


intervals) as well as qualitative. The similarity and

dissimilarity measures between symbolic data are

determined based on their position, span and

content (Chidananda Gowda and Diday, 1991;

Chidananda Gowda and Ravi, 1995; Mali and

Mitra, 2002). Validation of symbolic clusters is an

issue mostly untouched in literature.

Different indices (Jain and Dubes, 1988; Bezdek

and Pal, 1998), like Normalized Modified HubertÕs

statistic, Davies–Bouldin index and DunnÕs index

that were originally developed for the quantitative

domain, are modified in this paper to work in the

symbolic framework using dissimilarity measure,

expressed in terms of symbolic distance. Their

performance is then compared with that of the

cluster indicator (Chidananda Gowda and Ravi,

1995) and conceptual clustering (Biswas et al., 1998).

Conceptual clustering (Wilson and Martinez,

1997; Biswas et al., 1998), from the Machine

Learning community, is also applicable to a mix-

ture of numeric, ordinal and symbolic data. Here

the focus is on interpretability/meaningfulness

of generated patterns. The algorithm preserves

cohesiveness within clusters while maintaining

clear distinctness between clusters. Nonparametric

probabilistic measures are used to determine the

groupings.

In the present article we concentrate on study-

ing the effectiveness of symbolic clustering, using

different validity indices in terms of symbolic dis-

similarity, on real life data. Symbolic benchmark

data sets like Microcomputer, Zoo, Auto Import

and Mushroom (Blake and Merz, 1998) are used

for the purpose. An optimal number of meaningful

clusters are obtained in each case. Comparative

study is made with conceptual clustering and the

results are quantitatively evaluated.

Section 2 describes the clustering algorithm in

terms of symbolic dissimilarity. The different va-

lidity indices, modified in the symbolic framework,

are presented in Section 3. The implementation on

the benchmark data sets is provided in Section 4.

Section 5 concludes the article.

2. Symbolic clustering

In this section we describe symbolic data, the

different dissimilarity measures (expressed as the

dissimilarity between them) and an agglomerative

clustering algorithm.

2.1. Symbolic patterns

Symbolic data are defined as the logical con-

junction of events linking values and variables.

The following are two examples of events: e1 ¼
½color ¼ fwhite; blueg�, e2 ¼ ½height ¼ ½1:5–2:0��.
Here e1 indicates that the variable color takes a

value either white or blue, while e2 indicates that

the variable height takes a value between 1.5 and

2.0. For simplicity, we can drop the variable name

and only take the value of that feature variable.

Two symbolic data A and B are written as the

logical conjunction of feature values Ak and Bk as

A ¼ A1 ^ � � � ^ An and B ¼ B1 ^ � � � ^ Bn.

The dissimilarity between two symbolic data A

and B is defined as (Chidananda Gowda and Di-

day, 1991; Chidananda Gowda and Ravi, 1995)

DðA;BÞ ¼
Xn

i¼1

DðAi;BiÞ; ð1Þ

where

DðAi;BiÞ ¼ DpðAi;BiÞ þ DsðAi;BiÞ þ DcðAi;BiÞ

with Dp, Ds and Dc (normalized to [0,1]) indicating

the components due to position, span and content,

respectively.

We have

where the denominator indicates the difference

between the highest and lowest values of the ith

DpðAi;BiÞ ¼ cos 1

��
ÿ jlower limit of Ai ÿ lower limit of Bij
length of maximum interval along feature i

�
� 90

�
; ð2Þ
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feature over all the objects. This measure holds for

quantitative attributes only. The remaining two

measures are defined for both quantitative and

qualitative attributes.

DsðAi;BiÞ ¼ cos
jlength of Aij þ jlength of Bij
2 � span length of Ai and Bi

� 90
� �

;

ð3Þ
where span length denotes the length of the mini-

mum interval containing both Ai and Bi for

quantitative values. The length of a qualitative

feature value is the number of its elements, and the

span length of two such feature values is the

number of elements in their union.

DcðAi;BiÞ¼cos
lengthof intersectionof Ai andBi

span lengthof Ai andBi

�90
� �

:

ð4Þ

2.2. Agglomerative clustering

Agglomerative algorithms typically involve a

repetition of the steps (i) assignment of pattern

vectors X to its own cluster, (ii) all intercluster

distance computation, and (iii) merging two clus-

ters which are closest to each other, until there is

only one cluster left. Like typical hierarchical

methods, the partitioning at any stage depends on

the previously found clusters.

Let us now define two different measures for

within cluster and between cluster scatters in the

symbolic framework. Let fX1; . . . ;Xckg be a set of

symbolic data lying in a cluster Uk. Then the

average scatter within the cluster Uk is expressed as

SaðUkÞ ¼
P

i;i0 DðXi;Xi0Þ
jckjðjckj ÿ 1Þ ; ð5Þ

where Xi, Xi0 2 Uk, i 6¼ i0, jckj is the number of

samples in cluster Uk, and D indicates the symbolic

dissimilarity of Eq. (1). The between cluster scatter

is defined as

daðUk;UlÞ ¼
P

i;j DðXi;XjÞ
jckjjclj

; ð6Þ

where Xi 2 Uk, Xj 2 Ul, such that k 6¼ l. We have

used Sa and da in our computations, in terms of the

symbolic dissimilarity D of Eq. (1).

2.3. Symbolic clustering algorithm

Agglomerative symbolic clustering tends to

favor the merging of singleton clusters, or of small

clusters with large ones, as compared to the

merging of medium sized clusters. The algorithm is

as follows.

ii(i) Let fX1;X2; . . . ;XNg be a set of N symbolic

data forming the original data set. Let the ini-

tial number of clusters be N , with each cluster

having a weight (number of objects) of 1.

Therefore Xi 2 Ui, i ¼ 1; . . . ;N .

i(ii) Compute the weighted dissimilarities (Chida-

nanda Gowda and Diday, 1991) between all

pairs of clusters in the data set as

dawðUi;UjÞ ¼ daðUi;UjÞ
jcij:jcjj
jcij þ jcjj

� �0:5

; ð7Þ

where jcij, jcjj are the cluster weights of Ui, Uj

respectively, and daðUi;UjÞ is the average be-

tween cluster scatter/dissimilarity given by

Eq. (6). Note that the weighting term on the

r.h.s. of Eq. (7) yields a value
p
50 for jcij ¼

jcjj ¼ 100, while it results in
p
0:5 for jcij ¼

jcjj ¼ 1 (singleton clusters). Hence the dis-

similarity is highlighted for larger clusters.

However for jcij ¼ 100, jcjj ¼ 1, we have

100=101 ’ 1, naturally implying a higher

dissimilarity than that for jcij ¼ jcjj ¼ 1. So

there is a greater probability of merging a pair

of smaller clusters as compared to larger

clusters.

(iii) Determine the mutual pair (clusters) having

the lowest average weighted dissimilarity

dawmin by Eq. (7). Form a composite cluster

Uk by merging the individuals of this pair,

such that jckj ¼ jcij þ jcjj. Reduce the number

of clusters by 1.

(iv) Repeat steps (ii) to (iii) until the number of

clusters equals 1.

i(v) Compute cluster validity index Vt by Eqs.

(13)–(16). Determine the stage t0, with clusters

c ¼ c0, for c ¼ 2; . . . ;
p
N , at which Vt is opti-

mum. This indicates the optimal number of

clusters.
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2.4. Conceptual clustering

Conceptual clustering (Wilson and Martinez,

1997; Biswas et al., 1998) is based on Category

Utility CU of a cluster Uk defined as

CUk ¼ P ðUkÞ �
X

i

X

j

P ðAi

 

¼ VijjUkÞ2

ÿ
X

i

X

j

PðAi ¼ VijÞ2
!

; ð8Þ

where P ðUkÞ is the a priori probability of cluster

Uk, P ðAi ¼ VijÞ is the probability of feature Ai

taking on value Vij and PðAi ¼ VijjUkÞ is the con-

ditional probability of Ai ¼ Vij in cluster Uk. Here i

indicates the distinct number of features, while j

denotes the distinct values that feature i can attain.

This represents an increase in the number of fea-

ture values that can be correctly guessed for cluster

UkðP ðAi ¼ VijjUkÞ2Þ, over the expected number of

correct guesses, given that no class information is

available ½P ðAi ¼ VijÞ2�. The partition score/utility

of a partition structure made up of l clusters is

defined as the average CU over the l clusters
Pl

k¼1 CUk

l
: ð9Þ

The objective is to generate maximally cohesive

clusters (intraclass similarity) while achieving maxi-

mum separability (interclass dissimilarity) among

the clusters in a partition. Probabilistic measures,

to evaluate the goodness of the partitioning, are

expressed as (Biswas et al., 1998)

Mdk ¼
X

i;j2fAigd

ðP ðAi ¼ VijjUkÞ2 ÿ P ðAi ¼ VijÞ2Þ

ð10Þ
and

VarðUðkÞ;UðlÞÞ ¼ 1

n

Xn

i

X

j

ðP ðAi ¼ VijjUkÞ

ÿ P ðAi ¼ VijjUlÞÞ2: ð11Þ
Here Mdk is the increase in predictability of an

object d to cluster k. Cohesion of a partition

structure is measured as the sum of the Mdk values

of all objects in the data set. VarðUðkÞ;UðlÞÞ is the
variance of distribution match between clusters k

and l in a given partition. Distinctness of a parti-

tion is taken as the average variance between

clusters in that partition.

3. Cluster validity indices

To select the best among different partitioning,

each of these can be evaluated using some validity

index. The procedure is repeated for c ¼ 2; . . . ;
p
N

number of clusters, where N is the size of the data

set. Several validation methods have been pro-

posed in literature (Bezdek and Pal, 1998) for

quantitative data. These include Normalized

Modified HubertÕs statistic, Davies–Bouldin index

and DunnÕs index. In this section we modify these

expressions in the symbolic framework. We use the

average scatter Sa (Eq. (5)) within a cluster and da
(Eq. (6)) between clusters, in the computations.

This is in contrast to using the distance from cluster

means/centroids in HubertÕs and Davies–Bouldin,

or the diameter in DunnÕs, as in the quantitative

domain (Jain and Dubes, 1988; Bezdek and Pal,

1998). Their performance is compared with that

of the cluster indicator (Chidananda Gowda and

Diday, 1991) and conceptual clustering (Biswas

et al., 1998). The modified expressions are provided

below.

3.1. Hubert’s statistic

Let Xi be the ith object and LðiÞ ¼ k if Xi 2 Uk.

Modified HubertÕs C statistic (Bezdek and Pal,

1998) for a particular cluster structure is expressed

in terms of symbolic dissimilarity as

C ¼
XNÿ1

i¼1

XN

j¼iþ1

DðXi;XjÞdaðULðiÞ;ULðjÞÞ: ð12Þ

If Xi and Xj lie in two different clusters, da is

computed using Eq. (6). However, when they be-

long to the same cluster, da ¼ 0. From this, we get

Normalized Modified HubertÕs statistic bCC as

bCC¼ 1

M

XNÿ1

i¼1

XN

j¼iþ1

ðDðXi;XjÞÿDÞðdaðULðiÞ;ULðjÞÞÿdaÞ
sDsda

:

ð13Þ
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Here

D ¼ 1

M

XNÿ1

i¼1

XN

j¼iþ1

DðXi;XjÞ;

da ¼
1

M

XNÿ1

i¼1

XN

j¼iþ1

daðULðiÞ;ULðjÞÞ;

s2D ¼ 1

M

XNÿ1

i¼1

XN

j¼iþ1

D2ðXi;XjÞ ÿ D
2

and

s2da ¼
1

M

XNÿ1

i¼1

XN

j¼iþ1

d2
a ðULðiÞ;ULðjÞÞ ÿ da

2
;

where M ¼ ðNðN ÿ 1ÞÞ=2 is the total number of

terms under the double summation. Note that

M ¼ N 2 if the matrix under summation is not

symmetric. The terms sD and sda are the standard

deviations of the entries of the matrices D and da
respectively, while s2D and s2da are the corresponding

variances (Bezdek and Pal, 1998). The optimal

partitioning occurs at c ¼ c0 for which DðDbCCÞ is

minimum. This corresponds to a sharp change in

slope (also called knee) of the piece-wise linear

graph for Normalized modified HubertÕs statistic,

in case of well-separated clusters.

3.2. Davies–Bouldin index

The Davies–Bouldin index (Bezdek and Pal,

1998) is a function of the ratio of the sum of

within-cluster scatter to between cluster separa-

tion. The best clustering, for c ¼ c0, minimizes

1

c

Xc

k¼1

max
l 6¼k

SaðUkÞ þ SaðUlÞ
daðUk;UlÞ

� �
; ð14Þ

for 16 k, l6 c. Here the within-cluster scatter is

minimized and the between cluster separation is

maximized. The index is expressed in the symbolic

framework.

3.3. Dunn’s index

Like Davies–Bouldin index, DunnÕs index

(Bezdek and Pal, 1998) is designed to identify sets

of clusters that are compact and well separated.

We maximize

min
k

min
l 6¼k

daðUk;UlÞ
maxj SaðUjÞ

� �� �
; ð15Þ

for 16 j; k, l6 c. Here also we maximize the

symbolic intercluster separation, while minimizing

symbolic intracluster distances.

3.4. Cluster indicator

The cluster indicator value at the tth iteration is

defined as

CIt ¼
Rt

Rtþ1

; ð16Þ

where

Rt ¼
mink 6¼l d

t
aðUk;UlÞ

mink0 6¼l0 d tþ1
a ðUk0 ;Ul0Þ þmink

00 6¼l
00 d tÿ1

a ðUk
00 ;Ul

00 Þ :

ð17Þ
This is maximized over the iterations. Note that

initially, at t ¼ 0, there are N singletons. At t ¼ 1,

the pair of closest clusters are merged, resulting in

N ÿ 1 clusters. Therefore, at the tth iteration we

have N ÿ t clusters.

4. Results

The symbolic clustering algorithm was applied

to four sets of symbolic data (including some

quantitative features), viz., the Microcomputer

data (Michalski and Stepp, 1983) and the bench-

mark data sets, viz., Zoo, Auto Import and

Mushroom (Blake and Merz, 1998). Since the ob-

jective was to perform unsupervised classification,

hence any class information was eliminated from

the data. The results are compared with that of

conceptual clustering, and the measures Cohesive-

ness and Distinctness of Eqs. (10) and (11) are used

for this purpose.

Tables 2–5 enumerate the clustering results for

the four data sets. The validity indices used, the

number of elements in each cluster (in parenthe-

ses), and the individual elements according to their

sequential order of entry in the corresponding

cluster (while optimizing the different validity
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indices of Section 3) are provided. The quantita-

tive evaluation indices Cohesiveness and Distinct-

ness, for the resulting partitions, are also provided.

Plots for Normalized HubertÕs statistic are pro-

vided in Figs. 1 and 2.

4.1. Microcomputer data

Table 1 shows the Microcomputer data (Mi-

chalski and Stepp, 1983) used. It consists of 12

patterns with two symbolic attributes, viz., display

and MP, two interval-type attributes, viz., ROM

size and keys, and one numeric attribute, i.e.,

RAM size.

Table 2 provides the results of the symbolic

clustering obtained, over the microcomputer data,

using the different validity indices. Davies–Bouldin

index, CI and DunnÕs index generate four clusters.

Cohesion and Distinctness for the two cases are

computed as 25.8, 1.2 (four clusters) and 18.84,

Fig. 1. Plot of HubertÕs statistic for (a) Microcomputer and (b) Zoo data.

Fig. 2. Plot of HubertÕs statistic for (a) Auto Import and (b) Mushroom data.
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0.85 (three clusters) respectively. It is observed that

the partitions are meaningful on the basis of the

features display and MP. Normalized modified

HubertÕs statistic and conceptual clustering pro-

vide three clusters by combining elements from

partitions 3 and 4, based on feature display. The

plot of HubertÕs statistic for the data is provided in

Fig. 1(a). It is observed that a sharp knee occurs

for three clusters. By comparing the Cohesion and

Distinctness measures it is found that better par-

titioning is obtained with four clusters.

4.2. Zoo data

The Zoo data (Blake and Merz, 1998) consists

of 100 instances of animals with 17 features and 7

output classes. The name of the animal constitutes

the first attribute. There are 15 boolean features

corresponding to the presence of hair, feathers,

eggs, milk, backbone, fins, tail; and whether air-

borne, aquatic, predator, toothed, breathes, ven-

omous, domestic, catsize. The character attribute

corresponds to the number of legs lying in the set

f0; 2; 4; 5; 6; 8g.
The clustering algorithm provided four clusters

for the Zoo data with validity indices CI, Nor-

malized Modified HubertÕs, Davies–Bouldin and

DunnÕs, while conceptual clustering generated two

clusters (merging clusters 2–4 into cluster 2 here).

The first case is enumerated in Table 3. Cohesion

and Distinctness for the two cases are computed as

458.43, 0.58 (four clusters) and 132.49, 0.50 (two

clusters) respectively. It is observed that the re-

sulting partitions in the first case (proposed sym-

bolic clustering) are semantically meaningful, and

very similar to those obtained by KohonenÕs self-

organizing feature map (Alahakoon et al., 2000).

Conceptual clustering generates just two parti-

tions, based on the attribute Ôpresence of milkÕ. On

the other hand, the proposed method achieves

finer partitioning of cluster 2 depending on the

other attributes. For example, clusters 2 and 3 are

Table 1

Microcomputer data

Microcomputer Display RAM (K) ROM (K) MP Keys

Apple II Color TV 48 10 6502 52

Atari 800 Color TV 48 10 6502 57–63

Commodore VIC 20 Color TV 32 11–16 6502A 64–73

Exidi Sorcerer B&W TV 48 4 Z80 57–63

Zenith H8 Built-in 64 1 8080A 64–73

Zenith H89 Built-in 64 8 Z80 64–73

HP-85 Built-in 32 80 HP 92

Horizon Terminal 64 8 Z80 57–63

Ohio Sc. Challenger B&W TV 32 10 6502 53–56

Ohio Sc. II Series B&W TV 48 10 6502C 53–56

TRS-80 I B&W TV 48 12 Z80 53–56

TRS-80 III Built-in 48 14 Z80 64–73

Table 2

Symbolic clustering and evaluation of Microcomputer data

Validity index Cluster no. Microcomputer make

Davies–Bouldin,

CI and DunnÕs

1 (5) Apple II, Atari 800, Commodore VIC 20, Ohio Sc. Challenger, Ohio Sc. II Series

2 (3) Exidi Sorcerer, TRS-80 I, Horizon

3 (3) Zenith H8, Zenith H89, TRS-80 III

4 (1) HP-85

Normalized Modified HubertÕs

and Conceptual

1 (5) Apple II, Atari 800, Commodore VIC 20 Ohio Sc. Challenger, Ohio Sc. II Series

2 (3) Exidi Sorcerer, TRS-80 I, Horizon

3 (4) Zenith H8, Zenith H89, TRS-80 III, HP-85
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distinguishable based on features Ôpresence of

feathersÕ, Ôwhether airborneÕ and Ôwhether aquaticÕ.

Plot of HubertÕs statistic for the data, in Fig. 1(b),

shows a sharp knee four clusters. The cohesion

and Distinctness measures indicate better parti-

tioning for four clusters.

4.3. Auto Import data

The Auto Import data (Blake and Merz, 1998)

uses 193 instances with 24 features. There are 14

continuous/quantitative (wheel-base, length, width,

height, curb-weight, engine-size, bore, stroke,

compression-ratio, horsepower, peak-rpm, city-

mpg, highway-mpg, price) and 10 nominal (make,

fuel-type, aspiration, number-of-doors, body-style,

drive-wheels, engine-location, engine-type,number-

of-cylinders, fuel-system) attributes. Each quan-

titative attribute is discretized to five quantiles

(Davies and Yoder, 1937). 1

The clustering results are provided in Table 4.

Cohesion and Distinctness for the two cases are

computed as 530.67, 0.39 (three clusters) and

309.50, 0.33 (two clusters) respectively. It is ob-

served from the results that cluster 1 contains cars

with high price (>12,500), high curb-weight

(>2600), high engine-size (>127), high compres-

sion-ratio (>105), low highway-mpg (<28), low

city-mpg (<24) and high horsepower (>105). On

the other hand, cluster 2 consists of cars having

low price (<9000), low curb-weight (<2400), low

engine-size (<98), low compression-ratio (<84),

high highway-mpg (>32), high city-mpg (>27) and

low horsepower (<84). While cluster 1 contains

cars with fuel-system mfi, mpfi, spdi, spfi (bbl)

and number-of-cylinders P 6, cluster 2 constitutes

those with fuel-system 1, 2 (bbl) and number-of-

cylinders 6 4. Cluster 3 can be distinguished from

cluster 1 on the basis of high height (>55).

Normalized modified HubertÕs statistic and

DunnÕs index generate three partitions. Davies–

Bouldin index and conceptual clustering lead to

two clusters, merging partitions 1 and 3 in the

process. CI does not provide meaningful parti-

tions. Plot of HubertÕs statistic for the data set is

provided in Fig. 2(a). The Cohesion and Dis-

tinctness measures show a better partitioning for

three clusters.

4.4. Mushroom data

The Mushroom data (Blake and Merz, 1998)

consists of 8124 instances with 21 nominal attri-

butes and two output categories (poisonous (p)/

edible (e)). The input attributes correspond to cap-

shape,cap-surface,cap-color,whetherbruises,odor,

gill-attachment, gill-spacing, gill-size, gill-color,

stalk-shape, stalk-surface-above-ring, stalk-sur-

face-below-ring, stalk-color-above-ring, stalk-col-

or-below-ring, veil-type, veil-color, ring-number,

ring-type, spore-print-color, population-type and

habitat.

Table 5 provides the clustering results. Plot of

HubertÕs statistic for the data set is provided in

Table 3

Symbolic clustering and evaluation of Zoo data

Index Cluster no. Animals

CI, Normalized

Modified HubertÕs,

Davies–Bouldin

and DunnÕs

1 (41) Aardvark, bear, girl, boar, cheetah, leopard, lion, raccoon, wolf, lynx, mongoose, polecat,

puma, mink, platypus, dolphin, porpoise, seal, sealion, antelope, buffalo, deer, elephant,

giraffe, oryx, gorilla, wallaby, calf, goat, pony, reindeer, pussycat, cavy, hamster, fruitbat,

vampire, squirrel, hare, vole, mole, opossum

2 (21) Bass, catfish, piranha, chub, herring, carp, haddock, seahorse, sole, dogfish, pike, tuna,

stingray, frog, toad, newt, tuatara, pitviper, slowworm, scorpion, seasnake

3 (21) Chicken, dove, parakeet, lark, pheasant, sparrow, wren, flamingo, ostrich, tortoise, crow,

hawk, vulture, kiwi, rhea, penguin, duck, swan, gull, skimmer, skua

4 (17) Clam, seawasp, crab, starfish, crayfish, lobster, octopus, flea, termite, slug, worm, gnat,

ladybird, housefly, moth, honeybee, wasp

1 Quantiles are the values of a variate which divide the total

frequency into a number of equal parts.
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Fig. 2(b). It is observed that there is a sharp knee

for four clusters. In case of Davies–Bouldin index

we obtained four purely edible groups, three

purely poisonous groups and three mixed groups

of mushrooms. The edible groups are clustered

depending on whether bruises exist, and different

gill-spacing, stalk-shapes, ring-number and habi-

tat. The poisonous groups are clustered depending

on different gill-size, gill-color, stalk-shape, ring-

type and spore-print-color. The partitioning gen-

erated by Normalized HubertÕs statistic and

conceptual clustering results in two purely poi-

sonous groups and and two mixed groups. DunnÕs

index generates one purely poisonous and one

mixed group. According to the Cohesion and

Distinctness measures, Davies–Bouldin index

generates the best clustering.

5. Conclusions and discussion

Real life data is essentially not restricted to the

numeric domain. Hence the need for symbolic

clustering to efficiently handle data like linguistic,

nominal, boolean, interval, shape, color, etc.,

arises. Partitioning of such data demands the use

of symbolic measures for determining the similar-

ity and dissimilarity between objects. In this article

we have studied the effectiveness of symbolic

clustering on several benchmark symbolic data,

viz., Microcomputer, Zoo, Auto Import and Mush-

room.

We have used intercluster and intracluster

scatter in the symbolic framework. Different clus-

tering validity indices have been modified to in-

corporate the symbolic computations using

dissimilarity measures. The resultant optimal

clusters are found to be stable for the different

validity indices used, viz., Normalized HubertÕs

statistic, Davies–Bouldin Index, DunnÕs index and

cluster indicator. The generated clusters are also

observed to be naturally meaningful for the sym-

bolic data used. Comparative studies are made

with conceptual clustering using quantitative in-

dices Cohesion and Distinctness. The validity in-

dices, expressed here in the symbolic framework,

are generally found to provide better partitioning

as compared to conceptual clustering.

It is observed from the plots of Normalized

Modified HubertÕs statistic that Zoo and Mush-

room data, being purely symbolic, exhibit almost

similar behavior with a single knee between A and

B lying between cluster numbers four-seven and

four-eight respectively. Here A corresponds to the

Table 4

Symbolic clustering and evaluation of Auto Import data

Index Cluster no. Car make

Normalized Modified

HubertÕs and DunnÕs

Conceptual

1 (56) Alfa-romeo, toyota, bmw, isuzu, mazda, dodge, plymouth, mitsubishi,

mercury, porsche, nissan, jaguar, mercedes-benz

2 (105) Audi, volkswagen, nissan, toyota, dodge, plymouth, mitsubishi, mazda,

subaru, chevrolet, honda

3 (32) Mercedes-benz, peugeot, saab, volvo

Davies–Bouldin and

Conceptual

1 (88) Alfa-romeo, toyota, bmw, isuzu, mazda, dodge, plymouth, mitsubishi,

mercury, porsche, nissan, jaguar, mercedes-benz, peugeot, saab, volvo

2 (105) Audi, volkswagen, nissan, toyota, dodge, plymouth, mitsubishi, mazda,

subaru, chevrolet, honda

Table 5

Symbolic clustering and evaluation of Mushroom data

Index # Clusters Cohesion Distinctness

Davies–Bouldin 10 3132.8 0.64

Norm. Modified HubertÕs and conceptual 4 2079.6 0.57

DunnÕs 2 924.0 0.38
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point where steepness of the curve begins to fall,

while B indicates the point from where stability of

the curve begins. On the other hand, Auto Import

and Microcomputer data depict a different behav-

ior perhaps because of the presence of a mixture

of symbolic as well as numeric attributes. For ex-

ample, there exists multiple knees between A and B

in Figs. 1(a) and 2(a), representing cluster numbers

three to five for Microcomputer data and three to

nine, for Auto Import data. This will be an issue for

future investigation.

Clustering has useful applications in data min-

ing, pattern recognition, image segmentation, rule

extraction and web mining. The importance of

symbolic clustering in real world data is all the

more evident, considering the availability of large

volumes of mixed-media data that are distributed

over the Internet.

The determination of the optimal number of

clusters is an open problem. We have tried to at-

tack this issue in the symbolic framework, using

different clustering validity indices. In all cases,

some objective function is required to be opti-

mized. The number of meaningful clusters selected

depends on the application domain. For example,

if one desires plain clustering/segmentation then

one should go for coarser granules. On the other

hand, if the goal is data condensation for data

mining then one should concentrate on finer

granules/clusters as representative points.
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