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Modeling of Component Failure in Neural
Networks for Robustness Evaluation:
An Application to Object Extraction
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a8 a Poirson process. To cheose the Imstants or moments of
damaging, statistical ssmpiing technbque 15 used. The nodes/Tinks
1o be damaged are determuimed ramdoanly.
As an llstraden, the model is implemented and fested on
different uhjmtmmﬂonllmrmw fletbets
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multi-fayer nearsl networle, The prrformance (hawee
of the onderiying network wodel} of these alporfihs
wated in kerms of percencge of ploels correctly chamifle y
different noisy envimesnents aod differenst degrees and pequendes
of dassaging. The deterforation in the sutput & seen & be veary
small ¢ven whmn]mnmbwdmﬂ!nbmw

I INTROUICTION

Ancural network (NN) [1]-[7] based systcm comsists of
g large number of neurons with massive connectivity
among them. Local conpectivity among the neuronsfnodes
feornpuling etements) being very hiph and the storage of
information being distributed, the approach is claimed o he
highly mobust and can he applied even when information
iz ill-defined andfor defective/pardal or noisy. If some of
the components fail to work, the other components adjust
themselves (durng ierative isaming) n such a2 manner that
the outpul is not deteriorated much. As an NN-based system
consisis of 4 large number of components, the possibility
of some of its components {nodes or links) to fail w0 work
iz very high. Hers ligs the necessity of investigating the
performance of an NN-based system under failure of some
of s components.

In the present work an atlempt is made o provids a model
for studying the robustness or rmggedness under component
failure of NM-based systems empirically, This is done by
damaging some of the nodes andfor links of 3 system and
studying the change in its performance. The failure process is
viewed as a pure death process. For our investigation we mada
a set of assumptions about the failure process. Incidentally,
these assumptions led the [ailure process follow Podsson
maodel. In this context we mention that Poisson distribution
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is often used o mode] different failore processes; but for all
failure processes it may not be applicable. Under this model,
the nodes andfor links to be damaged are chosen randomly.
The time instants {i.e., when a damage occurs) arc determined
by drawing random ssmples from the appropriate probability
distribution [8], [9].

Theugh the model is valid, in general, for any NN-based
information processing system {supervised and uhsupervised),
the problem of image segmentation and cbject extraction
(unsupervised system) is considered here for an extensive
demonstration of the validity of the model. Three different
algorithms [1{]-[12] which extract compuct object regions
from oodsy envitonments using Hopfield's associative memn-
ory, Gibbhs random field, and a setf-organizing mwlti-layer NN
are chosen for this purpose.

To demeomstrate the wtlity of the proposed failure model,
perfommence of these algorithms 8 evaluaied in terms of
percentage of pixels comectly classified. Outputs are evalnated
in four different situations: i} no damage, ii) damaging only
nodes, i) dumaging ooly links, and iv) damaging both nodes
and links simultaneously. The simulation smdy is done on
various noisy versions of a synthetic image using different
amounts and sequences of damaging, Note that the measure-
ment of robusiness s problem dependent, For example, if an
NN iz used in an optimization problem, its robostness may be
evaluated computing the difference between the values of the
objective function with and without component failure,

The rest of the article is organized a5 follows, In Section H,
the theories of modeling and sampling of component failures in
neoral networks are described. Section 1T involves application
of the theory to 3 petwork, Section [V provides the imple-
mentation methodology and simulation resolts. Concluding
remarks are given in Section V. '

II. MODELIMNG AND SAMPLING OF
FAILURES I A MEURAL NETWORK

A, Modeling of Failures

Let us consider a neural network system with & com-
ponents, where 2 component could be a node (processor)
or a link. During the operation of the network some of its
components may [aill. We make the following assumptions
about the failure process:
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i) The system has N identical components at the time

instant ¢ = 0 (when the operation of the network starts).

ii) If a component fails, it fails forever (no repair or
replacement).

iii) Failure of components occurs at the average rate of y
per unit time.

iv) The probability of an event occurring between time ¢
and ¢ + h depends only on the length of A, i.e., the
probability does not depend on either the number of
events that has occurred up to time ¢ or the specific value
of t, i.e., the probability density function has stationary
increments.

v) The probability of a failure during a very small interval
of time h is positive but less than one, i.e., not certain.

vi) At most one failure can occur during a very small
interval of time h.

Let p,(t) be the probability that the system has n compo-
nents active at time instant ¢, i.e., N — n failures during time
interval [0,¢]. It can be shown [8] that under the assumptions
i~vi, p,(t) is given by the formula

—pt N-n
pn(t)z%s =1,2,:N (1)
and
N
po(t) = 1= palt). @
n=1

Thus we see that p, () is a truncated Poisson distribution with
mean ut.

If f(t) is the probability density function (pdf) of the
inter-failure time (i.e., time interval between two successive
failures), then it can be shown that for the earlier Poisson
failure process, f(t) is given by

fO) = pe
= 0

t>0

t<o. ®

Thus, when the failure process is governed by a Poisson
distribution, the inter-failure time is then described by an
exponential distribution (3) with expected value (mean)

/0 byt

1
== @
"

E(t)

B. Sampling

To simulate the failure process, one needs to draw random
samples from the exponential distribution (3). Before describ-
ing the exact algorithm, let us first consider the general strategy
for sampling from any distribution.

Let f(z) be the pdf of the random deviate z, and F(x) be
the cumulative density function (cdf) of z, i.e.,

T
Fa)= [ st )
—00
It can be easily shown that the random variable y = F(z) is
uniformly distributed over [0, 1], regardless of the distribution
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of z. Hence, if R is a random number drawn from uniform [0,
1], then z = F~1(R) is a random sample from the pdf f(z).
Therefore, sampling from any distribution can be done using
the following simple method having two steps.

Step 1: Generate a random number R in [0, 1] and assign
it to F(z).

Step 2: Solve for z from R = F(z).
The above sampling method is known as method of inversion.

Sampling from Exponential Distribution: For an exponen-
tial distribution the pdf is

fit) = pe* u>0, t>0
= 0 t<0. ©
Then
t
F(t) = / pe~Brdy =1 — e7Ht,
0
If the random number drawn is R then
R =F(t)
or R=1-—¢*
1 1
or t=——In1-R)=--InR. @)
b I

The last step is possible because if R is a random number on
[0, 1] then so is (1 — R) and we can replace (1 - R) by R
for convenience.

It has been established before that if the failure process is
described by a Poisson distribution, then the time between
the occurrence of failures (interfailure time) must follow the
corresponding exponential distribution. Thus to simulate the
component failure process described by the Poisson distribu-
tion with mean ut, over a time period [0,7°], all one has to do
is to sample the corresponding exponential distribution with
mean 1/p as many times as necessary until the sum of the
corresponding exponential random samples generated exceeds
T for the first time. It can further be explained as follows.

Suppose R; is the ith random sample drawn from uniform
[0,1], then

t=-~InR, ®

U
is the ith sample from the exponential distribution (3). There-
fore

i

T; = Z t; 9
7=1

gives the time instant when the ith (component) failure occurs.

The process is repeated for the maximum number of times
(K, say) such that T, < T.

III. APPLICATION OF FAILURE MODEL TO
ROBUSTNESS EVALUATION OF NEURAL NETWORKS

In any system components may fail with passage of time.
In the case of NN-based systems the components are the
neurons/nodes and links. So in such systems, some of the
neurons or links or both may get damaged over time. NN-
based information processing systems are normally claimed to
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be robust under components failure as the NN architectures
involve massive processing elements and connectivity among
them (mostly with a few redundant components). The systems
are also supposed to be noise insensitive and suitable for
ill-defined/partial information.

The robustness of a neural network system can be investi-
gated under three different situations:

¢ failure of only nodes,

e failure of only links, and

e failure of both nodes and links.

We have already seen in Section II-A that if the components
are identical and failures are independent, then the inter-
failure time follows an exponential distribution. Therefore,
while considering failures of only nodes or only links, we
can use exponential distribution (3) to draw samples for inter-

failure time. Section II-B discusses how to compute the time -

instant T; of the ith failure, but does not mention about the
selection of the node (link) to damage at that instant T;. Since
all nodes (or all links) are assumed to be identical, one can
select a node (to be damaged) randomly in such a manner that
each node (link) has an equal chance of being selected.

The situation becomes a little more complicated when both
nodes and links are allowed to fail. A node failure effectively
disables several links connected to it. On the other hand,
failure of a set of links may effectively disable a node. Some
of the assumptions stated in Section II-A are not valid, if
we consider both node and link failures together, because
the set of components are not identical and failure of one
component may cause effective failure of another. We propose
to investigate the system under the following two simplifying
situations.

Case I: Do not differentiate between nodes and links, i.e.,
treat either of them as a component. The damaging process is
then viewed to follow a single Poisson distribution.

Case II: Nodes and links are treated as two different com-
ponents. The damaging process will then be governed by two
different Poisson distributions, one for the nodes and the other
for the links. No interdependence between the two distributions
is assumed.

The components (nodes/links) which are getting damaged
can be chosen randomly. When we are damaging only one
type of component (i.e., either node or link), the easiest way
to select a component is to assign a unique number to each
component and use random numbers in such a way that
each node has an equal chance of inclusion. If an already
selected component reappears, then one has to ignore that
drawing. When one is damaging both nodes and links together
the selection process will be as follows depending on the
previously mentioned two cases. Suppose there are M nodes
and N links.

Case I: Each component is assigned a unique integer num-
ber in the range [1, M + N1, and a component can be selected
by drawing randomly an integer in that range.

Case II: Assign each node a unique integer in the range
[1, M] and each link a unique integer in the range [1, N].
Selection of a node can be done by drawing a random integer
in [1, M]. Similarly links are selected.
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Note that Case I does not discriminate between nodes
and links and hence interdamage times are drawn from one
distribution for both the nodes and links. Case II, on the other
hand, does discriminate between nodes and links and uses two
independent distribution (one for links and the other for nodes).

The model of damaging process developed in this section
is, in general, applicable for any NN-based system (both
supervised and unsupervised). In the following sections an
application of the model is demonstrated on some NN-based
object extraction algorithms. For a supervised system, this
failure can occur in either of the learning and testing phases.
For an unsupervised system there is no testing phase, and
the failure can occur during updation of weights/status for
unsupervised learning.

IV. APPLICATION TO OBJECT EXTRACTION PROBLEMS

Let us consider three object extraction algorithms [10]-[12]
for demonstration of the validity of the model. The first two
algorithms use modified version of Hopfield’s network model,
whereas the third one deals with a self-organizing multi-
layer neural network. Let us first brief the algorithms for
the convenience of the readers before describing the present
experimental procedure and results of investigation.

A. Algorithms

Algorithm 1 {10]: In this algorithm the task of image seg-
mentation is formulated as an optimization problem and solved
by a modified version of Hopfield’s model. It involves mini-
mization of an objective function

E==3%"% WyViV; =) Vil
A i

where W;; is the connection strength between the sth and the
jth neurons, I; (€ [0,1]) is the input bias to the ith neuron
and V; (€ [0,1]) is the output status of the sth neuron.

In the present study we have chosen a 3x3 neighborhood.
Here, since the number of neighbors is fixed (8), the input
value to a neuron lies in the domain [—8,8]. A polynomial
function

10

g(z) =-1 ifz<-8
= grl@+8)"~1 if ~8<z<0
=1-8-2)" f0<z<8 :
=1 ifz>8

defined over the finite domain [—8, 8] is used as an input/output
transfer function.

The weights and input biases are given in such a way
that the network self-organizes to form compact clusters. The
dynamics is similar to that of Hopfield’s model.

Algorithm 2 [11]: A modified version (both architecture
wise and neuron characteristic wise) of Hopfield’s model is
used to determine the maximum aposterior probability (MAP)
estimate of a scene from a noise corrupted realization (modeled
by Gibbs random field). Here also, a single neuron is assigned
to every pixel, and it is connected only to all of its nearest
neighbors. The energy function of the network was designed
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to be
E= - S Wl - 5 Y UL+ o5 YW ()
i 7 i i

such that its minimum value corresponds to the MAP estimate
of the scene.

Here o is the noise level and the other symbols have the
same meaning as in Algorithm 1.

The operations (dynamics) are similar to that in Algorithm 1.
In the stable state the set of neurons with ON status constitute
the object region.

Algorithm 3 [12]: This algorithm is based on the integra-
tion of the concept of fuzzy sets and neural network models
by incorporating various fuzziness measures in a multi-layer
(one input, one hidden, and one output layer in the present
investigation) network for object extraction. The architecture
is a feedforward one with back propagation of error and is
used as an unsupervised classifier. Each neuron is connected
to the corresponding neuron in the previous layer and to its
neighbors. There also exists a feedback path from the output
to the input layer. The status of neurons in the output layer
is described as a fuzzy set. A fuzziness measure [13] of this
set is used as a measure of error of the system (instability of
the network).

The input value (U;) to the ith neuron in any layer [except
the input layer] is

Ui=Y_ W,V (13)
J
where W;; is the connection strength between the ith neuron
of one layer and jth neuron of the previous layer. j can either
belong to the neighborhood of ¢ or j = ¢ of the previous layer.
A sigmoidal transfer function is then applied to get the output
status of the neurons in this layer. These outputs are then fed
as input to the next layer. Starting from the input layer, this
way the input pattern is passed on to the output layer and the
corresponding output states are calculated. The output value
of each neuron lies in {0, 1].

After the weights have been adjusted properly, the output of
the neurons in the output layer is fed back to the corresponding
neurons in the input layer for the next pass. The iteration
(updating of weights) continues until the network stabilizes,
i.e., the error value (measure of fuzziness) becomes negligible.
When the network stabilizes the output status of the neurons
in the output layer becomes either zero or one. The neurons
having output value zero constitute .ine group and those having
output value one constitute the other group.

In the present investigation, the quadratic index of fuzziness
[13] is used as the error measure. Accordingly, the weight
updating rule becomes

n(=V)F(;)Vi 0V, <05
AW;; = (14)
n(1=V)f'(I;)Vi if0.5<V;<1.0
for the output layer and
AWj; = n(Z 6kaj>f’(Ij>m (15)
k
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for hidden layers, where 6 = — % and 7 is a proportionality
constant.

B. Method of Implementation and Experimental Results

To demonstrate the utility of the proposed failure model
described in Section II, a computer simulation study has been
done on the three-object extraction algorithms described in
Section IV-A. The only parameter for Poisson/exponential
distribution, namely the mean rate y, is estimated as follows.
(Note that since these object extraction algorithms are unsuper-
vised, failures occur only during updation of weights and/or
output status of the neurons.)

Implementation Details: Suppose a single-layer network
has C' components and requires 7' seconds for I iterations
on a monoprocess system. Then for parallel implementation,
time/iteration = Z; and the total processing time is TP = Z.
Now if we want to damage a total of D components then an
estimate of y is

_D
= Tp

Let the inter-damage time periods (samples) be ¢;,7 =
1,2,---,L(L =~ D). Now for each of the L time instants
select a component to be damaged. In other words, select L
components and damage the ith selected component after T;
seconds, where

Now if the ith component is to be damaged at a time 75, and T;
falls in kth iteration, then for the £th and subsequent iterations
assume the ith component as damaged. Since the instants or
moments of damaging are chosen randomly, both the iteration
number and the number of iterations that are taking part in the
damaging process vary from simulation to simulation.

For a multilayer (m-layer, say) neural network, let there
be C components per layer, and it requires 7' seconds for
stabilization. (Bypassing it may be mentioned that if the
multilayer neural network implements a supervised system, the
stabilization time T includes both training phase and testing
phase.) The ith (¢ > 1) layer can work only after (i — 1)th
layer has finished its task. Since there exists a feedback path
from the output to the input layer, the output layer may be
considered to be the predecessor of the input layer, i.e., the
input layer can work (except the starting moment) only after
the output layer has completed its operation. Thus parallel
implementation can be done only in the C' components in a
layer. Between layer operations are always sequential. Hence,
the total time required for parallel implementation of such a
system is TP = % Average stabilization time 7" for parallel
implementation on VAX-8650 computer of Algorithms 1, 2,
and 3 is found to be 45.78 milli seconds (ms), 45.78 ms, and
22.89 ms, respectively, in the present experiment.

The performances evaluation criterion used in the present
investigation is described in the next section.
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C. Performance Evaluation

By performance of an algorithm we mean the quality
of the output it produces. The quality of the outputs can
be measured either by visual inspection or by quantitative
evaluation. Quantitative evaluation is possible (correctly) only
if the actual output (target) is known. Percentage of pixels
correctly classified is considered to be a quantitative index of
performance. Let N; be the number of pixels that actually
belong to object, but are classified as background pixels by an
algorithm, and N, be the number of background pixels that
are labeled as object pixels; then the percent of pixels correctly
classified (pcc) by the algorithm is given as

pce = (1 - M) x 100.

MxN (16)

Results and Discussions: The present simulation study is
done for all the three different object extraction algorithms
(described in Section IV-A) using three different noisy ver-
sions (e.g., o =10, 20, 32) of a synthetic image of size 128 x
128 (Fig. 1). So there are 128 x 128 nodes in each layer of
the network architectures used for this purpose.

Through a series of experiments (see [10]-[12]) it was found
that if for a node, the number of neighbors is four (second-
order connectivity), the output becomes more noise sensitive
than that when eight neighbors (third-order neighborhood)
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Fig. 1. Input images (a) Original image. (b) Noisy image with o =10. (c) Noisy image with ¢ =20. (d) Noisy image with o =32.

are used. For higher order (>3) connectivity, improvement
in performance is seen to be negligible compared to that
of the third order connectivity. In other words, increasing
connectivity after third-order increases the redundancy in links.
More over, since it is extremely difficult to find out the optimal
architecture for such a neighborhood information-based system
(e.g., one needs to test the utility, for a certain goal of the net,
of each node and link for all possible combinations with other
nodes and links), we considered, for the sake of simplicity,
a third-order connectivity (symmetric eight neighbor connec-
tion). Note that the network may have some redundant links,
although it does not have any redundant node.

The original image is corrupted by adding N ~ (0,0?)
i.i.d. noise. The experiment is done under the following four
conditions:

1) without damaging nodes or links,

2) damaging nodes only,

3) damaging links only, and

4) damaging nodes and links both.

Investigation has been done with 2%, 5%, and 10% of com-
ponent failures for different sequences of damaging. Again,
in each case 10 simulations (corresponding to different se-
quences of damaging) were performed. The dispersion of the
obtained pcc values (collected after 50 iterations) was found
to be much less. The average percentages of pixels correctly
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TABLE 1
CLASSIFICATION ACCURACY AFTER NODE DAMAGE

Input image Number of nodes damaged
with noise 0 328 819 1638
level (¢) | (0%) | (x~2%) (~5)% (=~ 10%)
(1 =1.16) | (= 17.90) | (1 = 35.80)
10 99.71 99.67 99.68 99.40
20 99.12 99.11 99.04 98.83
32 97.55 97.44 97.54 97.18
TABLE 1

CLASSIFICATION ACCURACY AFTER LINK DAMAGE

Input image Number of links damaged
with noise 0 2622 6554 13107
level (o) | (0%) | (=2%) (=~ 5)% (=~ 10%)
(1 = 57.30) | (4 = 143.16) | (u = 286.32)
10 99.71 99.66 99.55 99.48
20 99.12 99.11 99.06 98.77
32 97.55 97.57 97.70 97.61
TABLE III

CLASSIFICATION ACCURACY AFTER NODE-LINK
DAMAGE (NODES AND LINKS ARE TREATED AS SEPARATE COMPONENTS)

Input image Number of nodes+links damaged
with noise 0 32842622 81946554 1638+13107
level (o) | (0%) (~ 2%) (~5)% (~ 10%)
(#n = 7.16) | (pa = 17.90) | (pn = 35.80)
(i = 57.30) | (ur = 143.16) | (p; = 286.32)
10 99.71 99.54 98.92 99.05
20 99.12 99.02 98.92 98.38
32 97.55 97.67 97.60 96.88
TABLE IV

CLASSIFICATION ACCURACY AFTER NODE-LINK
DAMAGE (NODES AND LINKS ARE TREATED AS A SINGLE COMPONENT)

Input image Number of (nodes+links) damaged
with noise 0 2952 7371 14742
level (0) | (0%) | (~2%) (~5)% (=~ 10%)
(1= 64.44) | (u=161.10) | (s = 322.20)
10 99.71 99.69 99.43 99.04
20 99.12 98.63 98.86 98.67
32 97.55 97.35 97.38 96.95
TABLE V
CLASSIFICATION ACCURACY AFTER NODE DAMAGE
Input image Number of nodes damaged
with noise 0 328 819 1638
level (o) | (0%) | (=2%) (=~ 5)% (=~ 10%)
(1 =7.186) | (1 =17.90) | (1 = 35.80)
10 99.38 99.26 98.93 98.49
20 98.80 98.57 98.40 97.97
32 98.03 97.95 97.85 97.28

classified under all the conditions mentioned earlier are given
in Tables I-XII. Tables I-IV correspond to Algorithm 1, while
Tables VI-VIII correspond to Algorithm 2 and Tables IX—XII
ccorrespond to Algorithm 3. In Tables III, VII, and XI, ., and
; denote the mean rate (1) for nodes and links, respectively.
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TABLE VI
CLASSIFICATION ACCURACY AFTER LINK DAMAGE
Input image Number of links damaged
with noise 0 2622 6554 13107
level (o) | (0%) | (~2%) (~5)% (~ 10%)
(4 =57.30) | (4 = 143.16) | (u = 286.32)
10 99.38 99.22 98.93 98.55
20 98.80 98.75 98.62 98.30
32 98.03 97.90 97.711 97.72
TABLE VII

CLASSIFICATION ACCURACY AFTER NODE-LINK
DAMAGE (NODES AND LINKS ARE TREATED AS SEPARATE COMPONENTS)

Input image Number of nodes+links damaged
with noise 0 328+2622 81946554 1638+13107
level (o) | (0%) (~2%) (~5)% (=~ 10%)
(#tn = 7.16) | (4 = 17.90) | (un = 35.80)
(w1 = 57.30) | (i = 143.16) | (u; = 286.32)
10 99.38 98.97 98.50 97.97
20 98.80 98.68 98.59 97.75
32 98.03 97.72 97.53 97.30
TABLE VIII

CLASSIFICATION ACCURACY AFTER NODE-LINK
DAMAGE (NODES AND LINKS ARE TREATED AS A SINGLE COMPONENT)

Input image Number of (nodes+links) damaged
with noise 0 2952 7371 14742
level (o) | (0%) | (~2%) (=~ 5)% (=~ 10%)
(1 = 64.44) | (u = 161.10) | (u = 322.20)
10 99.38 99.05 98.46 97.95
20 98.80 98.63 98.36 97.97
32 98.03 97.64 97.02 96.60
TABLE IX
CLASSIFICATION ACCURACY AFTER NODE DAMAGE
Input imlage Number of nodes damaged
with noise 0 656 1638 3276
level (o) | (0%) (~2%) (~5)% (~10%)
(p=28.63) | (p=71.58) | (u = 143.16)
10 99.58 99.58 99.57 99.42
20 98.90 98.90 98.88 98.74
32 97.17 97.18 97.37 97.24
TABLE X
CLASSIFICATION ACCURACY AFTER LINK DAMAGE
Input image Number of links damaged
with noise 0 5898 14746 29491
level (o) | (0%) (~2%) (~5)% (=~ 10%)
(p = 257.70) | (p = 644.25) | (p = 1288.49)
10 99.58 99.58 99.58 99.51
20 98.90 98.90 98.89 98.90
32 97.17 97.18 97.23 97.24

From the tables it is evident that when either only nodes
or only links are damaged (even a high percentage ~ 10), the
performance is not deteriorated much for all the algorithms.
But, if both the nodes and links (Tables HI-IV, VII-VIII,
and XI-XII) are damaged, performance is degraded slightly
more. Even under this condition the results are better for
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Fig. 2. Variation of percentage of correct classification with iteration (a) for Algorithm 1, (b) for Algorithm 2, and (¢) for Algorithm 3.

TABLE XI
CLASSIFICATION ACCURACY AFTER NODE-LINK
DAMAGE (NODES AND LINKS ARE TREATED AS SEPARATE COMPONENTS) TABLE XII

CLASSIFICATION ACCURACY AFTER NODE-LINK

Input image Number of nodes+links damaged DAMAGE (NODES AND LINKS ARE TREATED AS A SINGLE COMPONENT)
ith noi )
‘:-:v ln;ns)e (0?%) 6?64'25;?8 1638+51)‘;:46 3276‘:‘2);:91 Input image Number of (nodes+links) damaged
'e. o o~ o~ o
o m 2;63) ( ( _T1s8) ( - 143)16 with noise | 0 6554 16384 32767
Fn = 28.63) | (pn = TL58) | (un = 143.16) level (o) | (0%) | (=2%) (~5)% (~ 10%)
(= 257.70) | (= 644.25) | (u, = 1288.49) (= 286.30) | (s = 715.80) | (4 = 1431.60)
10 9958 |  99.57 99.51 97.58 =T w58 r '99 m £ '99 m r _98 e
20 98.90 98.89 98.82 97.05 % 98' % 98'89 5 s. % 97'69
32 97.17 97.20 97.08 . . - - -
95.17 2 |er17| or1s 97.08 95.17
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the first two algorithms compared to the third one. For the
third algorithm the outputs are, to some extent, dependent on
the initial gray values of the input image (since the error
is calculated by considering the closest approximation as
the target output, thereby initially mislabeling some pixels).
Normally this initial misclassification gets corrected later on by
incorporating neighboring nodes’ information while updating
links. But when a large number of nodes and links are damaged
some of the initial mislabeling fail to be corrected, thereby
deteriorating the performance. This, possibly, is the reason
of deterioration in the results of the Algorithm 3. Since the
performance is not hampered that much even when a large
number of nodes and/or links are damaged, the algorithms can
be said to be robust to a great extent.

It may be mentioned here that for links, it is not possible to
make comments on whether the architecture, even after cutting
some of the links, had redundancy or not. The deterioration
of the output only indicates that some of the nonredundant
(useful) links are lost. Whether a link or a node is redundant
or not at some instant of time depends on the 'organization
(presence of active nodes and links) of the net at that instant.

Note that the percentage of pixels correctly classified can
accurately be calculated only after the network is converged
(i.e., the status of neurons is either —1 and one, or zero and
one). While the network is in operation the output status is
not binary. To compute the pcc value in such an intermediate
stage, one can choose the middle most value of the range
of continuous output as the threshold and assign the status
as —1 (or zero) for those neurons having output less than
the threshold and as one for those neurons having output
greater than the threshold. Fig. 2 shows, as an illustration,
the variation of pcc (averaged over 10 different simulations
as in the tables) computed using the above scheme with
iteration when the image in Fig. 1(c) is used as input. Here 5%
damage of links and nodes was done treating them as separate
components. As expected, pcc value decreases with increase
of component failure, whereas it is constant when there is no
damage.

V. CONCLUSION

Robustness with respect to component failure is one of
the most important characteristics of NN-based information
processing systems. No result has been suggested (as far as the
knowledge of the authors go) to date in support of this claim.
Present work investigated this feature. This is performed by
damaging some of the nodes and/or links and studying the
performance of the system. The damaging process is viewed
as a pure death process. A set of assumptions is made about
the failure process which, incidentally, led the failure process
follow Poisson model.

To demonstrate the utility of the model developed, we
considered three different image segmentation algorithms
which employ Hopfield’s net, Gibbs random field, and a self-
organizing multi-layer neural network for extracting compact
object regions from noisy environments. Robustness of these
NN-based algorithms is evaluated under different amount of
noises and damaging. Performance is seen to be satisfactory
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even when a high percentage of nodes/links are damaged. This,
in turn, establishes the utility of the robustness evaluation
mode! in addition to examining the performances of some
segmentation algorithms.

We mention here that the convergence time of electronic
implementation of Hopfield’s network is of the order of
milliseconds. Therefore, not many components can fail during
a single run of the net. In the present investigation also,
the convergence time for parallel implementation on a digital
platform is also of the order of milli seconds. The percentage
of failure of components is considered here to be very high
just to investigate the performance of the systems even under
such a severe damage. Since the failure process is random,
it is difficult to predict at what time a component will fail.
Thus even if a single component fails during the operation of
a network for which the convergence time is of the order of
milli seconds, we can check the robustness of the system with
respect to that component.
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