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Abstract

We introduce the notion of a complementary cone and a nondegenerate linear transformation and characterize the finiteness
of the solution set of a linear complementarity problem over a closed convex cone in a finite dimensional real inner product
space. In addition to the above, other geometrical properties of complementary cones have been explored.
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1. Introduction

Let V be a finite dimensional real inner product
space and K be a closed convex cone in V. Given a
linear transformation L : V — V and g € V the cone
linear complementarity problem or linear complemen-
tarity problem over K, denoted LCP(L, ¢), is to find an
x € K suchthat L(x)+¢g € K* and (x, L(x)+¢)=0,
where (., .) denotes the inner product on V and K* is
the dual of the cone K in V defined as

K*:={ze€eV:{x,z)>0Vx € K}.

The cone LCP is a special case of a more general vari-
ational inequality problem [3]. Some important cone

LCPs are the LCPs over R’ [2], semidefinite linear
complementarity problems (SDLCPs) over the cone
of positive semidefinite matrices (Sf) in the space of
real symmetric matrices (S") [4,5,9,11], LCPs over the
Lorentz cone [11,14] or in general LCPs over the cone
of squares (symmetric cone) in a Euclidean Jordan al-
gebra [6,8]. Though a cone LCP might be considered
as a generalization of the well known linear comple-
mentarity problem over R’} [2], the solution properties
of a LCP over R’} do not carry over to a cone LCP as
the cone K need not be isomorphic to R}

In this article we introduce and study the notion of a
complementary cone, nondegenerate complementary
cone and nondegenerate linear transformation in con-
nection with the cone LCP, generalizing the notions
of a complementary cone and a nondegenerate matrix
(a real square matrix whose every principal minor is
nonzero) studied in linear complementarity theory,
see [2,10]. We study the closedness and the boundary
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structure of a complementary cone in a cone LCP.
We show that closedness of all complementary cones
is a necessary condition for the compactness of the
solution set of a cone LCP(L, g) for all ¢ € V. Fi-
nally, we generalize the earlier results on the finiteness
of the solution set of a LCP over specialized cones,
see [10,5,8,14], to LCP over a closed convex cone
in V.

The set SOL(L, g) denotes the solution set of
the LCP(L, g). Orthogonal projection onto the sub-
space S is denoted by Projg and span E represents
the linear span of a subset E of a linear space V. A
nonempty subset F' of a closed convex cone K in V
is a face, denoted by FJK, if F is a convex cone
and

xeK, y—xeK and yeF=x€eF.

The complementary face of F is defined as
F%:={yeK*: (x,y)=0Vx € F}.

The smallest face of K containing x € K is defined as
the intersection of all the faces of K containing x. It is
known that F <K is the smallest face of K containing
x € K if and only if x lies in the relative interior (r1)
of F, see [1]. It is easy to see that for any x € ri F,
F% can equivalently be represented as F2 := {y €
K*: {(x, y)=0}. Also for any face Fof K, F C (F2)2,

Definition 1. A linear transformation L : V — V has
the Rg-property if LCP(L,0) over K has a unique
(zero) solution.

Proposition 1. L has the Ry-property if and only if
the set SOL(L, q) is compact (may be empty) for all
qgeV.

Proof. Note that SOL(L, g) is always closed. Let
{x,} < SOL(L,q) be an unbounded sequence of
nonzero terms. Consider the subsequence {x,,} of
{x,} such that x,/|x,| converges to some x €
K. Then the sequence L(x,/||xml) + q/llxmll
converges to L(x) € K* with (x,L(x)) = 0,
contradicting the Ry-property. The converse is
obvious. [J

2. Complementary cones and nondegenerate
linear transformations

The notion of a complementary cone has been in-
troduced by Murty [10] in relation to a LCP over R’.
This notion is well studied in the literature on the LCP
theory, see [2]. It has been found useful in studying the
existence and multiplicity of solutions to LCP over R’}
and in studying a geometric interpretation of Lemke’s
complementary pivoting algorithm to solve the LCP
[2]. The notion of a complementary cone has been
extended to the semidefinite linear complementarity
problems in [9]. It is further studied in the context of
a LCP over a Lorentz cone in [14] and LCP over a
symmetric cone in a Euclidean Jordan algebra [8].

Motivated by the above we present the following
generalization of the concept of a complementary
cone. Subsequently, we show how complementary
cones explain the geometry and the solution proper-
ties of a cone LCP.

Definition 2. Given a linear transformation L: V —
V' a complementary cone of L corresponding to the
face F of K is defined as

%r:={y—L(x):xeF,yeF").

Remark 1. The faces of R are {0}, R, and any set
of the form

F:=P{(x1,x2,...,x,0, ...,O)T:xi>0, 1<i <k},

where P is a permutation matrix and k € {1, ..., n}.
The complementary face of F is given by

FA=P{0,...,0, xpq1,....,x0)"
k+1<i<n}.

1 x; 20,

The complementary face of {0} is R’} and R’} is {0}.
Thus, in case of K = Ri, Definition 2 reduces to
Murty’s definition of a complementary cone, see [10].

Observation 1. The linear complementarity problem
LCP(L, q) has a solution if and only if there exists a
face F of K such that q € 6F.

Proof. Suppose x € K solves the LCP(L, ¢). Then
y:=Lkx)+q¢g € K* and (x,y) = 0. Let F be the
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smallest face of K containing x. Then x € ri F' and
y=L(x)+q € F~. Hence q € . The converse is
obvious. [

By the above observation, the union of all comple-
mentary cones is the set of all vectors g, for which
the LCP(L, ¢) has a solution. The following exam-
ple shows that complementary cones are not closed in
general. However, it is easy to see that complementary
cones are closed when K is a polyhedral cone.

Example 1. Let A3 , a Lorentz cone in R3, be defined

as Ai = {(xo,xl,xz)T € R3: ()cl2 —i—x%)% <xp}. Let
M : R3 - R? be a matrix defined as

X0 + x1
M(x):( 0 )
X2

1+ 0
%(a — %) — (O ) as ¢ — 0. However,
—1 —1

Then M

0
there exists no x € Ai such that M(x) = (0 )

-1
Thus the complementary cone of M corresponding to
the face /13r is not closed.

In our next proposition we give a sufficient condi-
tion for the closedness of a complementary cone of a
given linear transformation L and corresponding to a
given face F. For this we shall specialize and restate
Theorem 9.1, [12], in the context of a closed convex
cone.

Lemma 1. Let K be a closed convex cone in R"™ and
A: R" — R"™ beam xn real matrix. If Az=0,z € K
implies z =0, then A(K) is closed.

Proposition 2. Given a linear transformation
L:V — V and F<LK, the complementary cone €
is closed if

xeF, Lx)e F& implies x = 0.

Proof. By Lemma 1 and the condition described
above, it is apparent that L(F) is closed. Let
L:V xV — V be defined as Z(x,y):x—}—y. Let
Cr={y—L(x):xeF,yce€ FA}beacomplementary

cone corresponding to the face F. Let
Ki = {y:y € F*} and K» = {—L(x):x €
E}. Then L(K; x K3) = K1 + K, = €F. Now,
L(y, —L(x))=0 for some x € F and y € F” implies
that y — L(x) =0 = L(x) € F2, which by the given
condition gives x = 0. Thus we have y = L(x) = 0.
Appealing to Lemma 1 again, we get ¢ r is closed.
O

Definition 3. (a) A complementary cone ¢ r corre-
sponding to the face F is called nondegenerate if

x e span F, L(x) espanFA =x=0.

A complementary cone which is not nondegenerate is
called degenerate.

(b) A linear transformation L is nondegenerate if
% r 1s nondegenerate for every F<K.

Remark 2. (i) Note that L is Rq if and only if for
every FF'JK the following relation holds:

xeF, L(x)eFA:>x=0.

Thus, by Proposition 1 and 2, closedness of all com-
plementary cones is a necessary condition for the com-
pactness of the solution set of an LCP(L, ¢) for all
q € V. Also, by Proposition 2, every nondegenerate
complementary cone is closed.

(ii) For any F<K, det Lrr # 0O implies that ' r
is nondegenerate, where Lpr: span F' — span F is
defined as Lrp(x) = Projga, pL(x). Moreover, if
L(span F) C span F 4+ span F~ V F<K, then L is
nondegenerate if and only if det Lrpr # 0V {0} #
F<K. In particular, when K = Rff_ and M is a real
square matrix, det M for {0} # F<IR', corresponds
to one and only one principal minor of M. Hence, we
obtain that a matrix M is nondegenerate if and only if
all the principal minors of M are nonzero.

(iii) In the semidefinite setting, Gowda and Song
[5] define a nondegenerate linear transformation
L:S" — S" as follows:

XeS" XL(X)=0= X=0. (D
Equivalence of (1) with our Definition 3(b) is an easy

consequence of Theorem 3.6 [7], on the characteriza-
tion of faces of the positive semidefinite cone S’;.
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Definition 3(b) of a nondegenerate linear transfor-
mation is motivated by the uniqueness of a solution to
a LCP on a given face and has been explained in the
following proposition.

Proposition 3. Given a linear transformation
L:V — Vand FLK, € is a nondegenerate com-
plementary cone if and only if for each q € €F
there exist a unique x € F and y € F> such that

g=y— Lx).

Proof. Suppose that there exist xj, xo € F and
Vi, ¥2 € F® such that g =y — L(x1) =y, — L(x2),
which implies that y; — yp = L(x1 — x»2), where
x1 —xp € span F and y; — y» € span F2. By the non-
degeneracy of ¢, x; = x3 and y; = y2. Conversely,
suppose that there exists an x € span F such that
L(x) € span F~. Writing x=x| —x, with x|, xp € F
and L(x) =y, — yp with y;, y» € F” we get

q =y — L(x1) =y2 — L(x2).

Since each g € %r has a unique representation in 6 r,
we get x| =xp and hence x =0. O

Corollary 1. Given L:V — V and q € V,
LCP(L, q) has infinitely many solutions only if either
q is contained in a degenerate complementary cone
or q lies in infinitely many complementary cones.

Proof. Suppose g does not belong to a degenerate
complementary cone and lies only in a finite num-
ber of nondegenerate complementary cones. Then
LCP(L, g) can have only finitely many solutions,
contradicting our hypothesis. [

Proposition 4. Let 6 F be a nondegenerate comple-
mentary cone. Then

(1) g € ri%F if and only if there exist x € 11 F and
y € 1i F? such that ¢ = y — L(x).
(1) Any face G of € can be represented as

G={y—L(x):xeH, yeH),

where H<F and H,ﬁFA. Also, any set of the
above form is a face of € .

Proof. The proof of (i) is easy and is left to the reader.
For the proof of (ii) let 4 be a face of ¢  for some face

F.Then % can be represented as ¥ ={y — L(x): x €
H, ye H/}, where H C F and H C F2. We shall
show that H<IF and H <IF2. Since 0 € 9<% and
% r is nondegenerate, 0 € H N H/, and H and H' are
convex cones. Let x € F, z—x € F and z € H.
Then —L(x) € €r, —L(z —x) € ¥F and —L(z) €
4. Since 9<% r we get —L(x) € %, which by the
nondegeneracy of ¢r gives x € H. Similarly, we can
show that H' is a face of F2. Conversely, let ./ be
defined as A" :={y—L(x):x € H, ye€ H,}, where
H<F and H <F“. Then 4 is a nonempty convex
cone. Let y—L(x) € 6F, (yo—y)—L(xo—x) € €F,
and yo — L(xg) € A", where xo € H,x € F, yg € H'
andy e F A Since €F is nondegenerate, xo — x € F
and yp — y € F2. Thus,

x€e€F, xo—x€F, and xo € H,
yeFA, ))O—yEFA, andyoeH/.

Since HIF and H IF2, wegetx € Hand y € H .
Hence y — L(x) € A" and ./ is a face of €. U

Remark 3. In a private communication [13], Dr.
Richard E. Stone has pointed out that any face 4 of
@ F can be represented as ¥ ={y — L(x): x € H,
y € H'}, where HJF and H <F2, without assum-
ing that € r is nondegenerate.

Corollary 2. Given a linear transformation L: V —
Vand q € V, the LCP(L, q) has infinitely many solu-
tions if q lies in the relative interior of infinitely many
nondegenerate complementary cones.

Proof. Let ¢ € Nri%F,, where Fy is a family of dis-
tinct faces of K indexed by o and % f, is nondegener-
ate for each a. Then ¢ =y, — L(x,) for x,, € i F,, and
Vo € 1i Fo(A . Since each %F, is a nondegenerate com-
plementary cone, x,, for every «, are infinitely many
distinct solutions to LCP(L, g). O

3. Finiteness of the solution set of a cone LCP

In the context of a LCP over R'[, nondegenerate
matrices characterize the finiteness of the solution set
of a LCP(M, g) for all ¢ € R", see [10]. A similar
study is made by Gowda and Song [5] where they in-
troduce and study the notion of a nondegenerate linear
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transformation in the context of a SDLCP. They have
shown that when K = §’{, nondegeneracy of a linear
transformation L need not be a sufficient condition for
the finiteness of the solution set of SDLCP(L, Q) for
all Q € §'}. The example below throws more light on
the preceding discussion.

Example 2. Let M : R — R3 be defined as M (x) =
2

—x, K = {(xo,x1,x)": x>0, F>x{ + x3) and

q = (%, 0, O)T. It is easy to check that M is nonde-

generate, K is closed and convex (but not self-dual)
and any point x = (xg, X1, xz)T lies on the boundary

of K if and only if x¢ >0 and ng =x% —i—x%. Any com-
plementary cone corresponding to a face F is of the
form $r ={y +x:x € F, y € F~}. Except two
3-dimensional complementary cones, namely K* and
K, every other complementary cone is of dimension
2. The infinite set of solutions to LCP(L, ¢) is given
by (3, %, )T 5P+ 2= ).

Definition 4. (a) A solution xo of LCP(L, ¢) is locally
unique if it is the only solution in a neighborhood of
X0-

(b) A solution xq is locally-star-like if there exists
a sphere %’ (xq, ) such that

X € y(-x01 r) N SOL(Ls Q)
= [x0, x] € SOL(L, q).

The following theorem generalizes the earlier results
on the finiteness of the solution set of a LCP over spe-
cialized cones, see [10,5,8,14], to LCP over a closed
convex cone in V.

Theorem 1. Given a linear transformation L: V —
V, the following statements are equivalent.

(1) SOL(L, q) is finite forall g € V.
(i) Every solution of LCP(L, q) over K is locally
unique forall g € V.
(iii) L is nondegenerate, and for all ¢ € V, each
solution of LCP(L, q) is locally-star-like.

Proof. The assertion (i) = (ii) is obvious. For the
reverse implication, note that (ii) implies that L has
the Rg- property. Thus SOL(L, ¢g) is compact for all
g and hence (in view of (ii)) is finite for all g.

(i1) = (iii): First we shall show that L is nondegen-
erate. Let x € V be nonzero such that x € span F,
L(x) € span F” for some face F of K. Since x €
span F, we can write x = x| — xp with x1, x € F.
Similarly, L(x)=L(x);—L(x), with L(x){, L(x), €
F2. Defining ¢ := L(x); — L(x1) = L(x), — L(x) it
is observed that LCP(L, ¢) has two distinct solutions
x1 and xp with

(tx1 4+ (1 —t)x2, tL(x)y
+ (1 —=1)L(x),)=0 Vrel0,l],

i.e., [x1, x2] € SOL(L, ¢) which contradicts (ii).

Also, for any ¢ € V, since the solution xo €
SOL(L, g) is locally unique, it is locally-star-like.
(iii) = (ii): Let for some fixed ¢ € V, the solution xg
of LCP(L, g) be not locally unique. Then there exist
a sequence {xz} € SOL(L, g) converging to xo with
xr # xo for all k. By the locally-star-like property
we have [xg, xx] € SOL(L, ¢) for all large k. Let F;
be the smallest face of K containing x; (x; € ri F;)
where i =0, 1, 2, ... From the complementarity of
solutions we have for all large k

xo € 1iFy and L(xo) +¢q € F>,
xp €riFy and L(xy)+q € Fp.

Also from the fact that [xq, xx] € SOL(L, g) for large
k we get

(x0, L(xx) +¢) =0 and (xt, L(xo) +¢) =0.

Since xq € ri Fp and x; € ri Fy we get L(xx)+q € FOA
and L(xg)+q € FkA. Defining a face G := FOA N FkA
of K* we get xo, xx € G® and L(xo) + ¢, L(x) +
g € G. Thus there exists a face F = G® of K such
that a nonzero x := xo — x; € span F' with L(x) €
span F A which contradicts our assumption that L is
nondegenerate. [

Corollary 3. When K is polyhedral LCP(L, q) has a
finite number of solutions for all g € V if and only if
det Lrr # 0 for all nonzero F <LK, or equivalently L
is nondegenerate.

In our next proposition we extend the result, re-
cently observed for a LCP over the Lorentz cone by
Tao [14], to any closed convex cone in V.
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Definition 5. A linear transformation L: V — V is
said to be monotone (copositive on K) if (x, L(x)) >0
Vx eV (x € K).

Proposition 5. If L is a monotone linear transfor-
mation on V, then L is nondegenerate if and only if
LCP(L, g) has a unique solution for all g € V.

Proof. Suppose L is nondegenerate. Then by Theorem
2.5.10 in [3], LCP(L, g) has a solution for all ¢ € V.
Let x; and xp with x; # x2 be the two solutions of
LCP(L, g) for some g € V. Let x; € ri F1 and x, €
ri > where F|, F; are the two faces of K. By the
monotonicity of L we have

0<(x1 — x2, L(x1 — x2))
= {x1 — x2, y1 — y2) = —{x1, y2) — {x2, y1) <0,

where y; = L(x;) + ¢ for i ={1, 2}. Thus (x1, y2) =0
and (x2, y1) =0. Since x; €ri Fj and x3 € 1ri F», y| €
F2A and y; € FIA. Defining a face G := FlA N F2A of
K* we getxy, xp € G®and L(x1)+q, L(x2)+¢q € G.
Thus for a face F = G2 of K we have a nonzero x :=
X1 — x2 € span F, such that L(x) € span F2, which
contradicts that L is nondegenerate. The converse is
obvious. [J

Proposition 6. Let L be copositive on K. Then L is
nondegenerate only if LCP(L, q) has a unique solu-
tion for all g € K*.

The proof is similar to that of Proposition 5 above
and is omitted.

An open problem

We have shown that if LCP(L, g) has a compact
solution set for all ¢ € V then all the complementary
cones are closed. However, we do not know whether
closedness of all complementary cones is a necessary
condition for SOL(L, g) to be nonempty forallg € V.
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