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DYNAMIC PROCEDURES AND INCENTIVES
IN PUBLIC GOOD ECONOMIES!

By PArRkasH CHANDER

In this paper we consider economies involving one public good, one private good, and
convex technology and propose an informationally decentralized dynamic nontaton-
nement procedure that converges in general from the initial endowments to an allocation
in the core of the economy. We then consider a general class of procedures and show that
there exists none in the class that is locally incentive compatible and individually rational.
These results show that there exists a trade-off between the requirements of local
incentive compatibility and equitable cost sharing.

Keyworps: Equitable cost sharing, decentralized procedure, local incentive compati-
bility, maximally Pareto improving, coalitionally noncoercive, core.

1. INTRODUCTION

AN orPTIMAL PROVISION oOf a public good and an equitable sharing of its cost is a
central issue of welfare economics. This paper is concerned with both the
normative and strategic aspects of this problem.

We propose an informationally decentralized dynamic nontatonnement pro-
cedure that converges in general from the initial endowments to an allocation in
the core.? The procedure may be seen as enunciating a plausible method of
cooperation among the agents for achieving an optimal provision of a public
good and an equitable sharing of its cost.

As in the related literature (Dréze and de la Vallée Poussin (1971), Malin-
vaud (1972) and others), we also study the procedure from the viewpoint of
noncooperative game theory, i.e. whether the agents have incentives for truthful
revelation. In this regard, we obtain a result that holds for such procedures in
general. We consider a general class of procedures and show that there exists
none in the class that is locally incentive compatible (Laffont and Maskin (1983)
and others) and converges in general to at least an “individually rational”
Pareto optimal allocation.

! This is an extensive revision of Chander (1988) and is heavily inspired by discussions with
Jacques Dréze, Henry Tulkens, Dilip Mookherjee, and Debraj Ray. The revision was carried out in
part during a stay at CORE in 1988 and for another part during a visit to Instituto de Analisis
Economico in 1990. I am grateful to these institutions for their hospitality and to the participants of
seminars at California Institute of Technology and CORE. Two unknown referees of Econometrica
made comments which lead to substantial improvement of the paper. Also the stimulating com-
ments of the editor are gratefully acknowledged.

2 The core (in public good economies) is always nonempty (Foley (1970)). It has long been seen as
the guideline in the search for equitable allocations. The ratio equilibrium (Kaneko (1977),
Mas-Colell and Silvestre (1989)) and the egalitarian-equivalent allocations (Moulin (1987)) thus
belong to the core. Similary, Yen (1990) argues that an equitable cost sharing allocation must belong
to the core.
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We know from the existing literature (Roberts (1979), Fujigaki and Sato
(1981), and Laffont and Maskin (1983)), however, that there exist procedures
that are locally incentive compatible and converge to an allocation which is
“maximally Pareto improving” but not in general individually rational or in the
core.? This means that our results may also be viewed as an analysis of the
interplay between the normative and strategic aspects of decentralized proce-
dures for achieving an optimal provision of a public good. In particular, they
show that even the weak requirement of local incentive compatibility imposes
severe distributional constraints; and there exists a trade-off between the
requirements of local incentive compatibility and equitable cost sharing as
emphasized in footnote 2.

The contents of this paper are as follows. Section 2 states the basic model of
an economy involving one public good, one private good, and convex technology
and reports some general results that are used later in the paper. Section 3
describes the procedure and proves its convergence to an allocation in the core.
Section 4 analyses the issue of local incentive compatibility. Section 5 draws the
conclusion.

2. THE ECONOMIES

We consider economies consisting of one public good, whose quantity is
denoted by x, one private good, whose quantity is denoted by y, and n
consumers. Each consumer is characterized by his or her utility function u’
defined on Ri (the nonnegative orthant of R?) and by a positive endowment w'
of the private good. The public good can be produced from the private good,
which is the only input. The production relation is described by a cost function
g: R_— R_ which associates with every quantity x of public good the minimum
cost g(x). We make the following assumptions. Let N={1,...,n} denote the
set of consumers.

AssumpTioN (A.1): (1) Each u' is C? and quasi-concave; (2) for at least one i,
u' is strictly quasi-concave; (3) for each i, du'(x,y)/dx >0 and du'(x,y)/dy >0
for all (x,y)ER?; (4) for each i, u'(0,w")>u'(x,0) for all x>0 such that
g(x) < Iw'.

Assumption (A.1.4) rules out the possibility of a consumer giving up every last
bit of the private good. It is not essential for the analysis below, but is made
only in order to avoid certain boundary problems.

% The term “maximally Pareto improving” is due to Mas-Colell (1980). The more familiar term
“individually rational” is a game theoretic concept and used presently as such only. Both the terms
are formally defined later in the paper.
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AssuMpTION (A.2): The cost function g is C? and satisfies g(0) =0, dg(x)/
9x>0 and 9°g(x)/0x> 20 for all x>0, and there exists a finite x such that
g(x)>XTw'

An allocation is a (n + 1)-tuple (x,y',...,y") € R"*! where (x, y’) denotes
the consumption bundle of consumer i. An allocation (x, y,..., y™) is feasible
if and only if g(x) + Ly’ < Ew'. An allocation (x, y.,..., y") is Pareto optimal
if it is feasible and if there does not exist a feasible allocation (¥, ¥!,..., ")
such that ui(x,5')>u'(x,y?) for all i€ N. A Pareto optimal allocation
(x,yY,...,y™) is maximally Pareto improving if u'(x, y*) > u'(0,w?) for all i € N.

Let Z={(x,y',...,y")eR""g(x)+ Ly’ < Iw'}. Then, Z is the set of all
feasible allocations. Under (A.2), it is clearly nonempty, convex, and compact.

We shall often denote consumer i’s marginal rate of substitution by 7(x, y*),
ie., m(x,y") = u'(x, y")/dx)/@u'(x, y*) /dy") and the marginal cost by y(x),
ie., y(x)=dg(x)/dx.

AssumMpTION (A.3): X; o y7(0,w") > y(0).

The economies which do not satisfy this assumption are of little interest
because in that case the initial endowment itself is Pareto optimal. We now
state a well-known lemma.

LEmma 2.1: 4 feasible allocat;'on (J_c, yl, ..., y") is Pareto optimal if and only if
rri(x, ") —y(x) <0 and (X7'(x, y') — y(x))x = 0.

We shall often adopt the following notation. Let (771, ..., 7") be some n-tuple
of real numbers. Then 7° =%, _ (7', SCN.

An allocation (x,y!,...,y") is attainable by a coalition SCcN if g(x)+
yS <wS. An allocation (x,y!,...,y") is individually rational if there is no
consumer i € N and an allocation (X, y!,...,y") attainable by {i} such that
u'(x%, ) > u'(x, y’). An allocation (x, y!,...,y") is a core allocation if it is
feasible and if there exists no coalition S C N and an allocation (¥, ¥!,..., ")
attainable by S such that u‘(%, y") > u(x, y*) for all i € S.

An allocation (x, y!,..., y™) is coalitionally noncoercive if it is feasible and if
there exists no coalition S C N such that g(x) +y® <w5, ie., if no coalition
pays more than the full cost of public good. Note that a feasible allocation
(x,y',...,y™ would be coalitionally noncoercive if and only if g(x) +y~ =w?
and y’ <w' for all i €N, i.e., each consumer pays some amount (possibly zero)
of the public good cost—no one enjoys a gain in the private good.

We now illustrate these concepts by extending the well-known Kolm triangle
diagram for the case of an economy in which there are two consumers and
g(x) =x. The extended diagram is shown in Figure 1.
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A

Ficure 1

Let the point W on the horizontal side BC represent the initial endowment
(0, w!,w?). Then the points in the parallelogram WDAE represent coalitionally
noncoercive allocations. The points in the triangle DBW and EWC represent
allocations attainable by consumers 1 and 2, respectively, and the points P and
Q their best attainable allocations.

Let the set of points where the indifference curves of the two consumers are
tangent to each other be represented by the curve passing through the points a,
b, c, d, e, and f. Then the points on the curves af, be, and cd represent,
respectively, the maximally Pareto improving, the coalitionally noncoercive
Pareto optimal, and the individually rational Pareto optimal allocations. Since
the representation is in reference to two consumers only, the core coincides
with the set of individually rational Pareto optimal allocations. For more than
two consumers the core would in general be a smaller set.

We prove a simple but fundamental lemma, which characterizes coalitionally
noncoercive Pareto optimal allocations. This lemma plays a crucial role in the
proof of Theorem 3.4 below.

LeMMA 2.2: Let (3'2, ;1,..., 55 ") be a coalitionally noncoercive Pareto optimal
allocation which is not a core allocation. Then for any allocation (%, y,...,5")

which is attainable by a coalition S # N and such that u'(%, 5°) > u(¥, ") for all
i €S (and there exists at least one such allocation) we must have ¥ < x .
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The lemma justifies our representation in Figure 1 that the points P and Q
be below the curves bc and de, respectively. It is also quite general as its validity
does not depend on the convexity assumption on the cost function g.

ProoOF OF LEMMa 2.2: Since (¥,5,...,3") is Pareto optimal but not in the
core, there exists, by definition, a proper coalition S #N and an allocation
(%, 54..., 9™ attalnable by it such that u’(x yH> u'(%,y") for all i € S. This
means g(x) + 55 <w*® and u’(x y) > u‘(x y9) for all i € S. Suppose contrary
to the assertion that X >x. Let (%, y ,...,9") be the allocation defined
as £=x, y —y for all zeS and 9'=w'’ for all zeN\S Then, clearly
g(X)+9N<wh, ie, (X, y ,..., ") is feasible. Since (%, y ..., y") is coalition-
ally noncoercive, yi<w for all i € N. This means (£, 9L,. ,y”) is a feasible
allocatlon which is such that ui(%, $?) > ui(X,y ) for all i €S and u‘(x ) >

ui(%,y") for all i€ N\S. Therefore there exists an allocation (x,yl,...,y")
which is such that u(x, y?) > ui(¥, y ") for all i € N, since the utility functlons
are strlctly monotonic in terms of the private good. But thlS contradicts that
(x,3 y ...., 9™ is Pareto optimal. Hence, we must have ¥ <x.

3. THE PROCEDURE AND ITS CONVERGENCE TO CORE

The procedure is described by the differential equation system:
(3.1)  x()=7"(t) = (),
(32) ()= — (7' () /mN(1))y () £ (1),
(33)  x(0)=0, y‘(0)=w’, iEN,

where 7i(t) = 7'(x(¢), y(t)) and y(z) = y(x(¢)).* (Recall the notation that
aN(@) =L, ym(8))

This procedure is very much like the Malinvaud (1972) and Dréze and de la
Vallée Poussin (1971) (MDP) procedure except that the instantaneous cost is
distributed proportionally to current individual valuations and not according to
some exogenously given parameters. Equation (3.2) could also be interpreted as
the instantaneous analog of the cost sharing rule corresponding to the ratio
equilibrium.’

LEMMA 3.3: Under Assumptions (A1), (A.2), and (A.3), there exists for the
system of differential equations (3.1)-(3.3) a unique solution z(t): [0, +®) - Z,
z(0) = (0, w,...,w"). This solution is contained entirely in the set of coalitionally
noncoercive allocations and converges to a Pareto optimal allocation in this set.

4 As usual a dot over a time variable denotes the operator d/dt.
> This latter interpretation is due to Mas-Colell and Silvestre (1989).
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Proor or LEMMA 3.3: Observe that along any solution of (3.1)-(3.3), if one
exists,

y(£)x(t) +yN(t) =0, x(t)=0, y'(t)<0 (iEN),
and

i . du
ax(t)x( )+ ay'(t)

— aui i i
- ayi(t) T (t) -

m(t)
_ aui Wt(t) N 2 0
50 w”(r))(’” () =(0) >

Therefore, g(x(£)) +y™(®) =w®, x(¢) >0, u'(x(2), y'(t)) > u'(x(0), y(0)) and
y'(t) <w' along any solution of (3.1)-(3.3).
Consider the set

={(x,yl, LYW (x, y') = u'(0,wh),
g(x)+Zy’=Zw’,0<yi<w‘}.

Clearly, C is contained in the set of coalitionally noncoercive allocations. It is
nonempty and compact. If z=(x,y!,...,y")€C is such that x=0, then
y'=w!, i € N. Hence, if a solution exists it must be contained entirely in C.
Moreover, it must never hit the boundary of C (in view of Assumption (A.1.4))
except at the initial point (0,w!,...,w") at which the right hand side of (3.1) is
positive (Assumption (A.3)).

Existence: The differential equation system (3.1)—(3.3) is of the form z = f(2).
The function f is defined and continuously differentiable on C (Assumptions
(A.1.1) and (A.2)). This implies that f is locally Lipschitz on C. Hence, there
exists for (3.1)-(3.3) a unique solution z(¢), z(0)=(0,w!,...,w"), on some
interval in R, which cannot be continued on the right. As the solution
z(1), z(0) = (0, w?, ..., w™), maps into the compact set C, with x(z) > 0, yi(t) > 0
or x(t)=0, y'(t)=w', i €N, for all ¢, the interval for which the solution exists
must be [0, + ).

Quasi-stability, i.e., that any limit point of the solution is a stationary point of
(3.1)—(3.3), follows from the fact that the function L(z(¢))= Tu‘(x(2), y'(¢))
satisfies the definition of a Lyapounov function. L(z(¢)) is indeed continuous,
defined on the compact set C and monotonically increasing unless z(¢) is a
stationary point, where L(z(¢)) is constant. Hence lim, _, , L(z(¢)) exists and is
attained at a stationary point.

Stability, i.e., uniqueness of the accumulation point of the solution, follows
from the fact that L(z(¢)) is strictly quasi-concave (Assumption (A.1.2)) and
that any stationary point of (3.1)-(3.3) is Pareto optimal. This means that the
solution must converge to a unique limit point which is Pareto optimal. Since

i (x (1), yi(1)) = _ji(e)

) y(t))(w”m ()
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the solution is contained entirely in the compact set C, the Pareto optimal
allocation to which it converges must be coalitionally noncoercive.

THeoREM 3.4: Under Assumptions (A.1), (A.2), and (A.3), there exists for the
system of differential equations (3.1)-(3.3) a unique solution z(t): [0, +®) > Z,
z(0) = (0, w1, ..., w"™). This solution converges to a core allocation.

We have thus exhibited an informationally decentralized dynamic nontaton-
nement procedure with a stronger convergence property than has usually been
obtained for such procedures.®”8

It was noted earlier that the MDP procedure and its descendants so far might
converge to allocations that are not necessarily individually rational whereas the
present one always converges to a core allocation. What is the crucial difference
between the MDP procedure and the present procedure that leads to this
stronger convergence property? It seems that it comes from the fact that in the
present procedure ¢ — y'(¢) is monotonically nonincreasing for all i whereas it
is not in the MDP procedure. In fact, the MDP procedure allows y‘(¢) > w' for
some or all t(>0) and some i. Because of this the time path of the MDP
procedure could be of type T, or T as shown in Figure 2. The monotonicity of
t > y%(t) for all i rules out such a time path since in that case it must be
contained entirely in the set of coalitionally noncoercive allocations (repre-
sented by the parallelogram WDAE in Figure 2). Simultaneously, the mono-
tonicity of ¢ — u’(¢) for all i implies that the time path must not intersect the
indifference curve ul, or u?% from above. Therefore, the time path of the
present procedure could be only of type T,, T, or T, as shown in Figure 2.
Convergence to those maximally Pareto improving allocations that are not core
allocations (represented by the points on the curves ac and df in Figure 2) is
thus ruled out. Since the procedure does converge to a maximally Pareto
improving allocation, it must converge to one in the core (represented by the
points on the curve cd).

Finally, note that the consumers are required to reveal the same type of
information in both the procedures. The above therefore means that the MDP
procedure does not make full use of the information revealed whereas the
present one does.

® This has some game theoretic interest in itself. Very few dynamic theories for solution concepts
are available in the game theory literature (Stearns (1968), Billera (1972), and Kalai, Maschler, and
Owen (1975)). As far as the core concept is concerned we are aware of only one contribution so far,
by Shiao and Wang (1974), for games with transferable utilities only.

7Chander and Tulkens (1992) extend this procedure to a model of transfrontier pollution and
give an additional justification for this procedure.

8 From a normative point of view, since the procedure selects a core allocation, it can be viewed
as a solution concept for equitable cost sharing of a public good. Yen (1990) shows that when so
interpreted it satisfies all the desiderata for a solution concept to be reasonable: namely, group
rationality, symmetry, continuity, uniqueness, non-core-face allocation and also cost monotonicity
(Moulin (1987)) at least when the cost function is linear.
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Core
Allocations

FIGURE 2

ProoF oF THEOREM 3.4: Lemma 3.3 shows that the solution converges to a

coalitionally*noilf:oercize Pareto optimal allocation, say (5'2, ;1, - ;n). We must
prove that (x,y ,...,y") must in fact be a core allogation.
Suppose contrary to the assertion that (x,y ,..., y") is not a core allocation.

Then, by Lemma 2.2 there exists a proper coalition § # N and an allocation
(%,5',...,y") attainable by it, ie. g(X) +55<wS, such that ¥<x and
wi(x, 5> ui(x,y") for all i € S.

Since z(#) = (x(2), y'(¢),..., y™(t)): [0, +») —» C is continuous and x(0)=
0, x(¢): [0, + ) — [0, x] is also continuous. Therefore, there exists a ¢ € [0, + )
such that x(¢) =Xx. Moreover, since the solution is contained in the set C, we
must have g(x(#)) +y™(¢) =w?" and y(t) <w' for all i € N. Therefore, x(¢) =%
and g(x(¢)) +y5(¢) > w5, ie., x(t) =% and y5(¢+) >y° (implying that y‘(¢) >y’
for at least one i € S). It follows that ui(%, y") < u’(x(¢t), y'(¢)) for at least one
i € 8S. Since ¢t — u'(¢) is monotonically nondecreasing along the trajectory of the
procedure (as shown in the proof of Lemma 3.3), u‘(x(2), y'(¢)) < u'(%,y"). This
means u(¥,y')>ui(%,y’) for at least one i €S. But this contradicts that
ui(x, 39) > ui(%,y") for all i € S. Hence our supposition is wrong. This proves
the theorem.

4. INCENTIVE COMPATIBILITY

As mentioned in the beginning we now consider the question whether the
agents have incentives to truthfully reveal their marginal rates of substitution.
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Could an agent gain (in utilities) by announcing false marginal rates of substitu-
tion?

We know from the incentive literature (Hurwicz (1972) and others) that there
exists no procedure in which the agents have dominant strategies whose equilib-
rium outcomes are always Pareto optimal. In order to obtain positive results
therefore Fujigaki and Sato (1981), Champsaur and Rochet (1983), and Laffont
and Maskin (1983) consider a weaker incentive requirement by assuming that
the agents are myopic, i.e., they maximize the instantaneous payoff—the rate of
change of utility #'(¢). We show below that weakening the incentive require-
ment in this way can help matters only to a limited extent.

For the sake of a more transparent analysis we shall restrict ourselves to
economies that satisfy Assumptions (A.1)-(A.3) but have only two consumers
and a linear cost function, i.e., N ={1,2} and g(x)=x. Extension of the results
to the more general case is straightforward but notationally more cumbersome.

A procedure is a 3-tuple (F,G',G?) where F(:), G!(+), and G?(-) are some
arbitrary real valued and continuously differentiable functions on R? such that
the following differential equation system has a unique (continuous) solution:

(41) x(t)=F(w(1)),
(42)  Y'(1) =G'(m(1)),
(43)  x(0)=0, y'(0)=w', i=1,2,

where 7(¢) = (w(¢), 7%(t)) and 7(¢) = 7 (x(¢), y'(¢)). It will be often conve-
nient to drop the time subscript when it is not essential for the argument.

A procedure (F,G!,G?) is balanced if F(w)+ G (w)+ G?*(w) =0 for all
w2 R, ie., if (t)+y(¢) +y%(t)=0 for all £ > 0.

A procedure (F,G!,G?) is Pareto satisfactory if w'+m*=1<F(7)=
G (m)=G*w)=0 for all w',w?€R, i.e., if the stationary points of the
differential equation system correspond to Pareto optimal allocations. In what
follows, it will be convenient to rewrite (4.2) as

(44)  Yi(t)=—7m()F(m(t)) + T'(m(¢))
= —7i(t)i(t) + T (m(t)), i=1,2.

A procedure (F,G',G?) is then defined equivalently as the 3-tuple (F,T!, T?).

For the remaining definitions we need to note that du’(¢)/dt =
@u'(2) /3y (N7 (8)x () + y'(2)).

A procedure (F, T, T?) is monotonic in terms of utilities if 7:(7!, 72) > 0 for
all 7!, 7% € R, equivalently, if 7' +y'>0, i=1,2.

A procedure (F,T',T?) is locally incentive compatible (in dominant strate-
gies) if T (w!,72) > (w! =sHF(s',7%) + T'(s', 72) for all 71,72, s! €R, and
analogously for consumer 2.

Local incentive compatibility means that no consumer can increase #'(¢) (the
rate of change of utility) by reporting s‘(¢) # 7(¢). Since by assumption the
functions F, T!, and T? are differentiable, a procedure (F,T?!,T?) is locally
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incentive compatible only if
J
(?—Sl((qr1 —sYF(st,7?) + TY(s', m2))|;i1=0
for all !, 72, s' €R.

Lemma 4.5: Let (F,T!, T?) be a locally incentive compatible procedure. Then,
F(r!, 7w?) is nondecreasing in w' and w?* for all w',w* €R.

Proor or LEMMA 4.5: Since the procedure is locally incentive compatible,
TUm', 7)) > (w! —sHF(sY,7w2) + T (s, w2) for all 7', 72 s'eR. Take s'=
7l + Awl. Then, T (#!,7?%) = (—AxY)F(7' + Axl, w2 + TUw! + An!, 72).
Similarly, T'(7! + A7l, 72 > (A7) F(#! 72) + TU(#w!,72). Adding these two
inequalities, we get A7 (F(m!+ Aml, 72)— F(w',72)) >0 for all #!, 72 and
Al € R. This proves that F(-) is nondecreasing in 7!, and similarly in 2.

LemMmA 4.6: Let (F,T',T?) be a Pareto satisfactory and locally incentive
compatible procedure. Then

1
T'Y(w',m?) =f" F(0,7*)d6 forall =',m?€R.
1—m2
Proor or LEMMA 4.6: Since the procedure is locally incentive compatible,
d
5;1—((771 —sY)F(s',7%) + T'(s',m?))|i_,1=0 forall wl,w? €R,
that is

AT (m!,m?)
1

—F(7', %) + =0 forall =!,m*€R.

o
This means

T1(771,772)=f”1 F(0,7%)do+K forall m',m>eR.
1—m

Since (F,T!,T?) is Pareto satisfactory, F(1 — 7%, #2)=T1 —#%,w2) =0,
i=1,2, for all w2 € R. Therefore, K = 0. This proves the lemma.

LemMma 4.7: Let (F,T',T?) be a balanced, Pareto satisfactory, and locally
incentive compatible procedure. Then it must be monotonic in terms of utilities and
converge to a maximally Pareto improving allocation.

Proor oF Lemma 4.7: Since (F,T!,T?) is locally incentive compatible,
TY(w(t), 7%(1)) = (w1(t) — s'E)DF(s'(2), w2(2)) + T'(s'(¢), w2(¢)) for all s(z)
€ R. In particular, this inequality holds for s!(¢) = 1 — 72(¢). Thus,

TY(w'(t),m*(2)) = (7'(t) + w2(¢) — 1)F(1 —m2(¢), m*(¢t))
+TY(1—m%(t),7%(t)) =0,
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since (F,T!,T?) is Pareto satisfactory. Similarly, for consumer 2. Thus,
Ti(w(¢))>0 for all t>0 and i=1,2, i.e. (F,T!,T?) is monotonic in terms of
utilities.

By definition, the differential equation system (4.1)—(4.3) or (4.4) has a unique
solution. Since the procedure is balanced (by hypothesis) and monotonic (as
shown), the solution must be contained in a compact set. Therefore, L(z(¢)) is a
suitable Lyapounov function. The proof then follows by similar arguments as in
the proof of Lemma 3.3.

Let E denote the class of economies satisfying Assumptions (A.1)-(A.3) and
with at least two consumers, i.e., n > 2.

THEOREM 4.8: There exists no procedure which is balanced, Pareto satisfactory,
locally incentive compatible, and which converges to an individually rational
allocation for each economy in E.

Proor oF THEOREM 4.8: Let (F,T1,T?) be some procedure which is bal-
anced, Pareto satisfactory, and locally incentive compatible. Then, since the
procedure is balanced,

yi(t) =7l () F(m'(2),m*(t)) — T (='(2),m%(t))
—F(7'(t),7%(1))

= (1) = DE('(1),72(0)) = [T F(0,w7(1)) do
1—72(t)
by Lemma 4.6. This implies that

>0 if w!(¢) >1and 7%(¢) =0,

52( ¢
v (1) =0 if #'(¢) =1and 7%(¢) =0,

since F(-) is a nondecreasing (Lemma 4.5) and continuous function and
F(arl,72) > 0 if ! + 72> 1 (from the fact that the procedure is Pareto satisfac-
tory and F(-) is nondecreasing).

We shall construct a class of economies belonging to E such that ¢ — y2(¢) is
monotonically increasing. A typical member of this class has two consumers.
Consumer 1 has a strictly quasi-concave utility function u! and an initial
endowment w! > 0 such that 71(0,w!) > 1. Consumer 2 has a utility function of
the form u?(x, y?)=y?%+ v(x), where v is a concave function. And the cost
function is linear, i.e., g(x)=x. Suppose that (dv(x)/dx)|,—o=0. Then, it
follows from the preceding inequalities that ¢ — y?(¢) is monotonically increas-
ing, since in that case 72(¢) = w2(0) = w2(0,w?) = 0 and 7(¢) > 1 for all ¢. This
means that in that case y2(¢) >w? for all ¢. Since the functions F,T!,T? are
~ continuous, there exists an a > 0 such that if (dv(x)/dx)|,-0 < a (which means
7m2(ty<a for all ), then y2(¢)>w? for all #>0. Since the procedure is
balanced, x(¢)+y!(t) <w! for all ¢. This clearly means that the procedure



1352 PARKASH CHANDER

would converge to a maximally Pareto improving allocation (Lemma 4.7) which
is not individually rational for consumer 1. This completes the proof.

Recall our discussion of the MDP procedure and the procedure described by
(3.1)-(3.3). It was noted that the core convergence property comes from the fact
that ¢ — y‘(¢) is nonincreasing for all i. We have shown above that local
incentive compatibility might require ¢ — y‘(¢) to be increasing for some i. This
should intuitively explain why local incentive compatibility of a procedure and
the requirement of convergence to an individually rational allocation might be
contradictory.

We could construct a class of economies such that y‘(¢) >w’ for some i. A
necessary condition for this is that y(¢) > 0 for some ¢ > 0. In the two consumer
case with linear cost function it means that y’/(¢) < —x(¢) for j#i and some
t >0, i.e.,, at some ¢ consumer j not only pays the full marginal cost of the
public good but also transfers a positive amount of the private good to the other
consumer. Thus, even myopic agents may not have incentives to participate.

5. CONCLUSION

We have shown that there exists an informationally decentralized dynamic
nontatonnement procedure that has nice normative aspects but that in general
such a procedure cannot be locally incentive compatible. Since we know from
the existing literature that there do exist locally incentive compatible procedures
that do not generally converge to a core allocation, it follows that there exists a
trade-off between the requirements of local incentive compatibility and equi-
table cost sharing.

We have defined the procedure in continuous time. However, a discrete time
version that also converges to the core and that might be of interest from the
point of view of applications is possible.

Our analysis is restricted to the case of one public gopod—one private good.
Though this is a standard assumption in the incentive literature, a generaliza-
tion might be of interest nevertheless.” The procedure is well-defined in that
case also and can be shown to converge to at least a maximally Pareto improving
allocation. The results of Section 4 carry over in a straightforward manner. For
convergence to the core the monotonicity of ¢ — y‘(¢) is critical and additional
assumptions that ensure this are needed. A straightforward one is the case of
quasi-linear utility functions with the assumption of separability in all public
goods on the production as well as the consumption side.

®Chander and Tulkens (1992) study the case which is technically equivalent to that of many
public goods that are additive and in one-to-one correspondence with the consumers.

Using a result of Jordan (1987), Chander and Tulkens (1990) clarify that convergence to core
obtains more easily in public good economies as compared to pure exchange economies. Even in the
simplest case of two-good pure exchange economies information would be needed not only about
the first but also the second derivatives of utility functions. As shown in this paper, however,
information about the first derivatives of utility functions alone is sufficient in the case of economies
with two goods of which one is public and the other private.



PUBLIC GOOD ECONOMIES 1353

We have not considered incentive compatibility in terms of maximin, Nash,
expected utility maximization, and Bayes strategies. The latter two have been
explored by Roberts (1987) but with essentially negative results. The second one
(Roberts (1979), Truchon (1984), and Von dem Hagen (1991)) involves the
assumption of complete information which is at odds with our fundamental
assumption of dispersed private information.!® We are thus left with incentive
compatibility in maximin strategies. Results in this direction are positive. In
particular, it can be shown that the procedure described by (3.1)-(3.3) is
coalitionally (globally) incentive compatible in maximin strategies, i.e., there is
some assurance that the agents will report truthfully and convergence to core
will not be affected. Technicalities and limited writing space however force us
not to enter into these.
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