-S. Shin, S.Y. Shin, K.-Y. Chwa, The widest k-dense corridor problems, Inform. Process. Lett. 68

(1998) 25–31.


	1 copy.pdf
	2-16.pdf

