[MEE TRANSAUTIONS (N NEURAL XCTWORES, V0L 4. %0, 4, TULY 1392

=

Generaiize-d Clustering Networks and
Kohonen’s Self-Organizing Scheme

MNikhil R. Pal, Member, JEFE, James C, Bezdek, Fellow, fEEE, and Pric C.-K. Tsao

*

Abstrace— This paper first discwsises the relationship between
the sequential hard c-means (SHCM) and learning vector quan-
tization (LY () clustering algorithms, These methods suffer from
several major problems. For example, they depend heavily on
initiallzation. 1 the initial values of the cluster cenlers are vatside
the convex holl of the inpui datas, sech algorithms, even if
they léerminate, may not produee meaningfol respits in terms
of protutypes For clustering. This is due In part to the fact
that they update only the winning prototype for every lopat
vector. We also discuss the mem.'g and interactivn of these
twa familivs of methods with Kohenen's self-prganizing feature
mapping {(SOEFM}, which is nit 3 clostering method, bat which
often lends ideas to clustering algorithms. Fmally, we propose
a gencralization of LVY) which (may) update all nodes for a
given input vector. Moreover, our petwork attempds to find &
minimom of 2 well-defined shjective function. The learning rules
depend on the degree of distance maich to the winoer node;
the lesser the degree of match with the winmer, the more is
the impact oo ounwinoer modes. Mumerical resghts indicate that
the terminal prototypes generated hy this moditication of LVQ
are generaily insensitive to initialization and independent of any
chaice of learning coeflicient(s). We use Anderson’s IRIS data
o Wnstrate onr method; and we compare our results with the
standard LV(Q approach.

Inder Termy— Cluster analysis, Kohonen, self-orpanization,
learning vectar guantization.

1. INTRODUDCTION

LUSTERING algorithms attemnpt o organize onlabeled

feature wectors into clusters or “natural growps™ such
lhat puints within & cluster arc more similar to each other
than to vectors belonging to different clusiers, Treatments of
many classical approaches to this problem inchude the texis
by Kohonen |1}, Bezdek [2], Duda and Hart [3], Tou and
Gonzalez [4], Hartigad | 5], and Jain and Dubes [6], Kohonen's
waork has become particularly timely in recent years because
ol the widespread resurgence of intercst in the theory and
applications of neural nemwork smuctuces [7).

Kohonen's name i5 associaled with two very different,
widely stodied and often confused families of algorithms.
Specifically, Kohgmen initizled study of the prototype genera-
tion algorithm called learring vector quartization (1¥0)); and

Manuecrips recsived bMay 21, 192 revised Suly 23, 1992, The work of)
. Brzdek wae supporicd by NSF Grant TRI-NG252,

M. E. Fal iz with the Division of Cowpuater Scicnce, University of West
Flurida. Peosacoly, FL 32314, on lesve from the Indlan Staiaece] Tnstiure,
Calcutta, Tndia. '

1. C, Dezdek and E. C.-K. Tsao are with ibe Division of Compuler Science,
University of Wesa Flocida, Pensacola, FL 32514,

IEEE Liyg Mumber 420374,

he alan miroduged the comeepl of self-organizing foature maps
(SOFM) for visval dispiay of certain one- and two-dimensional
dats sets [1]. LVQ is not a clustering algorithm per se; rather,
it can be used to genemle crisp (Comventional or hard) o-
partitions of unlabeled data sets in conjunction with the nearest
prototype (MNP classifier designed with its terminal prototypes.
LV{2 is applicable to p-dimensional unlabeled datw. SOFM, on
the other hand, atempts to find topological structure hidden
in the data and display it in one or two dimensions.

We shall review LV wnd its o-means relative carefully,
and SOFM in sufficient detail to vnderstand its intervention in
the development of generalized network clustering algorithms.
Specifically, S0OFM was combined with LVQ by Huntsberger
and Agjimarangsee [R| for clustering, Their algorithm required
choosing several parameters such as learning rate, size of an
update neighborhoud. and a strategy to alter these two param-
eters during learning. These parameters must be varied from
one data set to another to achieve useful results. Moreover,
their algorithms are hewristic procedures that are ot tied to
the optimization of an objective function, and their termination
procedure does nol guarantee estimates of points baving any
well defined properties commected o clusler substructure,

Thiys paper presents 2 gencralization of LV that is explicitly
designed as a clustering algorithm; we refer 10 (his algonithm
as GLVQ. Leamning rules are derived to optimize an objective
function whose goal is lu produce “good clusters” with the
nearest prototype classifier rule. GLVO (may) vpdate every
node in the clustering net for each input vector. If there is
a perfect maich between the incoming input and the winner
node, GLVO reduces to LV, On the other hand, the greater
the mismeatch to the winner, the larger the impact of an input
vector on updating of nonwinner nodes. We use Anderson’s
IRIS data wo compare the performance of GLVQ with a stan-
dard wersion of TV, For this daty the final eentroids produced
by GLY(Q are independent of node initialization and leaming
coetficients. Unlike the methods in [8] GLVO docs not need
or depend upon a choice for the update neighborhood—this
aspect is laken care of automatically by our approach.

II. CLUSTERING NETWORKS

In LVO one tries to discover cluster sul:ls!ruétum hidden in
unlabeled p-dimensional data, We let X = {%;, 25« -, 5,]
HF denoie the samples at hand, and usc ¢ to denote the number
of nodes {(and clusters in X)) in the competitive layer. The
salient features of the TVQ model are contained in Fig. 1.
The input layer of an LWQ network is connceted directly

550

Input Layer
(Fanout)

Qutput Layer
(Competive)

ueX*

Fig. 1. LVQ clustering networks.

to the output layer. Each node in the output layer has a
weight vector (or prototype) attached to it. The prototypes
V = (v1,v2,---,v.) are essentially a network array of
(unknown) cluster centers v; ERP for 1 < ¢ < ¢. In this context
the word learning refers to finding values for the {v;;}. When
an input vector is submitted to this network, distances are
computed between each v, and z. The output nodes compete,
a (minimum distance) winner node, say v;, is found; and it
is then updated using one of several update rules. We give a
brief specification of LVQ as applied to the data in Section V.
There are other versions of LVQ; this one is usually regarded
as the standard form.

The LVQ Clustering Algorithm [1]:

LVQ1. Given unlabeled data set X = {z, Z2,, -+, Zn} C
RP. Fix ¢, T, and € > 0.
LVQ2. Initialize Vi = (v1,0,"-,%,0)ERP, and learn-

ing rate ap€(1, 0).
LVQ3. Fort =1,2,---,T;
For k = 11 2""7'"/;

a. Find
lzx ~vip1ll = IYSK\}IS!C{H% — v})
b. Update the winner:
Vi =V o1+ ou(Th —vio1) (2)
c. Next k.
d. Apply the 1-NP (nearest prototype) rule to the
data using
v 2Bz vl < llm - vl 1< <6 g
LVQ;y 0; otherwise.
1<i<e¢ and 1<k<nm. 3)
LVQ4. Compute Et = “Vt — Vt_1”1 = 2521 ||1J,-,t -

n c
Ure1llt = Ygor Xrmi [Vrkt = Urke—af-
LVQ5. If E,; < ¢ stop; Else adjust learning rate o;; Next ¢.

The numbers Upyq = [uvq,,] are a ¢ X n matrix that
defines a hard or crisp partition of X using the 1-NP classifier
assignment rule shown in (3). The vector 4 shown in Fig. 1
represents a crisp label vector that corresponds to one column

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 4, JULY 1993

of this matrix; it contains a 1 in the winner row % at each
k; and zeroes otherwise. Our inclusion of the computation
of the hard 1-NP c-partition of X at the end of each pass
through the data (step LVQ3.d) is mot part of the LVQ
algorithm—that is, the LVQ iterate sequence does not depend
on cycling through U’s. Ordinarily this computation is done
once, noniteratively, outside and after termination of LVQ.
Note that LVQ uses the Euclidean distance in step LVQ3.a.
This choice corresponds roughly to the update rule shown
in (2), since Vy(llz - vl}) = -2I(z —v) = ~2(z - v),
where I stands for the p x p identity matrix. The origin of
this learning rule comes about by assuming that each z€RP
is distributed according to a probability density function f(z).
LVQ’s objective is to find a set of v;’s such that the expected
value of the square of the discretization error is minimized:

s—ul)= [fle-vis@an @

In this expression, v; is the winning prototype for each z, and
will of course vary as x ranges over RP. A sample function
of the above optimization problem is e = ||z — v;>. An
optimal set of v;’s can be approximated by applying local
gradient descent to a finite set of samples drawn from f. The
extant theory for this scheme is contained in [9], which states
that LVQ converges in the sense that the prototypes V, =
(v1,¢) v2,1, -+, Ve,) generated by the LVQ iterate sequence

B

t—oo A
converge, i.e., {V;}———V, provided two conditions are
met by the sequence {a;} of learning rates used in (2). In
particular, this sequence-must satisfy

o0
>Zat =00 (5a)
t=0
and
' o0
Za? < o0 (5b)
t=0

One choice for the sequence of learning rates that satisfies
these conditions is the harmonic sequence, that is, a; = 1/t
for ¢t > 1; ap€(0, 1). Kohonen has shown that (under some
assumptions) steepest descent optimization of the average
expected error function (4) is also possible, and both strategies
(stochastic approximation and steepest descent) lead to the
same update rule (2). The update scheme shown in equation
(2) has the simple geometric interpretation shown in Fig. 2.

The winning prototype v;, ;1 is simply rotated towards the
current data point by moving along the vector (Zx — v; 1—1)
which connects it to zx. The amount of shift depends on the
value of a “learning rate” parameter o, which varies from 0
to 1. As seen in Fig. 2, there is no update if @; = 0, and when
ap = 1, v; ; becomes z;. (v;,+ is just a convex combination of
z and v; ;_1). This process continues until termination via
LVQS5, at which time the terminal prototypes yield a “best”
hard c-partition of X via (3). Generally, we can make the
following observations about LVQ.

PAL et gl.: NETWORKS AND KOHONEN'’S SELF-ORGANIZING SCHEME

Fig. 2. Updating the winning LVQ prototype.

1) Limit point property: Kohonen in [9] refers to {11}, [12]
and mentions that LVQ converges to a unique limit if and only
if conditions (5) are satisfied. However, nothing was said about
what sort or type of points the final weight vectors produced by
LVQ are. Since LVQ does not model a well defined property
of clusters (in fact, LVQ does not maintain a partition of the

data at all), the fact that {Vt}—lf’ does not insure
that the limit vector V is a good set of prototypes in the sense
of representation of clusters or clustering tendencies. All the
theorem guarantees is that the sequence HAS a limit point.
Thus “good clusters” in X will result by applying the 1-NP
rule to the final LVQ prototypes only if, by chance, these
prototypes are good class representatives. In other words, the
LVQ model is not driven by a well specified clustering goal.

2) Learning rate o Different strategies for oy often pro-
duce different results. Moreover, LVQ seldom terminates
unless oy — 0 (i.e., it is forced to stop because successive
iterates are necessarily close).

3) Termination: LVQ often runs to its iterate limit, and
actually passes the optimal (clustering) solution in terms of
minimal apparent label error rate. This is called the “over-
training” phenomenon in the neural network literature.

Another, older, clustering approach that is often associated
with LVQ is tial hard c-means (SHCM). The updating
rule of MacQueen’s [14] SHCM algorithm is similar to LVQ.
In MacQueen’s algorithm the weight vectors are initialized
with the first ¢ samples in the data set X. In other words,
Vr0 = %, 7 = 1,---,c. Let g9 = 1forr = 1,---,¢
(g, ¢ represents the number of samples that have so far been
used to update v, ;). Suppose z:y; is a new sample point
such that v; , is closest (with respect to, and without loss,
the Euclidean metric) to it. MacQueen’s algorithm updates the
v;’s as follows (again, index ¢ identifies the winner at this t):

Vi i1 = (05 10i, ¢ + Tey1)/ (g, + 1) (6a)
Git+1 =gt + 1 (6b)
Ur t41 = Ur ¢ for r # 4, (6¢c)
Qr,t+1 = qr,t for r # 2. (6d)

MacQueen’s process terminates when all the samples have
been used once (i.e., when ¢t = n). The sample points are then
labeled on the basis of nearness to the final mean vectors (that
is, using (3) to find a hard c-partition Uggycpp)- Rearranging

551

(6a), one can rewrite MacQueen’s update equation:
Vi 41 =it + (Tpg — Vi 1)/, 141 @]

Writing 1/q; +41 as o5, ¢41, (7) takes exactly the same form
as (2). However, there are some differences between LVQ
and MacQueen’s algorithm. i) in LVQ sample points are used
repeatedly until termination is achieved, while in MacQueen’s
method sample points are used only once. There are other
variants of this c-means algorithm which pass through the data
set many times [18]. ii) In MacQueen’s algorithm ;41 is
inversely proportional to the number of points found closest
to v;, ¢, SO it is possible to have o 3, < o ¢, When t; > 5.
This is not possible in LVQ. MacQueen attempted to partition
feature space R? into ¢ subregions, say (S1,--+,S,.), in such
a way as to minimize the functional

e =Y [fle-srae

where f is a density function as in LVQ, and #; is the
(conditional) mean of the pdf f; obtained by restricting f to
Si, normalized in the usual way, ie., f;(z) = f(z)|s,/P(Si);
and V = (9y, 92, - D)ERP. Let V, = (”1,t7 .. ‘,vc,t);
S = (S1(v¢), -+, S.(v¢)) be the minimum distance partition
relative to vy; P(S;) = prob(z€S;), Pj+ = P(Sj(ve)) =
prob (z€S;(v,)); and 9;,,, the conditional mean of z over
Si(vy), is 9, = fsj (v:)z df (z)/P(S;) when P(S;) > 0, or
¥+ = v;,+ when P(S;) = 0. MacQueen proved that for the
algorithm described by (6a)~«6d)

n
>
t=1

lim

n—oo n

c

D Piello e — bl

Jj=1

Since {#;} are conditional means, the partition obtained by
applying the nearest prototype labeling method at (3) to
them may not always be desirable from the point of view
of clustering. Moreover, this result does not eliminate the
possibility of slow but indefinite oscillation of the centroids
(limit cycles).

LVQ and SHCM have some nice theoretical properties.
However, the following example shows that both of these ap-
proaches suffer from a common problem that can be quite seri-
ous. Suppose the input data X = {z1, z5, 3, T4, T5, T6} C
R? contains the two classes A = {z1, 22, z3} and B =
{x4, =5, 6} as shown in Fig. 3. The initial positions of the
centroids v1, 0 and w2, are also depicted in Fig. 3. Since the
initial centroid for class 2 (w3) is closer to the remaining
four input points than vy, each of them will update (modify)
vo only; vy will not be changed on the first pass through the
data. Moreover, because both update schemes result in the
updated centroid being pulled towards the data point some
distance along the convex combination of the two points, for

552

Fig. 3. An initialization problem for LVQ/SHCM.

succeeding passes of LVQ, the chance for vy ¢ to get updated
is very low. Although this strategy gives a locally optimal
solution, it is not a desirable solution.

There are two causes for this problem. i) An improper choice
of the initial centroids, and ii) each input updates only the
winner node. To circumvent problem i), initialization of the
v;’s is often done with random input vectors; this reduces the
probability of occurrence of the above situation, but does not
eliminate it. Bezdek et al. [10] attempted to solve problem
ii) by updating the winner and some of its neighbor (not
topological, but metrical neighbors in R?) nodes with each
input. In their approach, the learning coefficient was reduced
both with time and distance from the winner. Their algorithm
thus raises two issues: defining an appropriate neighborhood
system, and deciding on strategies to reduce the learning
coefficient with distance from the winner node. These two
issues motivate our consideration of the GLVQ algorithm
proposed in the next section.

We conclude this section with a brief description of the
SOFM scheme, again using ¢ to stand for iterate number (or
time). In this algorithm each prototype v, :€RP is associated
with a display node, say d., +€R2. The vector v; + that best
matches (in the sense of minimum Euclidean distance in the
feature space) an incoming input vector xj is then identified
as in (1). v; ; has an “image” d; . in display space. Next, a
topological (spatial) neighborhood A (d; ;) centered at d; ; is
defined in display space, and its display node neighbors are
located. Finally, the vector v; ; and other prototype vectors
in the inverse image [N(d; :)]~! of spatial neighborhood
N(d; ;) are updated using a generalized form of update rule
):

Vot =V 1+ Ok, t(Zk — Ur,e—1), d. teN(di, t). (6)
The function o, ; defines a learning rate distribution on
indices (r) of the nodes to be updated for each input vector
at each iterate t. These numbers impose (by their definition) a
sense of the strength of interaction between (output) nodes. If
the {v, +} are initialized with random values and the external
inputs £ = z(t) are drawn from a time invariant probability
density function f(z), then the point density function of v, ;

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 4, JULY 1993

(the number of v, .’s in the ball B(z, €) centered at the
point z;, with radius) tends to approximate f(x). It has also
been shown that the v, ;’s attain their values in an “orderly
fashion” according to f(z) [9]. This process is continued until
the weight vectors “stabilize.” In this method then, a learning
rate distribution over time and spatial neighborhoods must be
defined which decreases with time in order to force termination
(to make a,x,+ = 0). The update neighborhood also decreases
with time. While this is clearly not a clustering strategy,
the central tendency property of the prototypes often tempts
users to assume that terminal weight vectors offer compact
representation to clusters of feature vectors; in practice, this
is often false.

Huntsberger and Ajjimarangsee [8] used SOFM’s to de-
velop clustering algorithms. However, feature mapping is
conceptually different from clustering. In feature mapping,
as mentioned already, the objective is to extract and visually
display hidden topological structure in the p-dimensional data.
On the other hand, clustering seeks groups of homogeneous
patterns in the feature space. For example, some algorithms
attempt to find the centroids (or modes) of different classes.
The set of feature vectors closest to a centroid then forms
a cluster. One of the algorithms (Algorithm 1) proposed by
Huntsberger and Ajjimarangsee [8] is the SOFM algorithm
with an additional layer of neurons. This additional set of
neurons does not participate in weight updating. After the
self-organizing network terminates, the additional layer, for
each input, finds the weight vector (prototype) closest to it
and assigns the input to that class. Another algorithm in [8],
instead of assigning an input vector completely to a class,
makes partial assignments to all ¢ classes. In other words, a
membership value in [0, 1] is assigned for each class according
to the necessary condition for memberships in the fuzzy c-
means algorithm [2].

Each of these algorithms updates not only the winner
node but some other neighboring nodes. However, since
the objective of these algorithms is to find cluster centroids
(prototypes), and thence clusters, there is no need to have
a topological ordering of the weight vectors. Consequently,
the approach taken in [8] seems to mix two objectives,
feature mapping and clustering, and the overall methodology
is difficult to interpret in either sense.

III. GENERALIZED LEARNING VECTOR QUANTIZATION GLVQ

In this section we develop a new clustering algorithm which
avoids or fixes several of the limitations mentioned earlier.
The learning rules are derived from an optimization problem.
Let Z€RP be a stochastic input vector distributed according
to a time invariant probability distribution f(z), and let ¢ be
the best matching node as in (2). Let Lz be a loss function
which measures the locally weighted mismatch (error) of z
with respect to the winner:

c
Lz = L(z; v1,--+,0) = 3 _giellz—v,° (82)
r=1

PAL et al.: NETWORKS AND KOHONEN’S SELF-ORGANIZING SCHEME

where
1 if r=1

1

g={ T
>l - vj?
i=1

Let X = {zy,---, %y, -} be a set of samples from f(z)
drawn at time instants ¢ = 1, 2,--.,n,--.. Our objective
is to find a set of ¢ v,’s, say V = {v.}, such that the
locally weighted error functional Lz defined with respect to
the winner v; is minimized over X. In other words, we seek to

otherwise

(8b)

Minimize: [(V) = /] W)/Zynllz — v, |2 f(z)dz. (9)
r=1

For a fixed set of points X = {z;,---,z,} the problem
reduces to the unconstrained optimization problem:

n [+
Zzgirnxt - ”r||2

Minimize: T'(V) = t=1r=1

- 10

Here Ly is a random functional for each realization of z, and
T(V) is its expectation. Hence exact optimization of I" using
ordinary gradient descent is difficult. We have seen that 4, the
index for the winner, is a function of z and all of v,’s. The
function Lg is well defined. If we assume that = has a unique
distance from each v,., then ¢ and g;, are uniquely determined,
and hence Lg is also uniquely determined. However, if the
above assumptions are not met, then 7 and g;,. will have
discontinuities. In the following discussion we assume that
gir does not have discontinuities so that the gradient of Lg
exists. As most learning algorithms do [15], we approximate
the gradient of I'(V') by the gradient of the sample function
Lg. In other words, we attempt to minimize I" by local
gradient descent search using the sample function Lg. It is our
conjecture that the optimal values of »,’s can be approximated
in an iterative, stepwise fashion by moving in the direction of
gradient of Lg. The algorithm can now be derived as follows
(for notational simplicity the subscript for z will be ignored);
first rewrite L as

[+ C
L= Zgir”-’; - vr”2 = ||z - vi”2 + Z”z - "r”z/
r=1

r=1

r#i

c
Sl — w2
i=1
c
=z —vl?+ > llz — v,||? /
r=1

Y llz =il = (e = will® /Y Il — w11
i=1

j=1

553

=l -wl® +1-(lz-vl® /Y lz—vll®). @1
=1

Now differentiating L with respect v; we get the following
expression (after some algebraic manipulations):

D?~ D+ |lz - vil®

VvL(vi) = —2(.'!-‘ - Ui) Dg

(12)

where D = "7 _, ||z—wv,||%. On the other hand, differentiation
of L with respect to v; (j#1) yields

ll=z — vill?

VoL(v;) = —2(z — v;) 2

(13)

Based on equations (12) and (13), the update rules can be
formulated as

D? - D+ |z — v e

Vit =051+ 0(T — v 1)

D2
for the winner node ¢, and (14)
2
r—U; t—
v = 05,11 + oz — vj, z—1)”T§tl“
for the other (¢ — 1) nodes. (15)

To avoid possible oscillations of the solution, the amount of
correction should be reduced as iteration proceeds. Moreover,
like optimization techniques using subgradient descent search,
as one moves closer to an optimum the amount of correction
should be reduced (in fact, a; should satisfy the following two
conditions: as ¢ — co; a; — 0 and) oy — 00) [16].

On the other hand, in the presence of noise, under a suitable
assumption about subgradients, the search becomes successful
if the conditions in (5) are satisfied. Thus we recommend
a decreasing sequence of a; (0 < a; < 1) satisfying the
conditions in (5). Conditions (5) ensure that «; is neither
reduced too fast nor too slow. From the point of view of
learning, as Grossberg [17] pointed out, the learning system
should be stable enough to remember old learned patterns, and
yet plastic enough to learn new patterns (Grossberg calls it the
stability-plasticity dilemma). Condition (5a) helps to make the
system plastic, while (5b) enforces stability. In other words, an
incoming input should not affect the parameters of a learning
system too strongly, thereby enabling it remember old learned
patterns (stability); at the same time the system should be
responsive enough to recognize any new trend in the input
(plasticity). Hence, o, can be taken as ag(1 —t/T'), where T
is the maximum number of iterations the learning process is
allowed to execute and «y is the initial value of the learning
parameter. Referring to (15), we see that when the match is
perfect then nonwinner nodes are not updated; in other words,
this strategy then reduces to LVQ. On the other hand, as

554

the match between z and the winner node v; decreases, the
impact on other (nonwinner) nodes increases. This seems to
be an intuitively desirable property. We summarize the GLVQ
algorithm as follows.

GLVQ Clustering Algorithm:
GLVQ1. Given unlabeled data set X ={z;, z2,,
RP. Fix ¢, T, and ¢ > 0.
GLVQ2. Initialize Vo = (v1,0, -+, ¥ 0)ERP, and learn-
ing rate ag€(1, 0).
GLVQ3. Fort=1,2,.---,T. Compute a; = a9 (1—-t/T).
Fork =1,2,---,n:

...an}c

a. Find ||z — v; ¢-1]| = lgljigc{ﬂzk -y} (D

b. Update all (c) weight vectors {v,. ;} with

Vi =01+ Tk — v 1-1)
D* =D+ ||z —vi o]

e (14)
Ut =V o1 + (T — 0y 1—1)
2
R (15)

D2
Next k.

GLVQ4. Compute E; = ||V —V,_1]l1 = v llvre —

”r,t—l“l = 2::1 Zi;l lvvk,t - Urk,t—1l~

GLVQS. If E; < e stop; Else Next ¢.

GLVQ6. Compute noniteratively the nearest prototype
GLVQ c-partition of X:

UGLVQ,, =
1
0;

Comments on GLVQ:

1) There is no need to choose an update neighborhood.

2) No reduction of the learning coefficient with distance
(either topological or in R?) from the winner node is
required. However, an implicit reduction is automatically
and adaptively done by the learning rules.

3) For each input vector, either all nodes get updated or no
node does. When there is a perfect match to the winner
node, no node is updated. In this case GLVQ reduces
to LVQ.

4) The greater the mismatch to the winner (i.e., the higher
the quantization error), the greater is the impact to
the weight vectors associated with other nodes. Here
by quantization error we mean the error involved in
representing a set of input vectors by a prototype—in
the above case the weight vector associated with the
winner node.

5) The learning process attempts to minimize a well-defined
objective function.

lzk — vill < ller — w5,
otherwise
1<i<c¢ and 1<k <n.

15jgc,j¢i}

- = . I -~

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 4, JULY 1993

v v

\" ‘. k)
o i @
e e -

Fig. 4. Tllustration of the relabeling algorithm.

v,

6) Our termination strategy is based on small successive
changes in the cluster centers. This method of algorith-
mic control offers the best set of centroids for compact
representation (quantization) of the data in each cluster.

Next, we turn to some numerical experiments that illustrate

the difference between LVQ and GLVQ.

IV. EXPERIMENTAL RESULTS

We use Anderson’s IRIS data [13] as an experimental
data set. Let X be the IRIS data. X contains 50 (labeled)
vectors in R* for each ¢ = 3 classes of IRIS subspecies.
Properties of the data are well known [3]. X has been used
in many papers to illustrate various clustering (unsupervised)
and classifier (supervised) designs. Typical error rates for
supervised designs are 0—5 mistakes (resubstitution); and for
unsupervised designs, around 15 “mistakes.” Our comparison
below is based on training LVQ and GLVQ with all of the
data (until termination occurs); and then classifying each data
point in X with the 1-NP rules shown above.

All clustering algorithms produce clusters that have numer-
ical (not physical) labels. In LVQ and GLVQ, it is the ¢ output
nodes that have unidentified labels. When an algorithm is being
tested on labeled data (which, of course, we presume o be
unlabeled during training), we use the following algorithm to
(re)label terminal weight vectors so that terminal prototypes
correspond to the correct physical labels of the subclasses.

Relabeling Algorithm (RL):

Given n; physically labeled vectors in X;ERP;
1<i<ecLet Y5, n;=n. Let
V = {v1, v, - -, v.} be any (c) prototypes
in RP.
Find Physical labels for the {v;}.
Let pij =percentage of points from class ¢
closest to v; via the nearest prototype rule.
1 1.
While 1< e
1) Find the maximum value in P = [p;;],
SAY Pixjx-
2) Relabel v, - viy.
3) Delete row ix and column j* from P.
4) i—i+1.
Wend

We illustrate the RL algorithm. Let {1, 2, 3} =algorithmic
labels, and {e, f, g} =physical labels. Suppose the confusion

PAL et al.: NETWORKS AND KOHONEN’S SELF-ORGANIZING SCHEME

TABLE I

CENTROIDS (GLVQ) FOR DIFFERENT

INITIALIZATIONS WITH o« = 0.6 AND T = 500

TABLE 11

CENTROIDS FOR INITIALIZATIONS WITH
IDENTICAL VECTORS, a = 0.6 AND T' = 500

555

Il

2

13

v;: 5.007 3.424
1.472 0.251

va: 5.882 2.742
4.387 1.433

v3: 6.848 3.078
5.708 2.058

5.007 3.424 1.472
0.251

5.882 2.742 4.387
1.433

6.848 3.078 5.708
2.058

5.007 3.424 1.472
0.251

5.882 2.742 4.387
1.433

6.848 3.078 5.708
2.058

Initial centroids

Final Centroids

GLVQ

LVQ

CENTROIDS (LVQ) FOR DIFFERENT INITIALIZATIONS WITH @ = 0.6 aND T' = 500

TABLE 1l

v;: 0.0 0.0 0.0 0.0

5.007 3.424 1.472
0.251

5.836 3.057 3.752
1.201

v2: 0.0 0.0 0.0 0.0 5.882 2.742 4.387 0.00.00.000
1.433
v3: 0.0 0.0 0.0 0.0 6.848 3.078 5.708 0.00.00.000

2.058

11

2

13

v1: 0.245 0.037
0.830 0.706

v2: 5.836 3.057
3.7521.201

v3: 0.554 0.432

5.005 3.426 1.463
0.247

5.882 2.743 4.385
1.432

6.849 3.079 5.710

5.005 3.426 1.463
0.247

5.882 2.743 4.385
1.432

6.849 3.079 5.710

v1:9.09.09.09.0

5.007 3.424 1.472
0.251

5.836 3.057 3.752
1.201

0.564 0.224 2.061 2.061

matrix C associated with a run on the IRIS data is as follows:

1 2 3
e[28 12 10
c=fl46 3 1
gl7 5 38
Convert C'to percentage matrix P:
1 2 3
e[.56 .24 .20
P=f1.92 06 .02
gl.14 10 .76

Applying the RL algorithm to P results in the following
assignments:

1 2 3 9 3
e[.56 .24 .20 el.24 .20 2
P=f{92 06 02| g[.w .76] — e[.24].

gl.14 10 .76

That is, 1 = f, 3 = g and 2 = e. Thus the output node labels
are transformed as shown in Fig. 4.

We count “errors” by submitting X to the nearest prototype
rule using the physical labels of the output nodes. This affords
a means for insuring that the prototypes really represent the
“right” subclasses. In this study, to investigate the effect
of initialization, we initialized LVQ and GLVQ with four
different strategies as follows.

I1: Using random samples from a (pseudo)
uniform distribution on [0, 1].

12: Using ¢ randomly selected input vectors
from X.

v2: 9.0 9.0 9.0 9.0 5.882 2.742 4.387 9.09.09.09.0
1.433

v3: 9.0 9.0 9.0 9.0 6.848 3.078 5.708 9.0 9.0 9.0 9.0
2.058

13: For each feature, the range of values in the

data was uniformly subdivided into ¢ = 3
subintervals, and the three initial vectors had
features that were midpoints of these
subintervals.

14: Using c vectors well outside the convex hull
of X.

For each of the first three initialization strategies, both LVQ
and GLVQ were run with three different initial values of
(0.4, 0.6, 0.8); and for each of these 9 combinations, both
algorithms were run for three different numbers of iterations
(200, 500, 5000). Throughout the investigation ¢ = 0.0001.
As typical illustrations Tables I and II display the centroids
(v,) obtained by GLVQ and LVQ, respectively, for the first
three initializations with & = 0.6 and 500 iterations. (Note
that the same initializations were used for Tables I and II.)

Table I shows that GLVQ terminates at the same centroids
(up to three decimal places) for three initializations, whereas
LVQ terminates at a very different set of centroids for I1 than
it does for I2 and I3, as shown in Table II. To gauge the quality
of the GLVQ terminal centroids in Table I we list the actual
centers of the 50 points in each of the three labeled classes:

Y, acual = (5:006 3.428 1.462 0.246)
Yy actual = (5936 2770 4.260 1.326)
Yy actual = (6-588 2974 5.552 2.026).

Thus after 500 iterations, GLVQ is stopped with a maximum
deviation in any coordinate of 0.26 (in the first component of
Y3 actual)- A glance at Table II on the other hand, shows that
LVQ does not produce estimates of quality in any sense of the
word for initialization I1.

To test the robustness of the proposed scheme, we initialized
the three w; o’s with identical vectors that were well outside
the convex hull of X. Table III gives the centroids obtained
by both algorithms when initializations were done with all
zero (0.0) vectors or with all nine (9.0) vectors. Note that
these initial vectors are not only identical to each other, but
are far away from the convex hull of the samples (the IRIS

556

TABLE IV
CLASSIFICATION ERRORS FOR DIFFERENT
INITIALIZATIONS, o AND NUMBER OF ITERATIONS

Iterations Initialization aq Number
of errors
GLVQ LVQ
04 17 100
I 0.6 17 100
0.8 17 50
0.4 17 17
200 12 0.6 17 17
0.8 17 17
0.4 17 17
13 0.6 17 17
0.8 17 17
0.4 17 100
11 0.6 17 100
0.8 17 50
0.4 17 17
500 12 0.6 17 17
0.8 17 17
0.4 17 17
13 0.6 17 17
0.8 17 17
0.4 17 100
11 0.6 17 100
0.8 17 50
0.4 17 17
5000 12 0.6 17 17
0.8 17 17
0.4 17 17
13 0.6 17 17
0.8 17 17

data is wholly contained in the four dimensional hyperbox
(4.3, 7.9] x [2.0, 4.4] x [1.0, 6.9] x [0.1, 2.5]). In both of these
cases the terminal vectors produced by GLVQ are found to be
almost identical with those produced by other initializations.
However, LVQ fails badly in these two cases. Note, for
example, that the centers for classes 2 and 3 remain at their
inital values for both initializations.

Table IV contains errors in classification produced by the
nearest prototype rule after the centroids obtained by GLVQ
and LVQ were corrected using the relabeling algorithm. Note
that GLVQ is essentially finished in 200 iterations in the sense
that it always produces centroids that yield 17 errors in 150
tries. The error rate obtained with LVQ centroids, on the other
hand, varies with «, and does not show marked improvement
for even large numbers of iterations when using I1.

V. CONCLUSIONS

We have proposed a generalization of LVQ for clustering.
The proposed algorithm needs only a specification of the
learning rate sequence. Unlike the methods in [8] we avoid
the necessity of defining an update neighborhood scheme;
GLVQ either updates all nodes for an input vector, or it
does not update any. When an input vector exactly matches

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 4, JULY 1993

the winner node, GLVQ reduces to LVQ. Otherwise, all
nodes are updated inversely proportionally to their distances
from the input vector. In an experimental investigation with
the well known IRIS data, GLVQ always produces results
as good as those obtained by LVQ. Conversely, there are
situations in which LVQ fails, but GLVQ still produces good
results. GLVQ-generated centroids are relatively invariant to
the number of iterations, learning coefficient and the choice of
initial centroids. Based on our numerical results we offer the
following concluding remarks.

1) GLVQ final centroids do not seem sensitive to initjaliza-
tion (up to three digits of precision) for fixed learning
coefficients and/or numbers of iterations. This is not the
case with LVQ.

2) In GLVQ, for all posible combinations tried, the final
centroids were found to be identical at least up to two
digits of precision.

3) For LVQ, with initializations I2 and I3, the centroids
were usually the same up to at least 2 digit preci-
sion. However, with I1 the observed LVQ centroids are
completely different and thereby result in 33% to 67%
classification errors.

4) Except for initialization I1, both LVQ and GLVQ result
in 17 (= 11%) classification errors.

5) Except for initialization I1, the centroid vectors produced
by LVQ and GLVQ were almost identical (up to 2 digit
precision).

6) Even when GLVQ is initialized with identical vectors
well outside the convex hull generated by the input
sample points, it produces the same results, but LVQ
fails.

Behavior of GLVQ under batch updating, its mathematical
properties and its performance on various other data sets
constitute subjects for future investigations.

REFERENCES

1

[l

T. Kohonen, Self-Organization and Associative Memory. Berlin, Ger-
many: Springer-Verlag, 1989, 3rd ed.
[2] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.
[3] R. Duda and P. Hart, Pattern Classification and Scene Analysis.
York: Wiley, 1973.
[4] J. Tou and R. Gonzalez, Pattern Recognition Principles.
PA: Addison-Wesley, 1974,
[5] I1. Hartigan, Clustering Algorithms. New York: Wiley, 1975.
[6] A. Jain and R. Dubes, Algorithms that Cluster Data. Englewood
Cliffs, NJ: Prentice-Hall.
[7] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks.
ing, PA: Addison-Wesley, 1989.
[8] T. Huntsberger and P. Ajjimarangsee, “Parallel self-organizing feature
maps for unsupervised pattern recognition,” Int. J. General Systems,
vol. 16, pp. 357-372, 1989. .
[9] T. Kohonen, “Self-organizing maps: optimization approach,” in Artificial
Neural Networks, T. Kohonen, K. Makisara, O. Simula, and J. Kangas,
Eds. New York: Elsevier, 1991, pp. 981-990.
[10] J. C. Bezdek, E. C. Tsao, and N. R. Pal, “Fuzzy Kohonen clustering
networks,” in Proc. IEEE Int. Conf. Fuzzy Syst., Mar. 1992, San Diego,
CA, pp. 1035-1041.
[11] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, pp. 400407, 1951.
[12] A. E. Albert and L. A. Gardner, Jr., Stochastic Approximation and
Nonlinear Regression. Cambridge, MA: MIT Press, 1967.
[13] E. Anderson, “The IRISes of the Gaspe Peninsula,” Bulletin of the
American IRIS Society, vol. 59, pp. 2-5, 1939.

New

Reading,

Read-

PAL ef al.: NETWORKS AND KOHONEN’S SELF-ORGANIZING SCHEME

[14] J. MacQueen, “Classification and analysis of multivariate observations,

Some methods for classification and analysis of multivariate observa-

tions,” in Proc. Sth Berkeley Symp. Math. Stat. and Prob., 1967, pp.

281-297.

Y. Z. Tsypkin, Foundations of the Theory of Learning Systems.

York: Academic, 1973 (translated by Z. J. Nikolic).

B. T. Polyak, Introduction to Optimization. New York: Optimization

Software Inc., 1987.

[17} S. Grossberg, Studies of Mind and Brain. Boston, MA: Reidel, 1982.

[18] E. Forgy, “Cluster analysis of multivariate data: Efficiency versus
interpretability of classifications,” WNAR Meetings, Univ. of California,
Riverside, June 22-23, 1965 (Biometrics, 21(3)).

(15] New

[16]

Nikhil R. Pal (M’91) received the B.Sc. (Hons.)
degree in physics and the M.B.M. degree in op-
erations research in 1979 and 1982, respectively,
from the University of Calcutta. He received the M.
Tech and Ph.D. degrees in computer science from
the Indian Statistical Institute, Calcutta, in 1984 and
1991, respectively.

He is with the Electronics and Communication
Sciences Unit of the Indian Statistical Institute, and
is currently visiting the University of West Florida,
Pensacola, FL. He is also a guest lecturer at the
University of Calcutta. His research interests include image processing,
pattern recognition, artificial intelligence, fuzzy sets and systems, uncertainty
measures, and neural networks.

James C. Bezdek (M’80-SM’90-F’92) received
the B.S. degree from the University of Nevada,
Reno, in 1969, and the Ph.D. degree from Cornell
University, Ithaca, NY, in 1973.

His research interests include pattern recognition
algorithms, neural networks, image processing and
machine vision, medical computing, and expert sys-
tems.

Dr. Bezdek is the founding editor of the In-
ternational Journal of Approximate Reasoning and
the IEEE TRANSACTIONS ON Fuzzy SYSTEMS, and
is an associate editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS,
and International Journals of Man-Machine Studies, Applied Intelligence,
General Systems, and Fuzzy Sets and Systems. He is a past president of
the International Fuzzy Systems Association (IFSA) and the North American
Fuzzy Information Processing Society (NAFIPS), and was an ACM national
lecturer for the 1990-1992 program years.

557

Eric C.-K. Tsao was born in Taipei, Taiwan, Repub-
lic of China, on November 30, 1962. He received
the B.E. degree in electronics engineering from
Tamkang University, Taiwan, in 1984, the M.E.E.
degree in electrical engineering from the University
of Houston, Texas, in 1987, and the Ph.D. degree
in electrical engineering from Northwestern Univer-
sity, Illinois, in 1991. '

During 1988-1989, he was a Research Program-
mer and System Manager in the Cardiology Cath.
Laboratory at the University of Chicago Medical
Center. During 1989-1991, he was a Research Assistant in the Computer
Vision and Image Processing Laboratory at Northwestern University and in
the Department of Radiology at the University of Chicago. Since 1991, he
has been an Assistant Professor in the Department of Computer Science at
the University of West Florida. He was to join the faculty of the Department
of Computer Science and Information Engineering at National Chung Cheng
University, Chiayi, Taiwan, in 1992. His research interests include neural
networks, image analysis and processing, fuzzy theory, computer vision, and
signal processing. :

Dr. Tsao is a member of the IEEE Computer Society, the IEEE SMC
Society, the Pattern Recognition Society, ACM, and INNS.

	1.jpg
	2-9.pdf

