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Afstraci— A fuzzy oeoral netwurk model based on the mul-
tilayer percepirom, using the back-propagation algorithm, and
capable of fucey classificativn of patlerns is described. The imput
veelor consists of membership ¥alues to lngwistic properties while
the oulput vector is defined in terms of fuzzy class membership
values, This allows efficicnt modeling of fuzzy or oneertuin
patterns with appropriate weights being assigned 1o the back-
propugated errors depending upon the membership values at
the corresponding cutpuls, During training, the learning rate 3
gradwally decreased In discrete steps notl the ncbwork converges
to u minfmem eror solution, The cffectiveness of the algorithm
is demonstrated on a speech recngnition problem. The results
ave compared with those of the conventional MLE, the Dayes
clagsifier, and the other retated models.

fudex Terms— Artificial neoral networks; multilayer peorcep-
tron: Fuzzy sels; speech recopnition; linguistic variable: Fazy
clussafleation.

[ INTRODUCTION

ART]I—'ICLAL neural neoworks [1]-[4] are massively paral-
Izl interconmections of simple rearons that funclion as a
eollective system, Tt has been vbserved that many problems
in pattern recognition are solved more easily by humans
than by computers, perhaps becanse of the basic architecturs
and functioning mechanism of their brains. Newral nels are
designed in an attempt to mimic the human bruin in order to
emulate human performancs and thereby Tunetion fntelligenty,
These networks may be heoadly categorized into wo lypes:

+ those that learn by adaptively, updating their conncction
weights during training;

v those whose parameters are time-invariant, ie., whose
weighis are fixed imitally snd no cventual updating oc-
£urs.

In this work we consider a nelwork of the first kind. These
networks can be tained by examples (as is often requircd
in real life) and sometimes generalize well lor unknown lest
cases. The worlhiness of a network lies in its inferencing or
generalizalion capabilitics over such test sets. Connectionist
learning procedurcs are suitable in domains with severdl
graded featurcs that cullectively coniribute w the solution of
a problem, In the process of learning, a nerwork may discover
important underlying regularitics in the task domain.
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An advantage of neural nets [2]. {5], [6] lics in the high
computation rate provided by their massive parallelism, so that
real-time processing of huge data scls becomes feasible with
proper hardware. Information is cncoded among the varions
eonncction weights in a distributed manner.

It may be mentioned that human reasoning is somawhal
fuzzy in mwlure. The wiility of fuzzy sets [7], |8] lies in
Iheic ability 1o modcl the ancertain or ambiguows data so
often cocounteced in real life. Hence, Lo enable a system to
lackle real-life situarions in a manoer more Like humans, onc
may incorporate the conept of fzey sels inta the neural
network. T is to be moled thar alihough fuzzy logic is a
natural mechanism for propagating uncertainty, it may jnvolve
in some Coses an incresse (B the amount of computation
required {compared with 4 system vsing ¢lassical binary 1ogic).
This can be suitably offsel by using fuzzy neural nelwork
models having the potemtial for parllel computation with
high Hexibility, Fuzzy concepls have alrcady been incorporated
inlo neural neks in control problems [9), in modeling cutput
possibility distributions [10], in learning and extrapolaling
complex relationships between ameccdents and consequents
of tules [11], and in fuzzy reasoning [12].

The preseni wark attempts (o build a fuzxy version af the
multilayer perceplron using the gradient-descent-based back-
propagation algorithm [2], [13] by incorporsiimg concepts from
Twewy sets at various stages, Unlike the conventional system,
ihe proposed model is also capable of handling input available
in linguistic form. Besides, conventional two-state neural nel
models generally deal with the ideal condition, where an inpul
feuture s either present or absent and each pallern belongs
to cither onc class or another, They do nol consider cases
where an input fealure may possess a property with 2 COTEYIn
degree of confidenve, or where a patiern may belong to more
than une class with u finite degree of “belongingness.” The
propused model incorporates these comcepts and s capable of
classitication of fuxey patoerns.

Broadly, the network passcs hmugh two phases, viz.,
training and testing, During the Lraining phase supervised
learming is used to assign output membership values lying in
the tange [0, 1] to the training veciars. Hence each ouatput
class (node in the output layer) may be assigned a nonzero
membership instcad of choosing the single class {node) with
the highest activation, This allows medelling of fuzzy dary
when the feature space involves overlapping pattern classes
such thal a pattern poinl may belomg w maore than one clas
with noneern membership.

During training, cach error in membership sssignment is
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fed back and the connection weights of the network are
appropriately updated. The back-propagated error is computed
with respect to each desired output, which is a membership
value denoting the degree of belongingness of the input vector
to that class. Hence the error (which is back-propagated
for weight updating) has inherently more weight in case of
nodes with higher membership values. The contribution of
ambiguous or uncertain vectors to the weight correction is
automatically reduced. This is natural as vectors that are
more typical of their class should have more influence in
determining the position and shape of the decision surface.

The utility of the approach proposed here for the modeling
of output values may be further appreciated by considering a
point lying in a region of overlapping classes in the feature
space. In such cases its membership in each of these classes
may be nearly equal. Then there is no reason why we should
follow the crisp approach of classifying this pattern as be-
longing to the class corresponding to that output neuron with
a slightly higher activation, and thereby neglect the smaller
yet significant response(s) obtained for the other overlapping
class(es).

After a number of cycles the neural net may converge to a
minimum error solution. The network now encodes the input
space information in its connection weights. In the second
phase, a part of the same fuzzy data (kept aside for testing
during random selection of the training set) is applied as
input and the network performance verified at the output. Note
that the output is obtained in terms of fuzzy membership
values to the various pattern classes. A confusion matrix
is generated to evaluate the classification efficiency of the
neural network. Here each test datum contributes a count at
a particular position in this matrix, its row corresponding to
the class to which it belongs (as determined from the hard
labels attached to the input data set) and its column indicating
the class corresponding to the neuronal output providing the
best match.

The proposed fuzzy neural network model is capable of
handling input features presented in quantitative and/or lin-
guistic form. The components of the input vector consist
of the membership values to the overlapping partitions of
linguistic properties low, medium, and high corresponding
to each input feature. This provides scope for incorporating
linguistic information in both the training and the testing
phases of the said model and increases its robustness in
tackling imprecise or uncertain input specifications.

During training, the learning rate and the damping coef-
ficient are gradually decreased until the network hopefully
converges to a minimum error solution. This heuristic helps to
avoid spurious local minima and usually prevents oscillations
of the mean square error in the weight space. In the process
the network undergoes a maximal number of sweeps through
the training set.

The effectiveness of the proposed model is demonstrated
on a speech recognition problem where the classes have
ill-defined, fuzzy boundaries. A comparison is made with
the standard Bayes classifier and the conventional multilayer
perceptron, and the performance of the proposed model is
found to be better.

1I. MULTILAYER PERCEPTRON USING
BACKPROPAGATION OF ERROR

The multilayer perceptron (MLP) [2], [13], [14] consists
of multiple layers of simple, two-state, sigmoid processing
elements (nodes) or neurons that interact using weighted
connections. After a lowermost input layer there are usually
any number of intermediate, or hidden, layers followed by an
output layer at the top. There exist no interconnections within a
layer while all neurons in a layer are fully connected to neurons
in adjacent layers. Weights measure the degree of correlation
between the activity levels of neurons that they connect.

An external input vector is supplied to the network by
clamping it at the nodes in the input layer. For conventional
classification problems, during training, the appropriate output
node is clamped to state 1 while the others are clamped to
state 0. This is the desired output supplied by the teacher.

Consider the network given in Fig. 1. The total input, :c?“,
received by neuron j in layer i + 1 is defined as

ot = Cabwl -0,
?

@

where y is the state of the ith neuron in the preceding hth
layer, w;‘i is the weight of the connection from the ith neuron
in layer h to the jth neuron in layer h +1, and 0;-”'1 is the
threshold of the jth neuron in layer A+1. Threshold 9?“ may
be climinated by giving the unit j in layer ~+1 an extra input
line with a fixed activity level of 1 and a weight of —6h
The output of a neuron in any layer other than the input
layer (h > 0) is a monotonic nonlinear function of its total
input and is given as
1
h
AR te® @

For nodes in the input layer,

Y; =T 3)
where x‘} is the jth component of the input vector clamped
at the input layer. All neurons within a layer, other than the
input layer, have their states sct by (1) and (2) in parallel while
different layers have their states set sequentially in a bottom-
up manner until the states of the neurons in the output layer H
are determined. The learning procedure has to determine the
internal parameters of the hidden units based on its knowledge
of the inputs and desired outputs. Hence learning consists of
searching a very large parameter space and therefore is usually
rather slow.

The least mean square (LMS) error in output vectors, for a
given network weight vector w is defined as

Bw) =3 Y (uhw) - ;)" @

Je

where yfc(w) is the state obtained for output node j in layer
H in input—output case ¢, and dj c is its desired state specified
by the teacher. One method for minimization of E(w) is to
apply the method of gradient descent by starting with any set
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Fig. 1. A neural network with three hidden layers. Neurons connected to
cach other via variable connection weights.

of weights and repeatedly updating each weight by an amount

Auwli(t) = —€ ;’ii +aAwh(t — 1)~ hdec-wf;(t - 1), (5)
where the positive constant € controls the descent, 0 < a <1
is the damping coefficient or momentum, hdec is the % decay
coefficient, and ¢ denotes the number of the iteration currently
in progress. Using a decay factor 0.01 > hdec > 0 enables
only those weights doing useful work in reducing the error to
survive and hence improves the generalization capabilities of
the network [13, p. 8].
From (1), (2) and (4) we have

0B _ OE dy; b,
c‘iwﬁ - By,- dl‘j (‘)’w]‘,‘
OF 4 hY, h—1
= a—yjyj (1—y)y ™ (6)
For the output layer (h = H), we substitut¢ in (6)
OE g

This assigns credit proportionately to those weights most
responsible for the error, thus implementing gradient steepest
descent in the weight space. The central idea is to first use
a forward pass for each input—output case c, starting at the
input neurons, to compute the activity levels of all the neurons
in the network. Then a backward pass, starting at the output
neurons, is used to compute the error derivative OE /0y; and
back-propagate to allow weight updating until the input layer
is reached. For the other layers, using (1), we substitute in (6)
g_E=Z@_%?ﬁ:ZgE_dﬂwz, ®)
y; 5 Ok dzi Oy; 4 Oyk dzy
where units j and & lie in layers h and h +1 respectively.
Consider a multidimensional weight space with an axis for
each weight and one extra axis corresponding to the error
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measure. This weight space typically contains ravines with
steep sides and a shallow gradient along the ravine. The
acceleration methods used in (5) force the gradient to change
the velocity of the current point in the weight space, help to
speed convergence, and rarely get stuck at poor local minima.
The roles of € and « in (5) have natural interpretations in terms
of physical movement along this error surface, composed of
hills, valleys, ravines, ridges, plateaus, and saddle points, in
the weight space.

During training, each pattern of the training set is used in
succession to clamp the input and output layers of the network.
A sequence of forward and backward passes using (1)-(8)
constitutes a cycle and such a cycle through the entire training
set is termed a sweep. After a number of sweeps through the
training data, the error E(w) in (4) may be minimized. At this
stage the network is supposed to have discovered (learned)
the relationship between the input and output vectors in the
training samples.

In the testing phase the neural net is expected to be able
to utilize the information encoded in its connection weights
to assign the correct output labels for the test vectors that
are now clamped only at the input layer. It should be noted
that the optimal number of hidden layers and the number of
units in each such layer are mostly empirical in nature. This
is demonstrated in Section VL. The number of units in layer
H corresponds to the number of output classes.

MLP models using back-propagation have been applied in
the exclusive OR problem [2] and in recognizing familiar
shapes in novel positions [13], discovering semantic features
[15], recognizing written text [16], recognizing speech, [14],
playing backgammon [17], predicting sunspots [18] and iden-
tifying sonar targets [19].

III. PATTERN REPRESENTATION IN LINGUISTIC ForM

In conventional statistical designs, the input patterns are
quantitatively exact to within the resolution of the sensors
used to collect them. However, real processes also may possess
imprecise or incomplete input features. In such cases it may
become convenient to use linguistic variables and hedges [8]
such as low, medium, high, very, and more or less to augment
or even replace numerical input feature information.

The proposed model is capable of handling exact (nu-
merical) and/or inexact (linguistic) forms of input data. Any
input feature value can be described through a combination of
membership values in the linguistic property sets low, medium
and high.

A. Fuzzy Sets

In traditional classifiers, an element r either belongs or does
not belong to a given class A. Hence the characteristic function
of A is expressed as
1 ifreA
nalr) = 0 otherwise.

But in real-life problems the classes are often ill defined,
overlapping, or fuzzy. A pattern may belong to more than
one class with a nonzero degree of membership. Using fuzzy
set-theoretic techniques [7], [8], {20], [21] a pattern point 7,
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belonging to the universe R, may be assigned a grade of
membership with the membership function 14 (r) to a fuzzy
set A. This is defined as

A= {(MA(T)’T)}v

reR, pa(r)el01]. O

B. m Membership Function

The 7 function, with range [0, 1] and r € R", is defined
as [22]

2
2(1—HIA—CH) for 3 <|[r—ell <A

rc, ) = _
mlrie ) 1-2(159)" for0 < fir—ell < 3

0 otherwise

(10)

where A > 0 is the radius of the 7 function with c as the central
point, and ||-|| denotes the Euclidean norm. This is shown in
Fig. 2 for r € R2. Note that when the pattern r lies at the
central point ¢ of a class, then [jr — ¢f| = 0 and its membership
value is maximum, i.e., 7(c; ¢, A) = 1. The membership value
of a point decreases as its distance from the central point ¢,
ie., ||lr — ¢||, increases. When |jr — ¢|| = A/2, the membership
value of r is 0.5 and this is called a crossover point.

A fuzzy set with membership function 7 (r;c, A) therefore
represents a set of points clustered around c. In the proposed
model we use the 7 function (in the one-dimensional form) to
assign membership values for the input features.

C. Incorporation of the Linguistic Concept

Each input feature F; (in quantitative and/or linguistic form)
can be expressed in terms of membership values to each of the
three linguistic properties low, medium, and high. Therefore
an n-dimensional pattern F, = [Fi1, Fig,- - -, Fin] may be
represented as a 3n-dimensional vector [23]

fi = [Hlow(p,-l) (F'z) » Wmedium(Fi1) (ﬁz) 5

Phigh(Fi1) (Fi): <+ s Hhigh(Fin) F‘l)} (1)

When the input feature F; is linguistic, its membership
values for the 7 sets low, medium, and high are quantified as

= {095 06 002

- L "M’ H
medium = 0.7 0.9 0.7
- L' M ' H

.. _ [0.02 06 095

When F; is numerical, we use the m fuzzy set of (10) with
appropriate ¢ and A chosen as explained in subsection III-D.

The processing at the input layer is summarized in the block
diagram in Fig. 3. Depending upon the numerical or linguistic
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Fig. 2. = function when r € R%.
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Fig. 3. Block diagram of the input phase of the proposed model.

nature of the input feature F};, we use (10) or (12) to convert F;
to its three-dimensional form given by (11). Note that for the
training set the numerical F}’s are kept aside to also compute
the mean and standard deviation vectors of (16). However in
case of the test set, once the membership values have been
computed, the actual numerical values are no longer needed
in future computations.

Hence in trying to express an input F,; with linguistic
properties we are effectively dividing the dynamic range of
each feature into three overlapping partitions. The sets low,
medium, and high for each feature are represented by 7
functions. Fig. 4 shows the overlapping structure of the three
« functions for a particular input feature Fj.

It should be noted in this context that triangular functions for
the linguistic terms, negative big, negative medium, negative
small, zero, positive small, positive medium, and positive big,
have been used in [9] as input features in the design of
neural-net-based control systems. Triangular functions having
properties of (10) can also be used in the proposed model.

D. Choice of Parameters of m functions for Numerical Features

Let Fj max and F} min denote the upper and lower bounds
of the observed range of feature F; in all L pattern points,
considering numerical values only. Then for the three linguistic
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Fig. 4. Overlapping structure of the 7 functions for the linguistic properties
low, medium, and high.

property sets we define

1
)‘medium(Fj) = _(F] max — Fj min)
2

Cmedium(Fj) = Fjmin + Amedium(F;) (13)
Aow(F;) = W (Cmedium(F;) — Fjmin)
Clow(F;) = Cmedium(F;) — 0-5 - Mow(Fy) (14)
Abigh(F;) = }ij_n_z(Fj max — Cmedium(F;))
Chigh(F;) = Cmedium(F;) + 0.5 Anigh(F)) (15)

where fdenom is a parameter controlling the extent of over-
lapping.

This combination of choices for the A’s and c¢’s automat-
ically ensures that each quantitative input feature value r;
along the jth axis for pattern F; is assigned membership value
combinations in the corresponding three-dimensional linguistic
space of (11) ig such a way that at least one of MOW(F”)(I;‘;),
Pmedium( F,j)(Fi), O finigh(F,;)(Fs) is greater than 0.5. This
allows a pattern F; to have strong membership to at least one
of the properties low, medium, and high.

IV. CLASS MEMBERSHIPS AS OUTPUT VECTORS

In the conventional MLP, used for pattern classification, the
number of output nodes corresponds to the number of pattern
classes present. During training, the output node corresponding
to the class of a pattern vector is kept clamped at state 1 while
the others are clamped to state 0. Hence the components of the
desired output vector take on crisp two-state values. During
testing, a winner-take-all mechanism causes the test pattern to
be classified as belonging to that class corresponding to the
output node with the highest activation.

In real-life problems, the data are generally ill defined, with
overlapping or fuzzy class boundaries. Each pattern used in
training may possess nonzero belongingness to more than one
class. To model such data we clamp the desired membership
values, lying in the range [0,1], at the output nodes during
training. Then the network back-propagates the error(s) with
respect to the desired membership value(s) at the output(s). In
the process, the network may become able to detect regularities
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in the input—output membership relation of the training set.
Then, when a separate set of test patterns is presented at
the input layer, the output nodes automatically generate the
class membership values of the patterns to the corresponding
classes. This procedure of assigning fuzzy output membership
values, instead of the more conventional binary output values,
enables the proposed neural net to more efficiently classify
fuzzy data with overlapping class boundaries.

A. Membership Functions

Consider an [-class problem domain such that we have l
nodes in the output layer. Let the n-dimensional vectors Oy
and V. denote the mean and standard deviation respectively
of the numerical training data for the kth class. The weighted
distance of the training pattern P, from the kth class is defined

as
2
I:E' - Ok;}

where F;; is the value of the jth component of the ¢th pattern
point, and Cy is the kth class. The weight 1/vg; is used to
take care of the variance of the classes so that a feature with
higher variance has less weight (significance) in characterizing
a class. Note that when all the feature values of a class are
the same, then the standard deviation will be zero. In that
case, we consider vy; = 1 such that the weighting coefficient
becomes 1. This is obvious because any feature occurring
with identical magnitudes in all members of a training set is
certainly an important feature of the set, hence its contribution
to the membership function should not be reduced [8], [24].
The membership [8] of the ith pattern to class Gy is defined

as follows:

N —_—
t+ ()

where z;;, is the weighted distance from (16) and the positive
constants fy and f. are the denominational and exponential
fuzzy generators controlling the amount of fuzziness in this
class-membership set (i.e., in the distance set). Obviously
pux(F:) lies in the interval [0,1]. Here (17) is such that the
higher the distance of a pattern from a class, the lower its
membership value to that class. It is to be noted that when the
distance is 0, the membership value is 1 (maximum) and when
the distance is infinite, the membership value is 0 (minimum).
It is to be mentioned that as the training data have fuzzy
class separation, a pattern point F, may correspond to one
or more classes in the input feature space. So a pattern point
belonging to two classes (say, Ck, and C,) corresponds to
two hard labels in the training data, with fi tagged to classes
Ck, and Cy, respectively. In other words, there are two or
more occurrences of point F; in the training set such that
sometimes it is tagged to class Cy, and sometimes to class
C,. In this case F; is used in computing Og,, Ok,, Vi,
and Vi, only. Here the I-dimensional vector Z; has only two
nonzero components, viz., z, and zjk,. However in the hard
case F; corresponds to only one hard label in the training

n

>

i=1

fork=1,---,0, (16)

Zik =

a7
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data, say Ck, , such that ﬁi is used in computing Oy, and Vi,
only. Note that Z; has [ nonzero components in the fuzziest
case and only one nonzero component in the hard case.

In the fuzziest case, we may use the fuzzy modifier INT to
enhance contrast [8] in class membership. We have

HINT (k) (ﬁl) =

oo ()]

Mroguk@i)505
1-2 [1 — (ﬁ)] ? otherwise.

(18)

This is needed to increase the contrast within class membership
values, i.e., to decrease the ambiguity in taking a decision.
When the training input is linguistic, we use

n 3
Zik = E l:z %(;U'P(Fi]') - Np(okj))Q]
j=1Lp=1

fork=1,--,1, 19)
where i1 (Fy;), pa(Fy;), and p3(F;;) correspond to the mem-
bership values given by (12) and fup(0k;) correspond to the
3n-dimensional representation by (11) and (13)—(15) of the
class mean Oy computed using the numerical input values.
Note that we assume that corresponding to each feature
axis there must exist some pattern points in each class (in
the training set) having numerical values (kept aside after
computing the input vector, as explained in subsection 1I-C).
However this restriction does not exist for the test set as the
desired membership values are not required here.

B. Applying the Membership Concept

For the ith input pattern we define the desired output of the
jth output node

d HINT(5) (F’,) in the fuzziest case
= "
i (F)

where 0 < d; < 1 for all j. The [ output neurons are
clamped with the fuzzy output membership values of (20)
during training and the error is back-propagated for appropriate
weight updating by (5)—(8).

The block diagram given in Fig. 5 illustrates the various
stages in computing the desired output vector to be clamped
at the output nodes of the proposed model. Note that the
enhancement phase (third stage in the figure) is required in
the fuzziest case only.

During testing the output of the jth output neuron yf of (2),
computed in a forward pass after clamping the 3n-dimensional
input vector from (11) for the test pattern F, at the input layer,
indicates the inferred membership value of the pattern F, to
the jth class. So the output is generated as a measure of finite
belongingness to each class. This is unlike the conventional
crisp concept of either belonging or not belonging to a class.

20

otherwise,

£ wi(F) pav ()
I?“ v:ixmﬂ-lme : mlmh_er:h‘lp mhnﬁmnl : delimn(ol ;
2 wm{Fi) s (F3)

Fig. 5. Block diagram of the output phase of the proposed model.

V. Fuzzy EXTENSION TO THE MLP MODEL

Consider an (H + 1)-layered MLP with 3n neurons in the
input layer and ! neurons in the output layer, such that there
are H — 1 hidden layers. The input vector, with components
:c(; of (3) represented as in (11), is clamped at the input layer
while the desired {-dimensional output vector with components
d; from (20) is clamped during training at the output layer.
The outputs of the neurons yJH in the various layers h =
0,1,---,H, of the network are computed using 1)-(3) to
obtain the error E at the output layer by (4). It is to be
noted that the y]H ’s in (2) and the d;’s in (4) are expressed
as continuous fuzzy membership values lying in the interval
[0,1]. This is an extension to the conventional MLP model
that deals with actual input values and crisp (binary) output
values. The proposed model is found to classify fuzzy data
with overlapping class boundaries in a more efficient manner.

A. Weight Updating

Initially the connection weights w;-li between each pair of
neurons 4 in layer h and j in layer h+1 are set to small random
values lying in the range [—0.5,0.5]. The error between the
desired output d; and computed output yJH in the output
layer (for all output neurons) is evaluated using (4) and back-
propagated for appropriate weight updating by (5)-(8) such
that the weights are modified in proportion to their contribution
to the error. The updating occurs after each cycle and is
not accumulated over the entire sweep in order to offset the
problem caused by the inherent higher redundancy of natural
data or, in other words, to counter the repetitive occurrence of
very similar training samples [25, p.7]. It should be mentioned
that we adjust Aw?;(t) to ensure that —0.1 < Awhi(t) 0.1
for each updating step, so that the possibility of overshooting
of the weights may be minimized in the course of smoothly
approaching a minimum error solution.

For a pattern point lying in a region of overlapping in the
feature space, there may be more than one output node with
(say) d; > 0.5 indicating appreciable belongingness to more
than one pattern class. In the conventional MLP for such a case
only that node with a slightly higher activation is clamped to
state 1 while the others are clamped to state 0. This may result
in oscillations on the decision surface separating the pattern
classes while training the network, because nearly identical
patterns may be clamped to different classes. In such a case,
terminating the algorithm at an arbitrary point may or may
not yield a “good” weight vector.

In other words, the conventional crisp algorithm may not
terminate or necessarily converge to a useful solution when
the data are nonseparable with overlapping fuzzy classes. The
pattern vectors that cause the classes to overlap are proba-
bly responsible for the oscillatory behavior of the algorithm
because these “ambiguous” vectors, although relatively less
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characteristic of their classes, are given full weightage in
one class while back-propagating the corresponding errors for
weight updating.

The proposed model overcomes this problem by assigning
the class membership values to the corresponding output
nodes. Thus, the error to be back-propagated has more weigh-
tage in case of nodes with higher membership values and hence
can induce greater weight corrections in favor of that class for
input data that demand such an adjustment. This is desirable, as
points that have a larger belongingness to a particular pattern
class and possess less ambiguity should influence positively
the positioning of the decision surface separating the pattern
classes. The contribution of ambiguous or uncertain vectors
(i.e., those with output membership close to 0.5) to the weight
correction in favor of any class is automatically reduced. As
the actual output vectors are modified to approximate the
corresponding ambiguous desired output vectors (unlike the
crisp vectors of the conventional model based on highest
activation), it helps to prevent oscillation on the decision
surface in such cases and thus enables the model to function
efficiently in environments with fuzzy class separation. Note
the possible reverse but significant impact of pattern vectors in
inducing weight updating along interconnections correspond-
ing to classes for which they have lower output membership
values (closer to 0). This is because such low values signify
the degree of not belonging to a class and hence involve less
ambiguity.

B. Learning Rate, Mean Square Error, and Cross Entropy

In “typical” conventional MLP the two-state output is either
0.8 (true) or 0.2 (false) [13], [15] and the learning rate € and
momentum « in (5) of the back-propagation algorithm are con-
stant throughout training. In the proposed model we introduce
output membership values distributed over the range [0,1],
depending on the degree of belongingness of a pattern vector
to a class. These output values are actually distributed over a
suitable subinterval, say [0.2,0.8], as attainment of 0 or 1 by
yf in (2) requires an infinite input. We usually encounter a
large number of intermediate output values during the training
phase. To distinguish finer intricacies in the desired outputs, €
is gradually decreased in discrete steps, taking values from the
chosen set {2,1,0.5,0.3,0.1,0.05, 0.01,0.005,0.001}. Fur-
ther, « is also decreased from an initial value of 0.9 for e = 2
to a final value of 0.5 for all other values of e.

In the course of training, at each sweep we use the mean
square error (mse) and the cross entropy (s) as performance
measures of learning. We define

!
mse = Z Z (dj - yf)2 / (1 % |trainset|) (21)

Fetrainset 7=1

and

!
s= Z Z{—djlny]a—(1—dj)1n(1—yf)}

Fetrainset =

<+ (In2 I |trainset|). 22)
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Here |trainset| refers to the number of input pattern vectors in
the training set, and d; corresponds to the jth desired output
component. It is to be noted that both mse and s decrease as
y¥ approaches d; for all j.

In our experiments, both mse and s are found to steadily
decrease and reach a local minimum, for each value of e,
after several sweeps (say, 20 to 300). This is the appropriate
time to decrease ¢, as otherwise oscillation generally sets in.
The necessity of modeling a number of intermediate output
values in the range [0,1] seems to cause the weight space
to have ravines with a corresponding error surface of greater
complexity, so that there exist a large number of local minima.
One typically starts a long way from the minimum error
solution, and spends a lot of time oscillating across ravines
in the weight space before numerical convergence is attained.
A larger e is initially necessary to cause weight updating along
the gradient to occur fast in roughly the right direction without
getting stuck at poor local minima. The momentum term with
o helps maintain movement in a stable direction and hence
should be high in the early stages to prevent the weights
from accidentally attaining large values caused by the initially
high gradient that may often be in incorrect directions. As
thé weight vectors move closer to the correct orientation both
the mse and s may decrease. After several sweeps, (varying
from 20 to 300, say), when the weight vectors have settled
somewhat, ¢ appears to be too large for the Aw;?i’s to change
by the small amount now required to attain the necessary
minimum along the more shallow gradient encountered here.
The model may oscillate between local minima, as the weights
tend to overshoot the minimum error solution; at this point €
needs to be decreased. At this time it is preferable to decrease
« to speed progress in the most effective direction. This allows
more weight to the gradient (now with lower €) to model
finer intermediate output values while also maintaining some
damping (via @) to prevent oscillation. The same procedure
is repeated for the discrete set of €’s until it stops at the
lowest chosen value of e. This scheme of decreasing € and o
is somewhat different from the approach used in conventional
MLP, but is somewhat analogous to the method reported in
[26]. A comparison in performance of the proposed model with
the latter (termed variation O} is given in Table 1L Keeping ¢
and « constant, as in the crisp model, or increasing it gradually
[27] seems to lead to oscillation in our model. This is because
the fuzzy version of MLP apparently is incapable of modeling
intermediate output values encountered in the fuzzy data space,
so that the weights tend to overshoot.

We use two measures of percent correct classification for
the training set. The output, after a number of updating, is
considered a perfect match if the value of each output neuron
y]H is within a margin of 0.1 of the desired membership value
d;. This is a stricter criterion than the best match, where we
test whether the jth neuron output yf (for a particular training
pattern) has the highest (or maximum) activation when the
jth component d; of the desired output vector also has the
highest value, provided y]H > 0.5. Each pattern in the training
set is supposed to have y]H > 0.5 for some j, i.e., to possess
finite positive belongingness to at least one class. As training
proceeds, the percent perfect match p and the percent best
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match b gradually increase as the neural net moves towards a
minimum error solution. Note that for b we consider only that
class to which the pattern belongs best.

Let the various values of e be indicated by ¢ = 2,
e = 1,---, ¢, = 0.001 such that ¢; indicates the (7 + 1)th
value of e. Let g = 09 and oy = ap = --+ = ag = 0.5
Note that a close to zero is avoided because small values of
« are unable to prevent unwanted oscillations. We use

i + 1 if mse(nt — kn) — mse(nt) < 6
or s(nt — kn) — s(nt) <6
i otherwise

23

where i = 0 initially, |¢] = ¢+ 1, and 0 < § < 1072, Here
mse(nt) and s(nt) denote the mean square error by (21) and
cross entropy by (22) respectively at the end of the nith sweep
through the training set; kn is a positive integer such that mse
and s are sampled at intervals of kn sweeps. The process is
terminated when i > ¢ and ¢, = 0.001. At this stage the
network is said to have converged to a good minimum error
solution if 90 < b < 100. Obviously p < b always. The
corresponding value of nt indicates the maximal number of
sweeps required in the process. It is to be mentioned that
the relations Amse; < Amse; and As; < As; hold when
€; < €.

C. Testing Phase

After training, the proposed model has presumably encoded
in its weights information regarding class discrimination in the
feature space. This is the desired fuzzy classifier. In the second
stage, a separate set of test patterns (initially kept aside from
the same fuzzy data) is supplied as input to the neural network
model and its performance is evaluated.

During this phase a labeled input test vector F in the
3n-dimensional linguistic space of (11) is applied to the
network. The output neurons yield values by (1)—(3) indicating
fuzzy memberships of the test pattern in the corresponding
output classes. The normalized membership values in the range
[0.2,0.8] are reconverted to the actual range [0, 1].

Let the jith and joth neurons in the output layer H
generate the highest and second highest outputs y]’»f and yg ,
respectively, for test pattern F,. These represent, respectively,
membership values to class j; using the best choice and to
class jo using the second choice. It may be that y# ~ y/
for a pattern F, lying in overlapping regions in the input
feature space, so that there is some ambiguity of decision in
such cases. A confusion matrix is generated for the test set
to evaluate the network performance. To determine the row
of an entry in the said confusion matrix, we use the class j
of the particular test data as obtained from the maximum of
the desired outputs d; by (16)—(20). Note that the nonzero
components of Z; are determined (as explained above) from
the hard labels attached to the test pattern F, as well as the
training patterns having the same feature values. The column
corresponds to the neuronal output class providing the best
match using (1)—(3) and (11). The generalization capability
of the proposed net in correctly classifying unseen patterns is
then verified.

The mean square error for the test patterns, mses, is defined
from (21) as

mse; = Z z (d; — y]H)2 / (1 * |testset]) (24)

Fectestset 7

where |testset| corresponds to the number of pattern vectors
used during testing, and the ! components of y]H in the output
layer are computed from the 3n components x? of pattern F
using (1)—(3). The { components of the desired output d; are
generated by using (20). This mse; is a measure of the amount
of misclassification for the set of test patterns. Analogously,
the cross entropy for the test patterns, s;, is defined from (22)
as

> S {-dilny - (1 -d)(1 -y}

Fetestset J
+ (In2 =[x [testset])

8¢ =

(25)

The closer yf is able to approach d;, the lower the value of s;.
Hence this is also a measure of the amount of misclassification
for the test set.

VI. IMPLEMENTATION AND RESULTS

The above-mentioned algorithm was tested on a set of 871
Indian Telugu vowel sounds collected by trained personnel
[28]. These were uttered in a consonant—vowel—consonant
context by three male speakers in the age group of 30 to 35
years. The simulation was in C on a VAX-8650 computer. The
data set has three features, Fy, F and F3, corresponding to
the first, second, and third vowel format frequencies obtained
through spectrum analysis of the speech data. Thus the dimen-
sion of the input vector in (11) for the proposed model is 9.
Note that the boundaries of the classes in the given data set are
seen to be ill defined (fuzzy). Fig. 6 shows a 2-D projection of
the 3-D feature space of the six vowel classes (0,a,%,u,¢€,0)
in the Fy—Fy plane (for ease of depiction).

It may be mentioned that the conventional crisp MLP has
also been used in the vowel classification problem [29] to
generate hard partitions in the formant frequency space of
English vowel data. Besides, a radically different approach has
also been used in {30], where context-dependent information
is used to generate hard decision boundaries in an attempt to
separate a different set of overlapping English vowel data in
the formant frequency space.

On the other hand, the proposed neural network model,
incorporating fuzzy concepts at various levels, has been used
here to demonstrate its effectiveness in classifying the fuzzy
Telugu vowel data. In this case overlapping fuzzy decision
regions are generated in the output space.

The model under consideration has been tested for different
numbers of hidden layers (H — 1) (such as 1, 2, 3), and with
different numbers of neurons m (such as 10, 15, 20), in each
such layer. During learning, various sizes of training sets have
been used by randomly choosing different percentages perc of
samples (such as 10%, 50%), from each representative vowel
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Fig. 6. Vowel diagram in the F, - F; plane.

class. In each case the remaining percentage (100-perc) of data
was used as the test set. The parameters fdenom, fa fe, kn,
and § in (14), (15), (17), and (23) were chosen as fdenom =
08, fa =5, fe=1, kn = 10, and § = 0.0001 after several
experiments. Further, we observed that with hdec > 0 in (5),
€g = 0.1 at (23) gives best results whereas with hdec = 0 we
require € = 0.001.

In Figs. 7 and 8, part (a) plots the percent correct classifi-
cation using the best match criterion, while part (b) shows the
variation of mse of (21), s of (22), and mes; of (24). In part
(a), the class number j (1 for 8,2 for a,3 for 1,4 for u,5 for
e, 6 for o) indicate the classwise correct classification of the
test set. The variables b and p correspond to the best match
and perfect match criteria respectively obtained for the training
set, while ¢ indicates the percent best match performance over
the entire test set as a whole. In part (b) of the figures, the
variation of the cross entropy s is shown by the dotted curve
while the mean square error for the training (mse) and test
(mse;) sets are plotted using solid curves. Note that the left
vertical axis corresponds to the mean square error while the
right vertical axis indicates the cross entropy.

Fig. 7 is drawn to illustrate the effect of varying the number
of neurons in the hidden layers of the proposed model. We
considered three hidden layers with a distribution m : m : m
of neurons such that m = 10,15, and 20. It was observed that
m = 10 gives the best results. A larger size is seen to provide
better performance over the training set (higher b, p in part (a)
and lower mean square error mse and Cross entropy s in part
(b)), perhaps because of overlearning. This is probably due
to “memorization,” with poor generalization, which leads to
poorer performance over the test set (lower ¢ in part (a) and
higher mean square error mse; in part (b)). A smaller size

of m was incapable of handling all the information required,
perhaps owing to insufficient capacity.

In Fig. 8 we observe the effect of introducing different
numbers of hidden layers (H —1) with m = 10 neurons in each
layer. A single hidden layer is obviously incapable of capturing
the intricacies of the feature spece. Two hidden layers lead to a
much better performance, as expected. However three hidden
layers seem to give an overall best performance over both
the training and test sets. The network fails to converge with
four hidden layers, perhaps because of the resulting very large
number of complicated interconnections and the comparatively
limited set of data available for training the net.

Fig. 9 demonstrates the effects of € and a of (5) on the
performance of the model. A fixed low learning rate of € = 0.1
and a high momentum of o = 0.9, as in the conventional
MLP, result in oscillation and the worst classification rates
(worst recognition for class 1, i.e., 8, and nil perfect match).
Varying ¢ from higher to lower values in discrete steps leads
to notably better overall performance. Keeping « constantly
low at 0.5 for this ¢ does not provide enough damping and
results in a comparatively poor performance as oscillations
still cannot be avoided. Clamping « high at 0.9 with more
damping, while € varies as proposed, improves the situation.
However changing o from 0.5 to 0.9 shows some improvement
in the recognition rate for class 1 (9) at the expense of
the neighboring overlapping class 5 (e). The best overall
performance is obtained by decreasing « from 0.9 to 0.5,
while simultaneously also decreasing € in steps. This has
already been explained, in Section V. Increasing ¢ from lower
to higher values leads to instability such that the network
becomes incapable of classifying the fuzzy patterns. This is
in sharp contrast of some models [27].
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Fig. 10 is drawn to illustrate the (crisp) output partitioning
capability of the proposed network with three hidden layers
using alpha cuts. An alpha cut of a fuzzy set A is defined
as Ag = {rlpa(r)>a’}, 1 > o > 0. A pattern with
output membership value y¥ > o/(=0.5) is plotted as a
member of class j. The | = 6 vowel classes are labeled
by their corresponding class numbers. Fig. 10(a) depicts the
resultant output map (class boundaries) over the entire pattern
set (both training and testing data) in the two-dimensional
formant frequency space showing the fuzzy overlapping, as
expected. In Fig. 10(b), the training samples for each class

are superimposed on the generated partitions to demonstrate
their generalization capability and impact on the classification
performance of the model. Note that the topological ordering
of the vowel classes with respect to each other and the amount
of overlapping between them bear much similarity to the actual
partitioning illustrated in Fig. 6. This shows that the proposed
fuzzy model helps to satisfactorily preserve the structure of
ambiguous (fuzzy) classes. (It is to be noted from Fig. 10(b)
that sometimes distortion and overshadowing of the symbols
occur because of the overlapping of the training points from
the different pattern classes. This is especially true in the case
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of the co-occurrence of points from classes 1 and 6 in the
F)—F; plane, owing to the nature of their symbols, as is
evident from the figure).

Fig. 11 depicts the output partitioning obtained over the
entire data set with two hidden layers. Here also the training
samples are shown superimposed on the generated partitions.
This network is seen to be incapable (compared with the one
with three hidden layers) of properly classifying all pattern
points, classes 1(8) and 2(a) suffering the most. This may
also be verified from Fig. 8.

In Fig. 12 we illustrate the variation of the best match b
and perfect match p performance (denoted by solid curves)
and the mean square error mse (plotted using a dotted curve)
with the number of sweeps over the training set. The solid
points along the curves mark the sweep number at which
¢; is changed to €41 by (23). It is observed that initially
high € and « are necessary to cause fast weight updating in
roughly the right direction without getting stuck at undesirable
local minima. As the weight vectors approach a “correct”
orientation, improvement in b, p, and mse becomes slower,
as indicated by the flatter nature of the curves for lower e.
The need to model finer intermediate output values requires
€ to be gradually decreased, as explained in Section V, until
a suitably good solution is obtained. Note that the curves are
neither smooth nor monotonically increasing/decreasing. This
is due to the local nature of the weight updating process, which
ultimately enables the neural net model to arrive at a good
global solution by avoiding spurious local minima.

Table I is used to provide examples of input vectors F‘i,
desired output vectors d, and the actual output vectors y
(both in the range [0,1]) for a set of sample patterns. Here
the first three patterns correspond to training sets while the
remaining three patterns belong to the test set. Note that
although the desired output vector has a hard label for the
fifth entry (test pattern), indicating belongingness to class e
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alone, the proposed model generalizes to yield a fuzzy actual
output vector in keeping with the vowel diagram of Fig. 6.
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TABLE I
INPUT, DESIRED OUTPUT, AND ACTUAL OUTPUT VECTORS FOR A SET OF SAMPLE PATTERNS PRESENTED TO THE FIVE-LAYER NEURAL NETWORK

Input Features

Fi,F, F3 Input Vector

Output Vector

700, 1500, 2600 07 70 93 69 96 31 30 96 .70
750, 1150, 2600 01 43 99 98 47 02 30 96 .70
300, 2200, 2700 94 05 0. 0. 29 99 15 B84 85
350, 700, 2630 99 19 0. 82 0. 0. 25 93 75
550, 1500, 2500 62 99 38 69 96 31 5 1. 5

450, 1200, 2300 93 70 07 96 58 .04 B8 .84 .15

Desired Actual
84 0. 0. 0 0. 0 87 .02 0. 0. 0 0.
0 82 0 0. 0. 0 03 87 0. 0. 0 0.
0. 0 91 0. 0. 0. 0 0 9 0. 0. O
0. 0. 76 0. 0. 01 0. 03 8 O 0.
0. 0 0 88 0. 58 .06 O 04 18 0.
0. 0 0. 0 0 .86 .14 02 .06 .07 07 .75

Table II compares the average percent correct recognition
score (on the test set using the best match criterion, both
classwise and overall) of the proposed fuzzy neural net model
to that of a conventional MLP, its hard version, and the
standard Bayes classifier. The training and test sets each
constitute 50% of the pattern data. A comparison of the overall
performance on the training set between the various neural
net model variations is also provided. For this both the best
match b and perfect match p criteria are used. We have used
the Bayes classifier for multivariate normal patterns with the
a priori probabilities p; = |C;|/N, where |C;| indicates the
number of patterns in the ith class and N is the total number of
pattern points. The covariance matrices are different for each
pattern class. The choice of normal densities for the vowel data
has been found to be justified [31]. The MLP model and its
variations all use three hidden layers with m hidden nodes
in each such layer. We have used ma = 10 and 20 nodes
in the current experiment. The first two MLP versions in
Table II use crisp binary representation at the output. However
in (a) the actual input features in the n-dimensional feature
space are normalized to the range [0, 1] and this is termed the
conventional model. In (b) 3n linguistic input features with

crisp values are used such that corresponding to a pattern F,,
along the jth axis, we clamp the highest of }llow(ptj}(l'_;i),
Mmedium(Fij)F‘i’ and I“Lhigh(Fi]‘)(Fi) of (11) to 1 while the
remaining two are kept clamped at 0. This is referred to as
the MLP model with hard linguistic input features. In (c) we
use the proposed fuzzy version of the MLP.

Although model (a) is found to generate somewhat high
recognition scores (%) using best match we have observed
that the outputs in most such winning cases were less than
0.5. This is perhaps an aftereffect of the crisp output labeling
used for the training data. Hence the output partitioning of the
feature space using alpha cut value o' = 0.5 (as explained
carlier) fails to generate the boundaries for classes d and o
(using m = 20) and for class o (using m = 10). Besides,
the other class boundaries are also observed to be not very
appropriate. This behavior of models (a) and (b) corresponds
to the poorer recognition score (%) on the training set using
the perfect match criterion p. Model (b) is found to have the
worst efficiency. It is found to be able to generate all
the output partitions, even though distorted in several cases.
The crisp output labellings in (a) and (b) are perhaps therefore
responsible for the resultant hindrance to proper convergence
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COMPARISON OF PERCENT CORRECT RECOGNITION SCORE USING best match oN THE TEST SET BETWEEN THE

TABLE II

BaYES CLASSIFIER AND VARIOUS NEURAL NET MODELS

(a) Conventional

Neural Net Models
(b) Hard Linguistic Input

(c) Proposed Fuzzy Version

Bayes
Model Classifier m =10 m = 20 m =10 m =20 m =10 m =20
T a 41.6 555 44.4 24.4 34.1 512 55.5
e a 91.1 86.6 88.8 64.4 60.0 84.4 80.0
s i 93.0 814 81.4 88.8 90.9 81.9 91.5
t u 94.7 88.1 90.7 76.2 55.7 86.8 86.6
S e 71.1 92.3 86.5 69.7 65.6 92.4 85.9
3 o 711 86.6 85.5 85.9 91.4 89.5 81.3
t Overall 79.2 84.6 82.8 72.5 70.2 84.2 83.6
perfect p — 49.6 43.6 353 6.3 55.6 58.1
best b — 86.0 87.6 777 71.5 922.2 92.2
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The neural network has three hidden layers, with m hidden nodes in each layer, and hdec = 0. The perfect match p and best match b

over the training set are also compared among the various neural net models.

leading to poor output partitioning. However the proposed
fuzzy version is found to provide a very satisfactory overall
performance.

It is to be noted that a good statistical (Bayes) classifier
requires a great deal of sequential computation and a large
number of reference vectors, whereas a neural network is
massively parallel and can generalize appreciably well. Incor-
poration of fuzzy concepts in the neural net further enhances
its capability in handling the impreciseness in input patterns
and the uncertainty arising from overlapping/ill-defined re-
gions.

In Table III we demonstrate a comparison in performance of
the proposed model with that of the model in [26] (referred to
as Model O here). In model O, the learning rate ¢ is modified
dynamically by an additive increase when the error measure
decreases and a multiplicative decrease otherwise. We use
fuzzy input and output representations (as explained earlier)
for both models, to clearly demonstrate the usefulness of our
mode of variation of €. The perfect match p and the best match
b are provided for the training set. It is observed that the
performance of the proposed model is generally better in terms
of the recognition scores (%). The output partitioning has also
been found to be more appropriate in our model. Note that
the total number of sweeps required is larger in the case of
model O.

VII. CONCLUSIONS AND DISCUSSION

A neural network model based on the multilayer perceptron
using the back-propagation algorithm which is capable of
fuzzy classification of patterns has been defined and tested.
The model converts numerical and linguistic inputs to lin-
guistic terms, and provides output decisions in terms of
class membership values. Back-propagated errors are assigned
appropriate weightage for weight updating depending upon
the membership values at corresponding outputs. The learning
rate ¢ and damping coefficient o are gradually decreased
to prevent oscillations as the neural network converges to
a minimum error solution in a maximal number of sweeps
through the training set. The problem of vowel recognition in

TABLE III
COMPARISON OF PERCENT CORRECT RECOGNITION SCORE USING best match ON
THE TEST SET AND BOTH perfect match p AND best match b ON THE TRAINING
SET, BETWEEN THE PROPOSED MODEL AND THE SCHEME in [26] (HERE
REFERRED TO AS MODEL O) WitH FIVE-LAYER NEURAL NETWORK HAVING
TEN NoDES IN EACH HIDDEN LAYER, hdec = 0, AND perc = 50

Model Proposed Variation O
T 7] 512 53.6
e a 84.4 88.8
s i 819 83.1
t u 86.8 89.4
s e 92.4 91.5
e o 89.5 779
t Overall 84.2 83.1
best b 922 91.7
perfect p 55.6 69.6
No. of sweeps 460 598

The input and output vector representations are fuzzy (in both cases) to
aid better comparison between the two modes of varying the learning
rate €.

the consonant—vowel—consonant context has been considered
to demonstrate the effectiveness of the proposed model at
every stage.

It may be noted that the parameters € and « traverse a range
of values in the course of the computations and, as such, no
particular choices need to be made. However, in general, one
may choose initially 0.6 < a < 1.0, 1.0 <e< 2.5 and finally
0.2 < a < 0.6, 0.0001 < € < 0.1 for good results. This is
because initially high € and «, and finally very low € but not
so low a are needed, as explained in subsection V-B. Further,
usually 0 < hdec < 0.01.

It is worth mentioning that the fuzzy MLP in [11] used
trapezoidal possibility distributions to represent each linguistic
term, sampled at a fixed number of values over their respec-
tive domains of discourse, for fuzzy inferencing. Hence the
sampling frequency had a direct bearing on the faithfulness of
the representation of the linguistic terms as well as the cost of
calculation required. On the other hand, we considered the 7
function to model the inputs in terms of the linguistic variables.
This resulted in a more cost-effective representation with fewer
inputs dedicated to a particular input feature. The concept
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of using class membership functions for fuzzy modeling of
multiclass problems was also basically different from the two-
class single-layer-perceptron based fuzzy pattern classification
algorithm [32].

Note that only three linguistic terms, low, medium, and high,
have been used in the input stage of the proposed model.
Incorporation of fuzzy hedges such as more or less, very, and
nearly as additional properties might enhance performance.
We have used contrast enhancement in the output stage of the
proposed model.

In this connection, it may also be mentioned that the MLP
has been used to approximate continuous functions for predic-
tion in time series [33]. This approach of input—output rep-
resentation was basically different from our proposed model,
although in both cases the range of allowable values was [0, 1].
We used fuzzy membership concepts for modeling both the
input and output vectors. While the input was generated in
linguistic terms, the output was given as class membership
values.

In the algorithm reported in {12], the smallest number of
iterations was evaluated using a different approach. There an
attempt was made to generate the “best” solution, and this
was rather expensive, as it required computations involving
results from various runs over several ratios of training and
test set combinations. The proposed model, on the other hand,
applied a heuristic in an attempt to obtain a good solution for
any chosen ratio of training-test set combination in a single
run (one sequence of sweeps) over this set.

Neural net performance for fuzzy classification of speech
data was found to compare favorably with that of the Bayes
classifier trained on the same data. In the proposed model we
used many parallel interconnection links with simple process-
ing elements. Therefore with appropriate parallel hardware the
proposed model should be able to perform much faster and
hence more efficiently than serial techniques. The incorpora-
tion of fuzzy concepts at various levels of the proposed model
seemed to enhance its performance.

Regarding the relative merits of the different numbers of
hidden layers and/or the total number of neurons, it might
be noted that the approach in [34] used an algorithm making
weight updates only once per sweep. The proposed model,
on the other hand, updated its weights after each pattern
presentation, as explained in subsection V-A. [25]. In this
work we demonstrated a few experimental observations in
this direction. For this we used m nodes in each hidden layer
to bring uniformity in the design of the neural network. We
did not consider different numbers of nodes in the various
hidden layers in order to simplify the building procedure.
Incorporation of pruning and further addition of layers as in
[34], to improve the generalizing capabilities of the network,
seemed nontrivial in the current context and might be an
interesting topic for future research.
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