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Self-Organizing Neural
Network As A Fuzzy Classifier

Sushinita Milra, Studem Member, (EFE, and Sankar K. Pal, Feltow, JEEE

Absiraer—This paper describes a self-orgarizfry artificial rew-
vl sretwnrk. hased on Kokoren s sadel of self-organization. which
is capable of handling tozzy inpul and of providing fuzry classi.
fication. Unlike conventional neural sl models, this algorithm
inrurporates fuzzy set-theoretic concepls at variows stages, The
input vector consists of membership vahes for faguicic prop-
erties alomg with some confexiual clgse merbersfip information
which is used doring self<organization to permit efficient mod-
eling of fuzzy (ambipucust pallecns. A new defloition of gain
factor for weight wpdating is proposed. An index of disorder
involving mean square distance between the input and weight
vectors s used to determine a measure of the ordering of the
outpil space. This contrals the number of sweeps required in
the process, Incorpovation of the concept of fuzzy partitioming
allows palural self-organlzation of the Inpot data, especially
when they have l-defiped Dooodaries. The outpol of unknown
test patterns i generated in terms of class membership vatues.
Incorporation of fozziness in inpuot and ontput is seen to provide
better performance as compared to the oripingd Kehonen model
and the hard version. The effectiveness of Lhis alyocithm s
demonsirated on the speech reeognition problem far variows
network array sizes, training sets and gain Factors

I, INTRODUCTTON

ETIFICIAL NEUEAL ncts [1]-[3] arc highly paralle] in-

terconnections of simple proceszing clements or neps
et Fumetion as a collecive system with nearons interacting
via feslback connections. There exist various problems in
pattern recognition and image processing that humans scem
mors efficicnt in solving as comparcd to computers. Neural
nels may be seen perbaps ax sn atiempl e emolale such hu-
man perlormance. These networks can be hiocadly categorized
a3 those that lesm adaptively by updating their conncction
weights durng iraining and thase whise paramelers are timne-
invariant. We consider a network of the tirst kind here.

Sebf-organization [4] refers w the ability of a neural nel
fo elucidate or reproduce some fundamental arganicational
proxperty of the inpul dala without beneliv ol supervised waining
procedares. [n Kohonen®s mode!, the network automatically
petforms 2 mapping tansformation from an mput space o
generilly a lower-timensional output space such that the Tatter
avguires the same wpological ordering s the former.

The benefil of nearal nets [1-[6] lies in the high com-
putatien race provided by their inherent massive parallelism.
This allows reul-time processing of huge datn seis with proper
hardware backing, All information is seoved in distributed
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form among the various connection weights, The redundapcy
of interconnections produces a high degree of noboginess
resulting in a gracefid degradarion of performance in the cuse
of damage w0 a few nodes or links.

1 shuull be mentioned that humaen reasoning is somewhat
lowey in nature, The utility of fuzzy sets [7]-[9) les in their
ability., 0 4 reasonable cxtent, to modzl the wwreervain or
ambiguous data so often encountered in oreal life, Hence, (o
cnable the svstem to denl with the ambiguous {il-defined)
data in an elfecdve manner, one may InCorpoTats e comcept
of fugzy sels into the neural oevwork.

The present work discusses o self organizing nearal network
model that perfarms fuzey classification. 1o is an attempt
tr extend Kohonen's model [4] By incorporating fuzzy sct-
theoretic conwepls [7]-110] ot various stages. o the process, &
separale wesling phase is added to evaluate the perfommanee
of the proposed classifier in recognizing a sepurale sol of
test pattems. We consider a single laver two-dimeansicenal
rectangular ammay of newrons with shorl range lateral foedhack
inferconneciions helween neighboring unils.

The netwiork under consideration passes through rwo stages,
viz., self-orgamization and esting. In the first stage 8 sel of
training daea is used by the network to initially self organize
the connection weiahts and finally calibrare the oulpul space,
During rhis stape the weight vector most similar (o the inpat
palern vector is rozated toward the later. The neighboring
weight vectors are also rorated. but by a lower amount. Afrer
a mamber of sweeps through the traiming set the oulput space
becomes appropriately organized. An index of disorder is com-
puted W provide wn evaluglion ol this ordering. The network
i3 merwe sujpeesed to encode the input space informafion gmung
its connection weights, By calibration we refer L the labeling
of the nenrons, after self-organization, relative 1o the training
pattern chasses. This procodure also provides some qualialive
assessiment of the topological ordening of the output space as
compared o the nput data space,

Dwring training, the input vector also includes some con-
texmal information regarding the linite oot membership
of the pallern w ome or more classes. Compared to the
conventional two-state system, which assigns membership o
one class omly and uses no class information in the input,
the proposed lechrique produces a more cfficient modeling in
cases where the feamre space has overlapping or ill-defined
clusters, However, during scll organizaiion, this part of the
inpue voctor is assigned o lower weight to allow the linguistic
andfor quantitative inpul properties o deminace.
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During calibration, only the class membership information
in the input vector is used (in crisp form) while the input
feature information is kept clamped at zero. In the conventional
Kohonen’s model, after self-organization, the training pattern
vectors are used to label the neurons to which they are
mapped. This gives the ordering of the pattern classes in
the output space. In the proposed model, the labeling of the
output neurons is determined solely by the contextual class
information associated with the training pattern vectors. This
is termed calibration of the neurons. Each neuron is labeled by
the pattern class for which it generates the highest response.
This corresponds to a hard partitioning of the neurons. A fuzzy
partitioning of the output space is also generated to produce
an appropriate topological ordering with fuzzy data.

In the second stage a separate set of test patterns is supplied
to the network and the resulting neuronal outputs verified
against the calibrated output map. This is an extension to
the conventional Kohonen’s model which basically performs
a clustering operation. The proposed model, on the other
hand, is designed to be a classifier. The calibrated neurons,
self-organized by the training set, are used to evaluate the
recognition capability (using best match) of the said trained
neural net on the test set. Now the input vector contains only
the feature information. A confusion matrix is generated to
evaluate the classification performance (based on best match)
of the network on the test set. The output is generated in terms
of fuzzy class membership values.

The proposed fuzzy neural network model is capable of
handling input features presented in quantitative and/or lin-
guistic form. The components of the input vector may consist,
for instance, of the membership values to the overlapping
partitions of linguistic properties low, medium, and high cor-
responding to each input feature. This creates the possibility
of incorporating linguistic information into the model, if
necessary, and enhances its robustness in handling imprecise
or uncertain input specifications.

The effectiveness of the proposed model is demonstrated
on the speech recognition problem where the classes have
ill-defined, fuzzy boundaries. Comparison is made with the
standard Bayes’ classifier and the conventional Kohonen’s net,
and the performance of the proposed model is found to be
quite satisfactory.

Given the burgeoning interest in fuzzy self-organizing maps
[11]-[13], it is worth highlighting the major contribution of
the proposed work. Basically, the Kohonen clustering network
is used here as a symbol map. There are phenomena which
are inherently fuzzy but which are associated with physical
manifestations that can be characterized quite precisely by
physical measurements. Clustering or classifying solely on the
basis of these physical measurements is not useful, however,
because meaningful clusters can be constructed only with the
assistance of additional factors which cannot be elucidated
directly from these physical measurements. Human language,
probably at all levels but especially in the area of phonology,
is perhaps the best example of such a phenomenon. Thus,
while a listener recognizes a phoneme from physical cues
alone, exactly which phoneme class a particular conflation
of physical features is assigned to by a listener depends

on factors which are not inherent in these physical features
(e.g., the formant values used here), but which depend on
physically extraneous factors such as (in particular but not
limited to) the language the listener assumes is being spoken.
There are also, for many reasons, variations among speakers
such as are evident in the data used in this paper. Thus,
assignment of speech sounds to phonemes yields clusters
which are fuzzy at the very least in the sense that different
listeners may disagree on what they believe themselves to
be hearing and that different speakers may produce different
physical manifestations of the same phoneme. The essential
properties of phoneme clusters, therefore, must be elucidated
by appeal to essentially psycholinguistic experimentation of
one kind or another. Now, how can one build a self-organizing
network which can perform this same classification? Simply
by doing exactly what we have done, which is to replace the
arbitrary encoding of the abstract portion of the data vectors
with fuzzy class memberships. Note that this violates Ritter
and Kohonen’s “no information about similarities between
the items” condition ([14], p. 247), but it does not matter,
because a kind of orthogonality is maintained by the fact that
z, (attribute part) and £, (symbol part) of the data vectors here
are characterized by different “levels” of description (phonetic
and phonemic). The value of this approach is manifested in
calibration (clustering, labeling) and in classification, since
the organized network yields a good fuzzy clustering of the
neurons after calibration and functions as an effective fuzzy
classifier. Thus, where there is reason to believe that the
elements of z, and =z, relate to each other not so much as
purely arbitrary and purely physical (or at least less arbitrary,
in some sense) but rather as two levels of abstraction, and
where there is reason to believe that at least one of the
levels (the “higher” one) is fuzzy, the fuzzification of the z,
is justifiable and yields excellent results. Attempts at crisp
calibration and/or the use of purely arbitrary class labels (as
in the pure Ritter and Kohonen approach, where the labels
(the semantic concepts) are not connected to each other except
through the data vectors they label) in such cases will prove
to be fruitless. Note that this does indeed amount to a kind
of partial supervision as we have suggested, but it is an
extremely interesting kind of partial supervision in that it
arises from reasonable assumptions about the nature of human
language itself (i.e., its multi-level properties) and not directly
from expert intervention (i.e., the learning is guided not by
intelligence but by intuition)!

II. KOHONEN’S NEURAL NETWORK MODEL

The essential constituents of Kohonen’s neural network
model are as follows [3], [4], [15]-[17]:

* an array of neurons receiving coherent inputs and com-
puting a simple output function,

* a mechanism for comparing the neuronal outputs to select
the neuron producing maximum output,

* a local interaction between the selected neuron and its
neighbors,

* an adaptive mechanism that updates the interconnection
weights.
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Fig. 1. Kohonen’s neural network model [1]. M inputs connected to an
N x N array of neurons via variable connection weights. The fixed connection
weight between neurons ¢ and k is wy;.

Consider the self-organizing network given in Fig. 1. Let M
input signals be simultaneously incident on each of an N x N
array of neurons. The output of the ith neuron is defined as

'I’],;(t) =0 [mi(t)]T:n:(t) + Z Wi nk(t — At) (1)
keS;

where z is the M-dimensional input vector incident on the
neuron along the connection weight vector m;, k belongs
to the subset S; of neurons having interconnections with the
ith neuron, wy; denotes the fixed feedback coupling between
the kth and 4th neurons, o[.] is a suitable sigmoidal output
function, ¢ denotes a discrete time index and T stands for the
transpose.

If the best match between vectors m; and x occurs at neuron
¢, then we have

2 = me|l = min [lz - m,fl, i=0,1,---.N* @)

where ||.|| indicates the Euclidean norm.
The weight updating rule is given by {4,15] as

_ Jmi(t) + a(t)(=(t) —m;(t)) forie N,
mit+1) = {::,(t) e o(:helrwise

3

where «(t) is a positive constant that decays with time and N,
defines a topological neighborhood around the maximally re-
sponding neuron ¢, such that it also decreases with time. (Note
that «(t) is a particular case of the more general Gaussian term
h(z,t) [16]). Different parts of the network become selectively
sensitized to different inputs in an ordered fashion so as to
form a continuous map of the signal space. After a number
of sweeps through the training data, with weight updating at
each iteration obeying (3), the asymptotic values of m; cause
the output space to attain proper topological ordering. This
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is basically a variation of unsupervised learning. The self-
organization using training patterns enables the ordering of the
output neurons. These may then be calibrated with the class
information by applying labeled training patterns at the input.
Kohonen’s net has already been applied to a phoneme
recognition problem [15] and in image compression [18].

III. PATTERN REPRESENTATION IN LINGUISTIC FORM

In conventional statistical or syntactic classifiers, the input
patterns are quantitative (exact) in nature. The patterns pos-
sessing imprecise or incomplete input features (say, due to
instrumental error or noise corruption) are generally ignored
or discarded while designing these classifiers. Besides, the cost
of extracting the exact value of a feature may sometimes be too
high. In such cases it may become convenient to use linguistic
variables and hedges [19] like low, medium, high, very, more
or less, etc., to describe input feature information.

The proposed fuzzy neural network model is capable of han-
dling both exact and inexact forms of the input features. Since
it is easier to convert exact information into linguistic form
than vice versa, we consider the major linguistic properties
low, medium, and high as input. Any input feature value can
be described in terms of some combination of membership
values for these properties. Hence any imprecise input may
also be assigned a set of membership values according to this
concept.

Fuzzy Sets

In traditional two-state classifiers [20], [21] an element z
either belongs or does not belong to a given class A; thus, the
characteristic function is expressed as

pa(z) = 1 ifzed
0 otherwise.

In real-life problems, however, the classes are often ill-defined,
overlapping, or fuzzy, and a pattern point may belong to
more than one class; in such sitnations, fuzzy set-theoretic
techniques [7]-[10] can be very useful. In a fuzzy context, the
pattern point z, belonging to the universe X, may be assigned
a characteristic function value or grade of membership value
pa(z) (0 < pa(z) < 1) which represents its degree of
membership in the fuzzy set A. This may be represented as

A={(pa(z),n)}, v€X )]

7w Membership Function

The 7-function, lying in the range [0,1], with z € R" is
defined as [22]

2
2(1- 5A) for 3 < flw—cll <

; = 2 5
TEEN =N 1 p(1e)’ foro <o < 3 O

otherwise

where A > 0 is the radius of the w-function with ¢ as the
central point at which 7(e; ¢, A) = 1. This is shown in Fig. 2
for z € R2

A fuzzy set with membership function n(z; ¢, A) therefore
represents a set of points clustered around c¢. In the proposed
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Fig. 2.

w-function when z € R2.
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Fig. 3. Coexistence structure of the comaptibility functions for the linguistic
properties low, medium, and high.

model we use the w-function (in the one-dimensional form) to
‘assign membership values for the input features.

Incorporation of the Linguistic Concept

Each input feature F; (in quantitative and/or linguistic form)
can be expressed in terms of membership values indicating a
degree of belonging to each of the linguistic properties low,
medium, and high. Therefore an n-dimensional pattern X; =
[Fi1, Fi2, - - -, Fin] may be represented as a 3n-dimensional
[19] vector

X;= [ulow(Fil)(X'i), l"medium(F.l)(Xi)a V‘high(Fn)(Xi)a
Tt :u'high(Fm)(Xi)] . (6)

Hence in trying to express an input X ; through its linguistic
properties we are effectively dividing the dynamic range of
each feature into three overlapping partitions. The sets low,
medium, and high for each feature are represented by the
w-function (5). Fig. 3 shows the coexistence structure of the
various compatibility functions (r-functions) for a particular
input feature Fj.

Choice of Parameters for the w-Functions: Let F;_ _  and
F},.... denote the upper and lower bounds of the dynamic range
of feature F; considering all L pattern points. Then for the

three linguistic property sets we have

1
/\medium(Fj) = E(ijax - jmin)
Cmad'iuvn(Fj) = ijin + AWmdiurn(F‘]) (7)
1
)‘low(Fj) = W (cmedium(Fj) - ijin)
Clow(F;) = Cmedium(F;) = 0.5 % Mow(Fy) ®
1
Ahigh(Fy) = m(f’jmx = Cmedium(F,))
Chigh(Fy) = Cmedium(Fy) + 0.5 % Anigh(F)) (&)

where 0.5 < fdenom < 1.0 is a parameter controlling the
extent of overlapping.

Unlike in [19], this combination of choices for the A’s and
¢’s ensures that each quantitative input feature value z; along
the jth axis for pattern X, is assigned membership value
combinations in the corresponding 3-dimensional linguistic
space of (6) in such a way that at least one of fyow(r;;)(Xi),
Hmedium(Fi;)(Xi) OF thigh(r,;)(X:) is greater than 0.5. This
enables a more compact and meaningful representation of each
pattern point in terms of its linguistic properties and ensures
better handling both during the training and testing phases of
the proposed neural network model.

IV. INCORPORATION OF CLASS INFORMATION
IN INPUT VECTOR DURING TRAINING

The input to the proposed neural network model consists of
two portions. In addition to the linguistic properties discussed
in Section III, there is also some contextual information [14]
regarding the fuzzy class membership [7] of each pattern used
as training data during self-organization of the network.

In the traditional Kohonen’s net model [3], [4], the input
vector consists of quantitative information only regarding the
patterns. Generally the training patterns used during self-
organization are also used later for calibrating the output space.
This refers to a hard labeling of the output neuron by the
pattern class corresponding to a training pattern for which
it elicits the maximum response. A qualitative measure of
the topological ordering of the output space may be obtained
from calibration. Note that during self-organization the model
clusters the training patterns, whereas during calibration it
labels these clusters with some additional class information. So
the training phase is completely unsupervised while calibration
is not. Then, we could add a testing phase to obtain a hard
classification of a set of test data by assigning a membership
value of 1 to only that class corresponding to the partition of
the neuron (labeled during calibration) eliciting the maximum
response.

In many real-life problems, the data are generally ill-defined
with overlapping or fuzzy class boundaries. Each pattern
used in training may possess finite membership in more than
one class. To model such data, it often becomes necessary
to incorporate some contextual information regarding class
membership as part of the input vector. However during self-
organization this part of the input vector is assigned a lower
weight so that the linguistic properties dominate in determining
the ordering of the output space. During calibration we use
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the contextual class membership information part of the input
vector (in crisp form as in (15)) only for determining the hard
labeling of the output space. A separate fuzzy partitioning
that allows scope for producing overlapping clusters is also
introduced. It has been observed that the inclusion of this
contextual class membership information produces more ef-
ficient self-organization and is necessary in handling fuzzy
or imprecise data. This is perhaps because in addition to
the associated higher input space dimensionality, some sort
of partial supervision is used here instead of the completely
unsupervised functioning of the more conventional Kohonen’s
model.

While the traditional Kohonen’s model was used for clus-
tering purposes, the proposed model has been extended to
function as a fuzzy classifier, i.e., as a mechanism for assigning
input vectors to known output classes. We use partial supervi-
sion in the form of assigning a lower weight to contextual class
membership information during self-organization. We also use
a testing phase to evaluate the recognition performance of the
calibrated neurons on a separate set of test data.

Class Membership as Contextual Information

The pattern X; is considered to be presented as a concate-
nation of the linguistic properties in (6) and the contextual
information regarding class membership. Let the input vector
be expressed as

T = [zi.’r//]T — [.’I,‘/,O]T + [U,IL‘”]T (10
where z’ contains the linguistic information in the 3n-
dimensional space of (6) and £” covers the class membership
information in an [-dimensional space for an /-class problem
domain. So the input vector z lies in an (3n + /)-dimensional
space. Both z’ and £” are expressed as membership values.
The representation of z’ has been discussed in Section IIL.
Here we consider the definition of z”.

Weighted distance: Let the n-dimensional vectors Oj, and
V. denote the mean and standard deviation respectively of
the training data (used during self-organization) for the kth
class. The weighted distance of a training pattern X; =
[Fi1, Fia, -, Fi,]T from the kth class is defined as

where Fj; is the value of the jth component of the ith pattern
point X;. The weight i is used to take care of the variance
of the classes so that a feature with higher variance has less
weight (significance) in characterizing a class. Note that when
all the feature values of a class are the same, then the standard
deviation will be zero. In that case, we consider v; = 1 such
that the weighting coefficient becomes one. This is obvious
because any feature occurring with identical magnitudes in all
members of a training set is certainly an important feature of
the set and hence its contribution to the membership function
should not be reduced [7], [23].
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Membership Function: The membership of the ith pattern
to class C is defined as [7]

1

pe(Xi) = W

12)

where z;;, is the weighted distance from (11) and the positive
constants Fy and F, are the denominational and exponential
fuzzy generators [7], [24] controlling the amount of fuzziness
in this class-membership set. Obviously ux(X;) lies in the
interval [0,1]. Here (12) is such that the higher the distance of
a pattern from a class, the lower is its membership value to
that class. It is to be noted that when the distance is zero, the
membership value is one (maximum) and when the distance
is infinite, the membership value is zero (minimum).

It should be mentioned that as the training data have fuzzy
class separation, a pattern point X; may correspond to one
or more classes in the input feature space. So a pattern point
belonging to two classes (say, C, and Cy,) corresponds to
two hard labels in the training data, with X; tagged to classes
Ck, and C}, respectively. In other words, there are two or
more occurrences of point X; in the training set such that
sometimes it is tagged to class Cj, and sometimes to class
C',. In this case X; is used in computing Oy, , Oy,, Vi, and
V', only. Here the /-dimensional vector 1(X;) has only two
non-zero components corresponding to z;x, and z;,. However
in the hard case X; corresponds to only one hard label in the
training data, say Cy,, such that X; is used in computing Oy,
and Vi, only. Note that x(X;) has ! non-zero components
in the fuzziest case and only one non-zero component in the
hard case.

Fuzzy Modifier: In the fuzziest case, we may use the fuzzy
modifier INT to enhance contrast in class membership [7].
We have

vy 2l (X)) for 0 < puk(X;) <05
T AT X)) =
HinT (X o) { 1—2[1 — pe(X:)]> otherwise.
(13)

This is needed to increase the contrast within class membership
values, i.e., to decrease the ambiguity in making a decision.

Applying the Membership Concept: For the ¢th pattern we
define

T
s ey (Xa, o wne)(Xi)
1 in the fuzziest case
t
s [pa(Xo), o (X))
otherwise
(14)

where 0 < s < 1 is the scaling factor. To ensure that the
norm of the linguistic part ' predominates over that of the
class membership part " in (10) during self-organization, we
choose s < 0.5.

Note that unlike the model in [14], we define the part " of
the input vector z in terms of membership functions that attain
values in the interval [0,1] and provide a measure of belonging
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to the corresponding fuzzy set. During self-organization we
allow partial supervision involving s(< 0.5) times the class
membership information, such that this knowledge may also be
incorporated into the connection weight values. This enables
a training pattern with membership, say, 0.9 in class C, to
be mapped perhaps to a neuron that is not the same as that to
which another training pattern with membership, say, 0.5 to
class Cg, or, say, 0.5 to class Cy, is mapped.

Modification of Input During Calibration

During calibration of the output space the input vector
chosen is z = [0,z"], where z" is given by (14) such that

N_Jf1 ifg=k
we(Xi) = {0 otherwise

(15)
for k € {1,-++,1} and s = 1. The N2 neuron outputs 7; are
calibrated w.r.t. the [ classes. Here the class information of the
training patterns is given full weight while the input feature
information is suppressed. The primary objective of this stage
is to label each neuron by the class (partition) for which it
elicits the maximum response. The resulting hard (labeled)
partitioning of the output space may be used to qualitatively
assess the topological ordering of the pattern classes w.r.t.
the input feature space. Note that while z contains class
membership information during self-organization, we use bi-
nary z'/ at the input during calibration. We also introduce a
fuzzy partitioning of the output space by labeling the output
neurons with the fuzzy membership values of their output
responses. This helps generate overlapping partitions of the
output space which are thereby closer to the input feature space
representation in case of fuzzy data. This concept is explained
in detail in Section V-C.

Let us consider the following situation. A pattern having
class memberships of, say, 0.52 to class C, and 048 to
class C, may be mapped to a neuron 4 (eliciting maximum
response) that is calibrated as belonging to the hard partition
of class C,. However we should note that the lower yet
significant membership of this pattern to class C, ought not
be ignored. Herein lies the utility of the fuzzy partitioning. By
this, the particular neuron ¢ may be calibrated as belonging to
both the classes Cy, and Cy,, albeit with different membership
values.

It should be noted that the traditional Kohonen’s net model
uses unsupervised learning during self-organization. During
calibration, the training patterns or some reference vectors
(in case of known samples) are used for the hard labeling of
the neurons. This provides some insight into the topological
ordering of the output space thus partitioned. In the semantic
maps [14], on the other hand, the class information is used
in this stage to generate the hard labeling of the partitions
during calibration. We introduce a separate testing phase where
a different set of fuzzy test patterns (kept aside from the
original data set while randomly selecting the training set
for self-organization) are classified using the input feature
information of the test vector along with the above-mentioned
fuzzy partitioning information. This procedure is explained in
detail in Section V-D.
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Fig. 4. Topological r-neighborhoods [1} NV, as feature maps are formed.
The neighborhood starts large and slowly decreases in size over time from
r=3tor =1

V. Fuzzy EXTENSION TO KOHONEN’S ALGORITHM

Consider an (3n +1)-dimensional input space with the input
vector z = [z', 2" ]T of (10) being incident simultaneously on
the N x N array of neurons.

Concept of r-Neighborhood: Each neuron v(ii,jj) has a
topological r-neighborhood N,.(i%,355), as depicted in Fig. 4,
where i, jj denote the row and column numbers respectively
of the neuron. We have

Ny (id, j3) = {v(u,v)| max {|u - 4], |v - jj|} = r}

1<u,v< N (16)

where 7 = 0,1,---, 3. Note that the indices ¢ and jj will be
omitted in future reference to avoid clutter.

Output of a Neuron: The output of the ith neuron is com-
puted using (1), with the subset S; of neurons being defined
as its r-neighborhood N,. We choose

_JO0 ifg<0
o(q) = {q otherwise.

This transformation ensures that o(g) > 0. We also use

an

b forr=1
Wi = —% forr =2
0 otherwise.

(18)

Here b is the mutual interaction weight for the lateral coupling
Whki-

Weight Updating

Initially the components of the m;’s are set to small random
values lying in the range [0,0.5]. Let the best match between
vectors m; and z, selected using (2), occur at neuron c. Using
(3), the weight updating expression may be stated as

m;(t) + hei - (x(t) — mi(t))
fori € N,,r=0,1,---,3
otherwise

mi(t+1)=
m;(t)
(19)

where N, defines a r-neighborhood by (16) around neuron
¢ such that r decreases with time. Here the gain factor h.;
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is considered to be bell-shaped like the 7-function, such that
|hei| is the largest when i = ¢ and gradually decreases to zero
with increasing distance from c. Besides, |h.;| also decays
with time.

Gain Factor: We define

I-rxf)
[1 + (cder:mtom)z]
where nt is the number of sweeps already made through the
entire set of training samples at any point of time, cdenom
is a positive constant (scaling factor) suitably chosen and
0 < f < 1. The decay of |h.;| with time is controlled by
nt. The slowly decreasing radius of the bell-shaped function
hc; and the corresponding change in |h,;| are controlled by the
parameters 7 and f. Due to the process of self-organization,
the randomly chosen initial m;’s gradually attain new values

according to (2), (19) such that the output space acquires
appropriate topological ordering.

hei = (20)

Index of Disorder

An index of disorder D may be defined to provide a measure
of this ordering. Let msd denote the mean square distance
between the input vector and the weight vectors in the 7-
neighborhood of neuron c¢. We define (21) [see top of page]
where |trainset| refers to the number of input pattern vectors
in the training set. This definition ensures that neurons nearer
c (smaller 7) contribute more to msd than those farther away.
Also

1/4,0<r <3 fornent=1

1/3,0<r <2 forncnt=2
1/2, 0 <r <1 otherwise.

f= (22)

Here |N,| denotes the number of neurons in the r-

neighborhood of neuron ¢ such that |[N;| < 8, |[Na| < 16

and |N3| < 24 depending upon the position of ¢ in the

two-dimensional array. Note that Ny implies neuron c itself.
The expression for the index of disorder is given as

D = msd(nt — kn) — msd(nt) (23)

where msd(nt) denotes the mean square distance by (21) at
the end of the ntth sweep through the training set and kn is
a suitable positive integer such that D is calculated relative to
an interval of kn sweeps. Initially nent is set to 1. Then

if D<é
otherwise

nent + 1

nent = {
nent

24)

where 0 < & < 0.001. The process is terminated when
nent > 3, so that in (22) we always have r > 1. For
good self-organization, the value of msd and therefore D
should gradually decrease. It should be noted that the r and

f parameters of (20) are determined by (22) and thus depend

on the ncnt parameter; nent, in turn, is itself determined by
(24) and thus depends on D.

Partitioning During Calibration

During calibration the input vector £ = [0,z”] of (10) is
applied to the neural network. Let the (¢1);th neuron generate
the highest output 7y, for class Cj. We define a membership
value for the output of neuron ¢ when calibrated for class C},
simply as

p(ni) = B forj=1,--- \N? and k=1,---,0 (25
1 fre

nf
such that 0 < pg(n;) <1 and pg(n;) = 1 for @ = (i1)y.

Each neuron 7 may be marked by the output class Cj,
among all [ classes, that elicits the maximal response 7;, . This
generates a hard partitioning of the output space and is used
in the more conventional model [14]. ’

Fuzzy Partitioning: On the other hand, each neuron ¢ has
a finite membership pi(n;) to class Cy by (25). We may
generate the crisp boundaries for the fuzzy partitioning of the
output space by considering for each of the [ classes the a-
cut set {¢|px(n;) > a’}, 0 < @’ < 1, where &’ is a suitably
chosen value. This is done solely for the ease of depiction
of the various partitions in the output space. Note that the
generation of overlapping fuzzy partitions for the fuzzy input
data demonstrates the utility of the process.

An ordered and unbroken map of the output space indicates
good self-organization and hence grouping of the patterns
according to similarity. In cases where the data are fuzzy
and overlapping classes exist, the hard partitioning contains
apparent disorder and/or discontinuity; the incorporation of the
fuzzy membership concept alleviates this problem. The utility
of the fuzzy approach may be appreciated by considering a
point lying in a region of overlapping classes in the feature
space. In such cases its membership to each of these classes
may be nearly equal, and to follow the hard approach of
calibrating relative only to the neuron for which the point
elicits the maximum response is to ignore a significant property
of the data.

Testing Phase

After self organization, the proposed model encodes all in-
put data information distributed among its connection weights.
The class membership of the training patterns is also learned
due to the partial supervision used in that stage. During
calibration, the neurons are labeled by the pattern classes and
the corresponding membership values are assigned. This is the
desired fuzzy classifier. In the final stage, a separate set of test
patterns is supplied as input to the neural network model and
its performance evaluated.

During this phase input test vectors £ = [z’,0]7, consisting
of only the linguistic information in the 3n-dimensional space
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defined by (6), is applied to the network. Let the plth and
p2th neurons generate the highest and second highest outputs
7y, and m,, respectively, for test pattern p. Furthermore,
let pr, (ng,,.) and px,(ns,,) be the highest and second
highest output membership values generated during testing,
with respect to classes Cr, and Cj, respectively. It is to be
noted that k; = k for both choices for pattern points not lying
in regions of overlapping classes and there is no ambiguity of
decision in such cases. We define

Hky ('rlf,,.,,) = ukl(ﬂpl)

1
tiky (Mapm ) = = btk2(Mp2) * s, (26)
s,

and ky = k1, ko = k2, if pra(np1) > tlﬂﬂ(np?) * 1),
Otherwise,

1
My (ﬂf,,m) = 'n’f—ukz(flpz) *Nsy»

14

tiez (s ) = 1 (Mp1) @7

such that k1 = k2 and k; = k1. Here k1 and k2 refer to
the output classes (hard partitions) Ci1 and Cis that elicited
maximal strength responses at the plth and p2th neurons
respectively during calibration. Ck, and Cj, are dependent
both on the actual output responses during testing and the
membership values evaluated during calibration w.r.t. classes
Cr1 and Cpy. The membership values on the right-hand side
of (26), (27) are defined as

Mp1)kr

28
Nfra @8)

1 (Mp1) =
from (25), where 7y,, and 7,1, are obtained during cali-
bration for class Cy;. Hence pattern p may be classified as
belonging to class C, with membership g, (”]fp_m) lying in
the interval [0,1], using the first choice and to class C, with
membership yg, (n,pm) using the second choice. It is to be
noted that classes Cy, and Cy, are determined from classes
Cr1 and Cya by (26), (27). A confusion matrix [7] may be
generated to evaluate the performance of this fuzzy classifier
on the set of test patterns.

It is worth noting that if we consider the calibrated mem-
bership values instead of the calibrated strength values on
the r.h.s. of (28) for substitution into (26), (27), then we get
membership-based recognition instead of the strength-based
recognition scheme just described.

Mean Square Distance for Test Set: The mean square dis-
tance for test patterns is defined as

1 3n+1
> llp-mp e

medy = ————
30t = Ttestset| et 3

29)

where |testset| corresponds to the number of pattern vectors
used during testing, and my; consists of the first 3n compo-
nents only of the weight vector of the neuron pl generating
the highest output response 7y, for test pattern p. This is a
measure of the amount of mismatch between the two vectors
while classifying pattern p. The factor 3—3‘{—’ is used to make
the value of masd; comparable to that of msd of (21).

VI. IMPLEMENTATION AND RESULTS

The neural network described in the previous sections
was tested using a set of 871 Indian Telugu vowel sounds
collected by trained personnel [24]. These were uttered in
a Consonant-Vowel-Consonant context by three 30-35 year
old male speakers. The simulation was in C on a VAX-8650
computer. Figure 5 shows the feature space of six vowel
classes (9,a,%,u,e,0) in the F; — Fy plane (for ease of
depiction); the actual data set has three features Fy, Fy, and
F; corresponding to the first, second, and third vowel formant
frequencies obtained through spectrum analysis of the speech
data. The dimension of the input vector is 15. Note that the
boundaries of the classes in the given data set are seen to be
ill-defined, overlapping, and fuzzy.

The model has been tested for two-dimensional networks
with varying numbers of neurons. During self-organization,
different sizes of training sets have been used by randomly
choosing perc % samples from each representative vowel
class. The remaining (100—perc) % samples from the original
data set were used as the test set in each case. We selected
fdenom = 0.8in (8)~(9), Fy =5and F, = 1in (12), s = 0.2
in (14), b = 0.02 in (18) and & = 0.0001 in (24) after several
experiments.

Output Map

After self-organization and calibration the resulting output
map is plotted using both hard and fuzzy partitioning. In Figs.
6 and 7, (a) corresponds to the hard partitioning obtained by
mapping each neuron to the vowel class to which it is most
sensitive. The class number % (1 for 8, 2 for a, 3 for i, 4 for
u, 5 for e, 6 for o) marks the neuron eliciting the maximum
response 75, for that class Cj while the neighboring dot
indicates the neuron generating the second highest response.
Parts (b)-(d) of the same figures indicate the boundaries
for the fuzzy partitioning of the output space by (25) for
the three pairs (chosen to render the displays as clear as
possible) of the six classes using o’ = 0.1. It is to be
noted that the topological ordering of the vowel classes in the
two-dimensional output space (considering fuzzy partitioning)
bears much similarity, including the amount of overlapping,
to the original Fig. 5 in the two-dimensional feature space.
The use of fuzzy partitioning is found to help in faithfully
preserving the mapping of fuzzy or overlapping pattern classes.

Figure 6 shows the output map generated for an 10 x 10
array of neurons with perc = 15. The hard partitioning
illustrates one discontinuous mapping for class 3. However the
incorporation of fuzzy partitioning alleviates this problem and
we find overlapping between classes 1,2; 1,5; 2,5; 2,6; 3,5; 4,5,
4,6; and 5,6. This compares favorably with the overlapping
observed in the feature space of Fig. 5. It is to be noted that,
unlike in Fig. 5, the classes 3 and 4 are seen to be adjacent in
(a) here. This is because there exist no pattern points between
these two classes in the input feature space and in this sense
they may be termed adjacent.

Figure 7 shows the output for the conventional Kohonen’s
net model (using the same parameters as in Fig. 6) with
s = 0 in (14) but also incorporating the fuzzy partitioning
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10 x 10 array of neurons with perc = 13 and edenom = 100. (a) Hard partitioning. (b)—(d) Fuzzy partitioning of

the output space.

concept as extension. The input feature information part z’
of (10) is in the fuzzy linguistic form of (6) for ease of
comparison with the proposed model while demonstrating the
utility of the inclusion of the contextual class membership
part " in the input vector. Note the discontinuities among the
hard partitions for classes 1 and 3. We also observe incorrect
topological ordering of the vowel classes (as compared to Fig.
5). In (a), contrary to the desired situation, the partitions for
classes 2,5 and 3,6 are adjacent, while classes 2,6 and 4,5
are separated. Furthermore, the neurons eliciting the highest
and second highest responses have been observed to lie in
the wrong calibrated hard partitions for classes 3 and 4. This
has an adverse effect on the recognition performance over the

test set by (26)—(28). The use of fuzzy partitioning introduces
discontinuities for class 6 in (d) while eliminating the problems
for classes 1 and 3 in (b). However classes 1,3 and 2,4 are
found to be adjacent in (b) and (c), unlike the case in Fig.
5. A comparison of Figs. 6 and 7 should make apparent the
value of incorporating contextual information into the neural
network.

Performance on Test Set

As a final step, a separate set of test patterns was applied to
the model under consideration and its performance evaluated.
In Figs. 8-10, (a) plots the percentage correct classification
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Fig. 7. Conventional Kohonen’s model with perc = 15 and cdenom = 100. (a) Hard partitioning. (b}(d) Fuzzy partitioning
of the 10 x 10 output space.
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Fig. 8. Neural net model with perc = 10 and cdenom = 100. (a) Correct classification (percentage) versus size of neural network
array. (b) Mean square distance versus size of neural network array, using test patterns.

while (b) shows the variation of the mean square distance
masd; of (29) along the ordinate. In (a), the class numbers (k =
1,---,6) indicate the class-wise correct classification of the
test set. The variables s and m correspond to the overall correct
classification of the entire test set using the strength-based
recognition by (26), (27), and the related membership-based
recognition schemes, respectively.

Figure 8 illustrates the effect of varying the size of the
network. The 10 x 10 array is observed to give best recog-
nition rates in (a). A smaller size of the network is seen to
be incapable of handling all the information required while
a larger size may result in poor performance over the test

set. However the msd; curve in (b) demonstrates that the
8 x 8 array results in a much poorer topological ordering as
compared to the other two network sizes while the 12 x 12
array yields a slightly lower value of msd; as compared to the
10 x 10 network.

Figure 9 demonstrates the effect of using the index of
disorder D of (21)~«24) to control the number of sweeps
through the training samples during self-organization. This is
marked as “usual iterations” (i.e., controlled iteration count)
on the abscissa of the figure. In the traditional Kohonen’s
model, the network goes through a larger number of sweeps.
The effect of using 200 iterations without considering the
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Fig.9. Comparison between proposed neural net model using index of disorder D marked wusual iterations and the more conventional
model using 200 iterations without D. (a) Correct classification (percentage). (b) Mean square distance, with perc = 10 and

cdenom = 100 for test patterns using 10 x 10 network.

influence of D is also plotted. The proposed model is found to
yield an improved performance (with only 90 iterations) over
the more conventional design.

In Fig. 10 we compare between (i) the proposed model
(marked “usual” along the abscissa), (ii) the “hard” version
using a crisp linguistic representation for the input vector
with s > 0 and (iii) the “original” Kohonen’s model with
s = 0 in (14) but using fuzzy linguistic representation for
the input vector along with the fuzzy partitioning concept as
an extension. The different features of these models are listed
in Fig. 11. In the hard model, the input feature information
part in the 3n-dimensional space is assigned crisp values such
that corresponding to a pattern X;, along the jth axis, we
clamp the highest of p1ou(r,;)(X:)s Bmedium(r,,)(Xi), and
Bhigh(F,;)(X:) of (6) to 1 while the remaining two are kept
clamped at 0. The gain factor h.; from (20) is not bell-shaped
and its hard version is defined as he; = L/[1+ (-725—-)?].
The contextual class information, though present, is not in the
form of graded membership values but is expressed in crisp
terms giving a membership of 1 to only one class. The original
model (method (iii)) is used with the 3n-dimensional fuzzy
linguistic representation for the input feature information and
the bell-shaped gain factor h.; of (20).

Note that the hard model is seen to have the worst recog-
nition rate, while the proposed model yields the best overall
classification efficiency. Inclusion of fuzzy concepts (as in-

troduced in methods (i) and (iii)) is found to enhance the
performance w.r.t. the hard version (method (i1)). On the
other hand, the incorporation of class information with s > 0
enables the proposed model (method (i)) to score over the more
conventional original version (method (iii)). This underscores
the utility of involving fuzzy concepts in conjunction with
partial class membership information in the proposed model.

It is observed that the msd; curve in (b) exhibits better
resultant topological ordering for the hard version as compared
to the original model. This is in contrast to the findings for the
recognition rate (%) in (a) of the figure where it is seen to have
poorer performance. We should note that the hard version uses
partial supervision (s > 0) although with crisp input, output
and partitioning. This contextual class information gencrates
a better ordering of the output space (along with a lower
msd, value) although the recognition rate is poorer due to
the hard representation used. However the proposed model
has a superior performance w.r.t. both the recognition rate and
msdy, as it incorporates both fuzziness and partial supervision.

Table I compares the recognition score (on test set) of the
proposed neural net model to that of the Bayes’ classifier [20],
[21] and the standard fully supervised fuzzy approach [24]. We
have used the Bayes’ classifier for multivariate normal patterns
with the a priori probabilities p; = l%i where |C;| indicates
the number of patterns in class C; and N is the total number of
pattern points. The dispersion matrices are different for each
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Fig. 10. Comparison between proposed neural net model (marked usual), its hard version, and the original Kohonen’s model.
(a) Correct classification (percentage). (b) Mean square distance, with perc = 10 and cdenom = 100 using 10 X 10 network

for test patterns.

Model Input Class Information Gain Output
Feature Scale Factor Membership Factor  Partition-
Informa- ing
tion
Proposed fuzzy s =1 for calibration fuzzy bell- fuzzy
(usual) linguistic 0.3 > s > 0 for shaped
self-calibration
Hard crisp s =1 for calibration  crisp pulse fuzzy
linguistic ~ 0.5 > s > 0 for
self-calibration
Original  fuzzy nil nil bell- fuzzy
linguistic shaped
Fig. 11. The different features of the three models, viz., proposed (usual),

the hard version, and the original Kohonen’s network.

pattern class. The overall performance of the proposed model
is found to be quite satisfactory. It is to be noted that the Bayes’
classifier is the best that is theoretically possible and neural
nets should not do better. A good statistical classifier, however,
requires a lot of sequential computation and a large number of
reference vectors. The value of the proposed approach resides
in the fact that a neural network is massively parallel and can
generalize well with a smaller set of training patterns.

As a rule, test patterns are misclassified by the network
only into one of the neighboring classes in the vowel triangle
(Fig. 5). The correct classification rate for an 10 x 10 network
considering both the first and second choices by (26)—(27) is
illustrated in Table II. The confusion matrix for this particular
set of parameters, as shown in Table III, also supports this
claim.

TABLE I
COMPARISON OF RECOGNITION SCORE (%) BETWEEN BAYES’
CLASSIFIER, STANDARD SUPERVISED Fuzzy CLASSIFIER, AND THE
PROPOSED NEURAL NET MODEL WITH perc = 10. NEURAL
NETWORK IS OF SIzE 10 x 10 witH cdenom = 20

Class Bayes’ Classifier ~ Standard Fuzzy  Proposed Neural
Classifier Model

a2 44.6 514 23.0

a 839 81.7 975

i 81.9 78.0 74.8

u 88.9 67.6 73.5

e 82.8 717 88.7

[ 777 78.8 922.6
Overall 79.6 73.4 79.6

TABLE It
RECOGNITION SCORE (%) WITH cdenom = 60
AND perc = 10 FOR A 10 x 10 NETWORK

Class First choice Second choice Net score

a 53.8 7.7 61.5

a 76.5 21.0 97.5

7 79.3 39 83.2

7 66.9 13.2 80.1

e 647 23.0 87.7

o 90.1 1.9 92.0
Overall 73.5 11.2 84.7

In Table IV we compare the performance of the proposed
model for various choices of the parameters r and f used
in the computation of the gain factor h.; of (20). Model A
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TABLE V
COMPARISON OF RECOGNITION SCORE (%) BETWEEN PROPOSED NEURAL NET
MODEL AND THE CONVENTIONAL KOHONEN'S NET FOR VARIOUS SIZES OF
TRAINING SET perc USING 10 X 10 NETWORK ARRAY WITH cdenom = 100

? u e o
I 35 16 0 0 13 1 Model Conventional Kohonen’s Net Proposed Neural Net
a 18 62 0 0 0 1 perc 10 20 30 40 50 10 20 30 40 50
i 4} 0 123 0 32 0 a 43.0 448 392 772 805 477 43.1 431 613 472
u 4 0 0 91 3 38 a 963 652 904 407 00 740 597 476 00 377
e 57 0 7 1 121 1 i 316 268 537 365 348 748 789 570 788 628
o 4 9 0 0 3 146 w 279 446 00 395 315 639 727 49.0 395 486
e 593 837 765 792 778 700 741 91.0 88.0 98.0
o 568 798 579 472 922 944 625 952 953 933
Overall50.3 59.8 532 532 56.5 735 683 694 68.0 71.1
TABLE 1V
COMPARISON OF RECOGNITION SCORE (%) FOR VARIOUS CHOICES OF
PARAMETERS 7 AND f IN THE GAIN FUNCTION h,.; FOR A 10 X 10
NEURAL NET MODEL WITH cdenom = 100 AND perc = 10 TABLE VI

Class Model
A B C D
1] 7.7 0.0 1.5 47.7
a 51.8 98.7 100.0 74.0
i 69.0 89.6 68.3 74.8
u 242 80.8 66.9 63.9
e 94.6 73.8 74.8 70.0
o 88.8 63.5 58.0 94.4
Overall 64.6 725 65.2 73.5
refers to the case where f = % in (22) for all values of nent.

Although both |A.;| and r decay with time, this constitutes
a slight variation of the proposed neural net model D (due
to the constant value of f). Network B uses 0 < » < 3
and f = % for all values of ncnt in (22). Note that here
only |he;| decays with time by (20) while its radius remains
constant. In model C the term (1 — 7  f) is eliminated from
the numerator of (20) and the radius (0 < r < 3) of the
gain function is kept constant (as in B). Here the function
hei is no longer bell-shaped and only [h;| decays with time.
The significance of the proposed gain factor in model D,
where both |h.;| and 7 decay with time, is obvious from the
results.

Table V illustrates a comparison in the performance on the
test set (using first choice) of the proposed model with the
more conventional Kohonen’s model (with fuzzy linguistic
feature information =’ of (6), (10) only at the input) for various
sizes of training data set perc. This is to demonstrate the
necessity of incorporating the contextual class membership
information " into the input of the proposed network for
modeling fuzzy data. We observe that the proposed model has
a superior recognition score compared to its more conventional
counterpart. Note that an increase in the size of the training set
(abundance of attribute data) for the vectors under analysis has
no appreciable impact on the performance of the conventional
model. On the other hand, the incorporation of the contextual
class membership information, with s > 0, seems to boost
the efficiency of the proposed model (with identical parameter
values) in classifying the same fuzzy data. This further demon-
strates the utility of using class membership information in the
input vector.

In Table VI we demonstrate the effect (on the recogni-
tion efficiency) of using various numbers of input attributes
(dimensions) on the standard Kohonen’s net (with fuzzy lin-

COMPARISON OF RECOGNITION SCORE (%) BETWEEN PROPOSED
NEURAL NET MODEL AND THE CONVENTIONAL KOHONEN'S
NET FOR VARIOUS NUMBER OF INPUT ATTRIBUTES USING
10 x 10 NETWORK ARRAY WITH cdenom == 100 AND perc

Model Conventional Kohonen’s Net Proposed Neural Net
Input Vector fuzzy linguistic features fuzzy linguistic features
Components with s =0 with 0.5 > s> 0
Dimension 9 18 27 15

7 43.0 52.3 100.0 477
a 96.3 0.0 0.0 74.0
i 31.6 69.0 51.6 74.8
u 279 71.3 0.0 63.9
e 59.3 759 0.0 70.0
o 56.8 97.5 0.0 94.4
Overall 50.3 68.4 184 73.5

guistic input feature information as an extension) and compare
with the proposed model using contextual class membership
information at the input. A very high input feature space
dimensionality with too many attributes is found to hinder
the efficiency of the conventional network. Partitioning the
primary linguistic properties among low, medium, and high
yields nine attributes for the given data set. Incorporation
of the hedge very (for each of the three linguistic terms)
yields 18 attributes while further addition of the hedge more
or less leads to 27 attributes for the conventional model.
The latter version is seen to be incapable of classifying the
given pattern set. Note that the incorporation of the contextual
class membership information (with s > 0) in the proposed
model results in the best performance, both overall and class-
wise.

VII. CONCLUSIONS AND DISCUSSION

A neural network model based on self organization and
capable of performing fuzzy classification was presented.
Basically, the Kohonen clustering network is used here as a
semantic map. The algorithm passed through two stages, viz.
self-organization and testing. The model had the flexibility of
accepting linguistic input and could provide output decision
in terms of membership values. The input vector incorporated
partial class membership information during self-organization.
An index of disorder was used to determine a measure of
the ordering of the output space and control the number of
sweeps required in the process. Unlike Kohonen’s conven-
tional model, the proposed net was capable of producing fuzzy
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partitioning of the output space and could thereby provide
a more faithful representation for ill-defined or fuzzy data
with overlapping classes. Incorporation of fuzziness in the
input and output of the proposed model was seen to result
in better performance as compared to the original Kohonen’s
model and the hard version. The problem of vowel recognition
was used to demonstrate the effectiveness of the proposed
model for various network array sizes, training sets and gain
factors.

It should be noted that only three linguistic properties low,
medium, and high were used here. Incorporation of additional
input feature information in the form of fuzzy hedges like more
or less, very, nearly, etc., may improve the performance of
the proposed model, due to the resulting more detailed input
description, but then the cost of nodes and interconnections
would also increase.

Representation of input in terms of w-sets low, medium,
and high also enables the system to accept imprecise/vague
features F; in various forms, namely, F; is about 500, F; is
between 400 and 500, F} is low, medium, very low, more
or less low or F; is missing etc. In these cases F; needs
to be transformed into 3-dimensional vector consisting of
membership values corresponding to the primary properties
low, medium, and high. A convenient heuristic method for the
determinatipn of these membership values may be found in
[19].

Neural net performance in fuzzy classification of the speech
data was found to compare favorably with that of the Bayes’
classifier trained on the same data. In the model described here,
massively parallel interconnection links with simple process-
ing elements (neurons) permit the computational complexity
of standard statistical techniques to be avoided. Therefore
with. the necessary parallel hardware backing the proposed
model should be able to perform much faster and hence more
efficiently.

It has been observed that a critical size of the network was
required for satisfactory performance. The fact that a larger
size resulted in poorer recognition of the test patterns was
favorable in the sense that more neurons would lead to an
increased cost.
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