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ABSTRACT. A subset A of X is bounded if every continuous real-valued function on
X is bounded on A. A completely regular Hausdorff space X is said to have the bz-
property if every bounded subset of X is contained in a bounded zero subset of X. In
this paper, we study the bz-property and its relation to other well known topological
properties. We also introduce some new topological properties, all weaker than
realcompactness, that are related to the bz-property. The origin of the bz-property
lies in a measure-theoretic problem.
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1. Introduction. The topological spaces in this paper will always be com-
pletely regular and Hausdorff. If X is a topological space, we write C'(X) for the
ring of continuous real-valued functions on X and C*(X) for the bounded functions
in C(X), and we write 3X (respectively vX) for the Stone-Cech compactification
(respectively, the Hewitt realcompactification) of X. We denote X — X, the growth
of X, by X*. A zero-set of X is a set of the form f—{0} for f € C(X). We denote
the countable infinite cardinal by w, the first uncountable cardinal by w; and the
cardinal number of the continuum by c. If x is any ordinal, then Kk = {a : « is
an ordinal and @ < k}. R denotes the real numbers and N denotes the positive
integers.

Let X be a topological space. We denote by Cy(X) the topological space with
underlying set C(X) equipped with the compact-open topology k and note that
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Cr(X) is a locally convex space. A subset of a locally convex space is called a
barrel if it is absolutely convex, absorbing and closed, and a locally convex space
is called barrelled if every barrel is a neighborhood of 0. A space X is a u-space
if every bounded subset of X has compact closure. A celebrated result of Nachbin
and Shirota is that Cy(X) is barrelled if and only if X is a u-space (see [14]).

In view of this result, H. Buchwalter in [6] introduced another topology on C'(X)
using bounded sets instead of compact sets. This topology, called the bounded-open
topology and denoted by Cy,(X), is generated by the collection of seminorms {pa : A
is a bounded subset of X} where pa(f) = sup{|f(z)|: x € A} for f € C(X).

Also in [6], Buchwalter established the barrelledness of Cj,(X) and showed that
the dual of Cp(X) can be identified with a collection of measures on X. In 1982
Arhangelskﬁ in [1] considered independently the same topology on C'(X). In that
paper, he made very clever use of this topology to obtain results about the relation
between spaces X and Y having certain properties in common and Cp(X) and
Cy(Y) being linearly homeomorphic. In [11], some topological properties of Cp(X)
were studied in a more general perspective, and the exact position occupied by
Buchwalter’s topology (i.e. the bounded-open topology) in the hierarchy of several
topologies on C(X) was determined. In [12], the dual of Cp(X) was studied in
order to have a better understanding of it in relation to the better-known duals
of Cx(X) and C% (X), where C% (X) is the topology of uniform convergence on
C*(X).

One major goal of [12] was to find a nice measure-theoretic counterpart of the
dual Ap(X) of Cp(X) in terms of measures on X. For normal X [12, 5.4] gives such
a result. For X not necessarily normal, the best result hitherto known (at least to
the authors) is Theorem 5.6 in [12]. For the sake of completeness we briefly state
the theorem and some background below.

The set Ap(X), the space of all continuous linear functionals on Cj(X), may
be considered in a natural way as a linear subspace of the Banach space A (X),
the dual space of C* (X). The norm of an element A in Ao (X) is defined by
[|All« = sup{JA(f)| : f € C*(X) and ||f]||lcc < 1}. An element A of Ap(X) may
be identified with A o4 in Ao (X) where ¢ : C*(X) — C(X) is the inclusion map.
Let Ba*(X) stand for the algebra generated by the zero-sets of X. Let BM (X) be
the space of all finitely additive, bounded and zero-set regular measures defined on
Ba*(X) equipped with the total variation norm and BM,;,(X) = {4 € BM(X) :
w has a support A C X, where A is a bounded zero subset of X}. The statement
of the theorem follows.

THEOREM 1.1. ([12, 5.6]) Suppose every bounded subset of X is contained in a
bounded zero subset of X. Then the map

F 2 (BMpe(X), [[ - []) — (A (X), [ - [1+)

defined by F(p)(f) = [y fdu is an isometric lattice isomorphism of BM,.(X) onto
Ap(X).

Theorem 1.1 naturally raises the following problem: When is each bounded
subset of X contained in a bounded zero-set of X7
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It is this problem that we discuss in the main body of the paper. But first we
need some definitions and preliminary results.
The authors would like to thank J. Connor for some helpful comments.

2. Definitions and preliminaries. The problem mentioned above gives rise
to the following definition. We call a space in which every bounded set is contained
in a bounded zero-set a bz-space and call this property of a space the bz-property.
Clearly pseudocompact and perfectly normal spaces have the bz-property (and
hence for perfectly normal spaces, Theorem 1.1 and [12, 5.4] coincide).

In the discussion below we are going to discuss concepts, some of which have
been introduced before by other authors, often under a variety of names. We will
give as many of these names as we know in the hope that the reader, who finds a
familiar one, will be saved some time.

It should be noted, for example, that some authors (e.g. J. Trigos-Arrieta in
[19]) call bounded sets “functionally bounded sets” while others (e.g. T. Isiwata
in [10]) call them “relatively pseudocompact”. Some prefer the expression “C(X)-
bounded sets”. The term “bounded subsets of X” stems from Buchwalter’s work
referred to above and thus will be used in this paper which has its origins in that
work. (See [13] for a discussion of this topic. The authors thank O. Pavlov for
calling [13] to our attention.)

It is clear that u-spaces play an important role in any theory involving bounded
sets, and the theory of bz-spaces is no exception. A pu-space is also known as a
Nachbin-Shirota space (see [2]) or a hyperisocompact space (see [5]). Since the
intersection of p-spaces is a p-space and since 3X is a p-space, there is a space puX
that is the smallest subspace of SX which contains X and is a u- space. Thus X
is a p-space if and only if X = uX.

For any space X, we have X C uX C vX C X (and thus realcompact spaces
are pi-spaces). If A is a bounded subset of X, then clgxA C pX. For details
on pX, see [3], [6] and [22]. In the present work, we study the abovementioned
problem; that is, we would like to determine which spaces have the bz-property.
In addition we study properties weaker than the bz-property and the property of
being a p-space and we study how other topological properties are related to these
properties.

Recall that a space X is of pseudocountable (resp., countable) type if each com-
pact subset of X is contained in a compact Gs-subset of X (resp., a compact subset
of X with a countable base of neighborhoods).

Clearly a space of countable type is of pseudocountable type. Cech-complete
spaces are of countable type and hence so are metrizable and locally compact
spaces. See [20] for details on spaces of countable type.

Since compact Gs-sets in X are bounded zero-sets of X, it is easy to see that
a p-space X is a bz-space if and only if X is of pseudocountable type. More
generally, spaces of pseudocountable type are related to bz- spaces by the following
proposition, whose proof is found in [12].

PRrOPOSITION 2.1. Let X be a space and suppose there is a space Y of pseudo-
countable type with uX CY CvX. Then X is a bz-space.
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Proposition 2.1 leads to a sufficient condition for X to be a bz-space. (A more
general result is found in 4.2.)

COROLLARY 2.2. Locally compact p-spaces are bz-spaces.

Neither hypothesis in 2.2 is sufficient nor necessary, however, as we shall see in
the sequel. Example 3.6(a) is a u-space and Example 4.1 is locally compact. Neither
is a bz-space. Example 3.6(b) is a bz-space which is neither locally compact nor a
p-space. It should also be noted that Example 3.6(b) shows that bz-spaces need
not be of pseudocountable type.

Normality does not seem to be related to the bz-property. The space of Ex-
ample 3.6(a) is Lindelof, hence normal and realcompact, but does not have the
bz-property. Also any pseudocompact non-normal space (e.g. the space ¥ of [9,
51]) is a bz-space that is not normal

Another concept that will be needed later is the following. A subset A of X is
well embedded in X if A is completely separated in X from every disjoint zero-set
of X. It is well known that zero-sets of X are well embedded in X.

A subset A of X is strongly bounded if for every cozero-set neighborhood P of A,
every function in C'(P) is bounded on A. Strongly bounded sets are called strongly
relatively pseudocompact in [5]. In [18] M. Tkachenko used “strongly bounded” in
a meaning different from that of this paper.

PRrROPOSITION 2.3. If A C X, then the following are equivalent.
1. A is strongly bounded.
2. A is bounded and well-embedded in X.
3. For all f € C(X), f~(A) is compact.

Proof. (1)<(2). See Proposition 2.7 in [5].

(1)=(3). Let A be strongly bounded and let f : X — R. Suppose f~(A) is not
compact. Since A is bounded, there is z € (clrf~(A)) — f~(A). Pick a sequence
(2, : m € N) in f~(A) such that z, — z and pick a sequence (a,, : n € N) such
that f(an,) = z,. Now P = R — f~{z} is a cozero-set of X containing A. Let
g= lf—iZl Note that g € C(P) but g is not bounded on A.

(3)=(2). Assume (3). Clearly A is bounded. Let Z(f) be a zero-set of X with
ANZ(f) = 0. Then |f|~(A)N{0} = @. Since |f|~(A) is compact, | f|~(A) C [e, 00)
for some € > 0. Then A C |f|[e,00) and so A is completely separated from Z(f).
We conclude that (2) holds. O

Note that by (2)=-(1), bounded zero-sets are strongly bounded. Also note that
in [8], (3) is called “C-compact”.

A space X is called a weak p-space if every strongly bounded subset is rela-
tively compact. Weak p-spaces are also called strongly isocompact spaces (see [5]).
Clearly p-spaces are weak p-spaces. The converse does not hold, however, as can
be seen in [5, 3.9 (3)].
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We call a space a weak bz-space if every strongly bounded subset is contained
in a bounded zero-set. Clearly bz-spaces are weak bz-spaces. Again the converse
does not hold. (See Example 3.6(c)). The next proposition is obvious.

PROPOSITION 2.4. If X is a weak pu-space and a bz-space, then X is a u-space.

3. Generalized realcompactness conditions. We first give some definitions
of known weak realcompactness conditions that are related to p-spaces and to the
bz-property. We say that a space X is p-realcompact (resp. nearly realcompact) if
every zero-set (resp. every open set) of 3X that meets X* meets X —vX. Nearly
realcompact spaces were defined in [4] and p-realcompact spaces were defined in
[17]. The latter are called p-realcompact because they are precisely the spaces that
have, in the presence of local compactness, growths that are P’-spaces (that is,
all zero-sets are regular closed). In [17] it is shown that realcompact spaces are
p-realcompact, and p-realcompact spaces are nearly realcompact, and that these
are distinct classes of spaces.

For f € C*(X) we let f? denote the extension of f to 3X.

The first proposition is essentially a consequence of [17, 2.11].

PROPOSITION 3.1. If X is p-realcompact then for every zero-set Z(f) of X that is
not compact, Z(f”) meets 3X — vX and hence | X* N Z(fP)| > 2¢.

Thus every zero-set of a p-realcompact space is either compact or has a very large
growth. We also have the following from [17, 2.6].

ProrosiTION 3.2. Weak u-spaces are p-realcompact.

The converse does not hold. See Ex. 2.8(2) of [17].

We say that a function f € C(X) is well separated if whenever Z(f) C P where
P is a cozero-set of X, there is n € N such that f‘_(—%, %) C P. It was shown in
[16, 4.1] that f is a well separated function if and only if clgx Z(f) = Z(f”). (And
hence a space X is pseudocompact if and only if every function in C*(X) is well
separated, see [16, 4.2].) Thus we have the following proposition.

ProrosiTION 3.3. If X is p-realcompact, then for every non-compact bounded
zero-set Z(f) and for all well separated functions g € C*(X), Z(f) # Z(g).

Proof. Let Z(f) be a non-compact bounded zero-set of a space X. Now suppose
there is a well separated function g € C*(X) with Z(f) = Z(g). Then Z(g) is a
non-compact bounded zero-set of a well separated function, and so by [17, 3.8], X
is not p-realcompact. |

PROPOSITION 3.4. The following are equivalent.

1. X is a weak p-space and a weak bz-space.
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2. X is p-realcompact and every strongly bounded subset is contained in the
bounded zero-set of a well separated function.

Proof. (1)=(2). X is p-realcompact by 3.2. Let A be a strongly bounded subset
of X. Since X is a weak bz-space, there is a bounded zero-set Z(f) with A C Z(f).
Since X is a weak p-space, Z(f) is compact. Let h = min(f,1) and let, for all
n € N, hy, : BX — [0,1] be such that h, = 0 on Z(f) = Z(h) and h, = 1 on
BX —clgx (X —hP=[2,1]). Let k=3, cy 2 and let g =k [ X. It is easy to see
that g is well separated and that Z(f) = Z(g).

(2)=(1). Let A be strongly bounded and by (2) let A C Z(f) where Z(f) is
bounded and f is well separated. Since X is p-realcompact, Z(f) is compact by
3.3. Then X is both a weak bz-space and a weak p-space. O

COROLLARY 3.5. If a weak u-space X is also a weak bz-space, then X is of pseu-
docountable type.

ExaMPLES 3.6. In this section we give several examples that distinguish between
some of the concepts defined above.

(a) We first give an example of a realcompact space that does not have the
bz-property.

Let X be a discrete space and | X| > w; . Let X’ = X U {00} be the one-point
Lindel6fization of X. (Thus X’ is also normal.)

Consider the singleton set C' = {oo}. Let K be a bounded zero-set of X’ which
contains co. Since X’ is realcompact, K is compact and consequently K must be
finite.

Now, if in addition, K is a zero-set, let K = (), U,, where each U,, is open
in X’. But then X"\ ("2, U, = Jo—, (X’ \ U,). The right hand side is countable
while the left hand side is uncountable. Hence the point oo is not contained in any
bounded zero-set of X’.

(b) We are now going to show that a bz-space need not be a space of pseudo-
countable type. We describe Example 3.10.19 in [7].

For every set X we set [X]|¥ = {A C X : |A] = w}. Let f: [(BN)]¥ — AN be
such that for all A € [ON]¥, f(A) is an accumulation point of A in the space SN.
Let Xo = N and for an ordinal o where 0 < a < w1, let Xo = (Ug., Xp) U{f(4):
A€ UpcaXp]“} CPON. Let X = X, have the subspace topology derived
from (N.

Clearly every countably infinite subset of X will be contained in some X, and
thus will have an accumulation point in X. Hence X is countably compact and
thus is a bz-space. We claim that X is not of pseudocountable type. To establish
this, let us first recall the following important properties of SN. (We remind the
reader that SN — N is denoted by N*.)

a<wy

(i) Every infinite closed subset of SN has cardinality 2¢. (]9, 9.3])

(ii) Every clopen subset of N* is of the form (clgnM) N N* where M € [N]“. ([9,
65(3)])
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(iii) Every non-empty Gs-set in N* has non-empty interior in N* and thus contains
a non-empty clopen subset of N*. ([9, 6S(8)])

Since | X| < ¢, an immediate consequence of (a) is that every compact subset of X
is finite. If X is of pseudocountable type, then every finite subset of X has to be
contained in a finite Gs-subset of X. We show that this is not the case.

Let p € X — X;. If {p} is contained in a compact (hence finite) Gs-set G, then
{p} itself is a Gs-set in X and so {p} = X N[, ey Hn where each H, is clopen
in AN. But by (c), ((,,en Hn) — N contains a non-empty clopen set which, by (b)
is of the form N* N clgnM where M € [N]¥. Now f(M) € X1 N[, ey Hn and so
f(M) =p. But p ¢ X;. This contradiction establishes the claim.

(c) We show that weak bz-spaces need not be bz-spaces. Let T = (w; + 1) X
(w+1)\ {(w1,w}) be the Tychonoff plank. Let T; = {(«,0,i) : (a,0) € T}Hi=1,2
be two distinct copies of T

Let Y be the quotient space obtained from the union of 7} and 75 on identi-
fying (w1, n,1) with (wy,n,2) for each n < w. After this identification, the points
(wi,m,1) and (wy,n,2) will be denoted by (w1, n), for all n < w.

A typical neighborhood of (w1,n) € Y is of the form {(w1,n)} U{(7y,n,1):a <
vy <witU{(,n,2): <0 <w} for some o, € wy.

Let X =Y \ {(o,w,2) : @ < w1} be endowed with the subspace topology. X is
locally compact.

X is not a bz-space. Consider the subset B = {(w1,n) : n < w} of X. Bisa
bounded set. Let Z(f) be a zero set containing B, where f € C'(X). We can find
a1,y € wy such that the subset {(y,n,1): a1 <y <wi,n<w}U{(0,n,2):as <
0 <wi,n < w} is contained in Z(f).

Choose any non-limit ordinal § with as < 8 < w; and consider the set A =
{(B,n,2) : n < w}. It can be seen that A is an infinite discrete clopen subset of
X contained in Z(f). Thus Z(f) cannot be bounded. Consequently, no zero-set
containing the bounded set B is bounded.

Note that B is not strongly bounded since it is not completely separated from
w1 x{w}x{1}. One can check that the strongly bounded subsets of X are contained
in bounded zero-sets. Hence X is a weak bz-space.

neN

4. Bounded and traceable points. In [6], Buchwalter asked whether
uX = U{clgx B : B is a bounded subset of X},

and in [3], Blasco answered this question in the negative by producing the following
counterexample.

EXAMPLE 4.1. In Question 2, page 181 in [3] by Blasco, there is an example of a
locally compact space that is not a bz-space. The example we want is a subspace
of this space. For completeness we describe Blasco’s example and then show that
it is not a bz-space..

Let Y = (w1+1)x (w+1). If @ < wy is a limit ordinal, choose a strictly increasing
sequence {r, : n > 1} of ordinals in « converging to a. Define a,, = r,, + 1, for
all n > 1. Then {a,, : n > 1} is a strictly increasing sequence of non-limit ordinals
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from w; which converges to a. For m > 1, define A,,, o = {(6,m) : apy < 6 <}

and Un,a = {(0,w)} U(Up—p Am.a)-
Let 7 be the topology on Y determined by the following neighborhood bases:

(1) For (n,0) € Y \ {(e,w) : v a limit ordinal and o < w;}, the neighborhood
base is the same as in the product topology of Y.

(2) For (a,w), where o < wy is a limit ordinal, a base for the neighborhoods is
the family {U,, o : n > 1}.

Let X =Y\ ({w1,w)}. It has been established in [3] that X is locally compact and
is C-embedded in Y.

We show next that X is not a bz-space. Consider the subset B of X given
by B = {(wi,n) : 1 < n < w}. Given any f € C(X), there exists v < w;
such that f((y,w)) = lim,—eo f((w1,n)). Thus B is a bounded subset of X. Let
Z(g) be a zero-set containing B, where g € C(X). We claim that Z(g) is not
a bounded subset of X. Since g((wi,n)) = 0 for all n < w, it is possible to
find a v < w; such that g((6,n)) = 0 for v < § < wy and n < w; that is,
{(6,n) :7v<d<w, 1 <n<w}CZ(g) CX.

Choose a limit ordinal « such that 7 < o < w; and choose a strictly increasing
sequence {7y, : n € N} of non-limit ordinals such that 7, " a. Consider the subset
A = {(yn,n) : n € N} of Z(g). It can be shown that A is a clopen subset of X
which is an infinite discrete set. Consequently Z(g) is not bounded. This proves
that the bounded set B cannot be contained in a bounded zero-set.

Now let Z = Y \ {(w1,n) : 1 < n < w}where Z has the subspace topology
induced by 7. Blasco notes that

1. Z is locally compact.

2. X = U{cpzB : B € B} where B is the family of all closed bounded subsets
of Z.

3. ZC X C uZ.

This example leads to the following definition. We say that a space X is a near
u-space if for any compact subset A of uX there exists a bounded subset B of X
with A C ¢l x B. Clearly if a space is a near u-space, then Buchwalter’s question
is answered in the affirmative for that space. Obviously p-spaces are near p-spaces,
and if pX is a bz-space, then X is a near p-space. Note that pseudocompact spaces
are also near p-spaces. We also have the following proposition whose easy proof is
omitted.

PROPOSITION 4.2. If X is a near u-space, then X is a bz-space if and only if uX
is of pseudocountable type.

We call a point z € pX an unbounded point of X if x ¢ | J{cl,x B : B is bounded
in X}. Otherwise x is called bounded. Clearly a near p-space has no unbounded
points.

We call a point x € puX a traceable point of X if some neighborhood of x in
uX traces to a bounded subset of X; that is, if  has a neighborhood P in pu(X)
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such that PN X is bounded. Otherwise x is untraceable. Clearly unbounded points
are untraceable, but the converse does not hold. Observe that in Example 3.6 (c),
(wi,w) € clyx{(wi,n) : n € w} is bounded and in X — X but no neighborhood
of (wy,w) traces to a bounded subset of X. Note that each point of uZ — X is an
unbounded point of Z.

We say that a space X is locally bounded at a point x € X if x has a bounded
neighborhood, and X is locally bounded if X is locally bounded at each point.

Since open bounded subsets of X have pseudocompact closures, X is locally
bounded at a point if and only if the point has a pseudocompact neighborhood.
Also it is clear that a p-space is locally bounded if and only if it is locally compact.
Hence the next proposition is immediate from Corollary 2.2.

PRrROPOSITION 4.3. If X is a locally bounded p-space, then X is a bz-space.

PRrOPOSITION 4.4. Let x € uX. The following are equivalent.

1) x is traceable.

2) pX is locally bounded at x.

(1)
(2)
(3) pX is locally compact at .
(4) = ¢ clpx (BX — vX).

Proof. (1)=-(2). If x is traceable, the there is a neighborhood U of z in uX such
that UNX is bounded in X. Then by the denseness of X, clgxU = clgx(UNX) C
1X and hence U is a bounded neighborhood of x in puX.

(2)=(3). This follows from the fact that bounded subsets of a p-space are
relatively compact.

(3)=(4). Let K be a compact neighborhood of  in pX. Then int,xK =
GNuX where G isopen in SX. Since clgxG = K C uX CvX, z ¢ clgx (BX—vX).

(4)= (1). Suppose z is untraceable. Let U be a closed neighborhood of x in
BX. By hypothesis U N X is not bounded and so clgx(UNX)=U ¢ vX (see [5,
2.6]). Then (4) is false. O

REMARK 4.5. By Proposition 4.4 and earlier remarks, a p-space is locally compact
if and only if it is locally pseudocompact. In particular in a realcompact space all
those points at which the space fails to be locally compact are untraceable points.
For example, in the space of rationals equipped with the usual topology every point
is untraceable.

In [4, 1.7] it was shown that a space X is nearly realcompact if and only if
no points of vX — X have compact neighborhoods in vX. That result should be
compared with 4.4 and the next proposition.

PROPOSITION 4.6. A space X is nearly realcompact if and only if every point of
uX — X is untraceable.
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Proof.  Suppose that X is nearly realcompact and let p € uX — X. Now p €
clpx (BX —vX) since X is nearly realcompact. Then p is untraceable by Proposition

4.4.
Conversely, let U be open in SX with p € U N X*. There is an open set G in

BX with p € G CclgxG C U. Now if p € uX — X, then U N (X —vX) # 0 by
hypothesis, and so clearly we may assume that p € vX — uX. But then p ¢ clgx B
where B is bounded in X, and so G N X is not bounded in X. We conclude that

U meets X — v X which implies that X is nearly realcompact. O
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