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Summary

In cross-over experiments, where different treatments are applied successively to the same
experimental unit over a number of time periods, it is often expected that a treatment has a
carry-over effect in one or more periods following its period of application. The effect of
interaction between the treatments in the successive periods may also affect the response.
However, it seems that all systematic studies of the optimality properties of cross-over
designs have been done under models where carry-over effects are assumed to persist for
only one subsequent period. This paper proposes a model which allows for the possible
presence of carry-over effects up to k& subsequent periods, together with all the interactions
between treatments applied at k 4 1 successive periods. This model allows the practitioner
to choose k for any experiment according to the requirements of that particular experiment.
Under this model, the cross-over designs are studied and the class of optimal designs is
obtained. A method of constructing these optimal designs is also given.

Key words: calculus of factorial arrangements; carry-over effect of order k; cross-over designs;
direct effects; interactions; strong balance of order k; universal optimality.

1. Introduction

Cross-over experiments are experiments in which various treatments are applied to each
of the experimental units, successively over different time periods. The related designs are
called cross-over designs. These designs are widely used in clinical trials, learning experi-
ments, agricultural field trials and in several other areas of experimental research.

The distinctive feature of these designs is the possible presence of the ‘carry-over’ effects
of a treatment in one or more of the subsequent periods, over and above its direct effect in
the period in which it is applied. The pioneering work in this area was by Williams (1949,
1950) and now there is a vast literature on works in this area. For an excellent review of the
literature we refer to Stufken (1996).

Earlier authors such as Patterson (1968, 1970, 1973), Lucas (1951, 1956, 1957), John
& Quenouille (1977 pp. 196-220) studied the construction and analysis of these designs. In
addition to the usual direct effect, they often considered carry-over effects which persisted
beyond one period. They also included terms due to the interaction between the treatments
applied in successive periods. For other interesting results in the area of cross-over designs we
refer to Street & Street (1987), Street, Eccleston & Wilson (1990), Jones & Kenward (1990)
and Russell & Dean (1998).
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The optimality study of cross-over designs was initiated by Hedayat & Afsarinejad (1975,
1978). Cheng & Wu (1980), Magda (1980), Kunert (1984a,b, 1991), Stufken (1991) and
others, studied the optimality properties of these designs under simpler additive models with
carry-overs assumed to persist up to one period only and no possible interactions among the
treatments applied in successive periods.

However, as remarked by John & Quenouille (1977 p. 198), the carry-over effect of any
treatment may occur in any period of the experiment after the application of the treatment.
Moreover, the interaction effects may also affect the response. Examples of datasets are given
by John & Quenouille (1977 p.213) and Patterson (1970) who found such effects to be statis-
tically significant, but it seems that no systematic optimality study within sufficiently general
classes is available in the literature for this general situation. In this paper, we form a general
model based on the usual model for optimality studies, by incorporating the additional pres-
ence of carry-over effects up to, say, k subsequent periods, together with possible interactions
among the successive treatments applied in these periods to the same subject. This general
model gives the practitioner the freedom to choose a value for £ depending upon the specific
model requirements of the particular experiment under study.

In Section 2, we formulate the general model with carry-overs up to general order k and
interactions. The developments in Sections 2 and 3 depend heavily on the Kronecker calculus
for factorial arrangements.

In Section 3, we investigate optimality conditions for the separate estimation of direct
effects in a very general class of designs. In Section 4, we give a method of constructing
these optimal designs, with some examples. This method of construction illustrates that the
conditions which are necessary for the existence of the optimal designs are also sufficient.

2. Model and analysis

Let €2 ,,p denote the class of all cross-over designs with ¢ treatments applied to 7 units
over p periods. Let d(i, j) denote the treatment assigned by a design d € €, , in the ith
period, to the jth unit. Let ¥;; denote the response at the ith period from the jth subject.

Following the terminology of John & Quenouille (1977 p.198), the carry-over effect
occurring at the ith period following the period of application is called the ith order carry-
over effect, i = 1,2, .... We introduce the following model by incorporating all carry-overs
up to the kth order and all interactions among direct effects and carry-over effects of different
orders and also the interaction between carry-over effects of different orders, into the usual
model assumed in the literature.

The model is given by

B(Y,) — {M +o; + B +Ea j)di—1,)),..di—kj) k=<i<p—-11=<j<n), W
Y w+op + B+ j)di—1,j),..d0,) O=<i<k—-11=<j<n),

where w, o, Bj, Eny.,ny.....h,; are respectively the general mean, the ith period effect, the jth
unit effect and the effect produced when treatment /1 is applied in the current period, 45 in the

immediately preceding period, . . ., hx41 inthe kthpreceding period (0 < hy, ho, ..., hgy1 <
t —1). Here, &, j).d(i—1,}),...d(i—s,j) stands for the sum of the direct effects of d(i, j), the
first order carry-over effect of d(i — 1, j), ..., the sth order carry-over effect of d(i — s, j)

and the interaction effects from order 2 to s + 1 between these s + 1 treatments.
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Model (1) is a non-additive generalization of the model given in Cheng & Wu (1980),
obtained by incorporating higher order carry-overs and interactions to it. This model may be
useful to the practitioner who can now use an appropriate value for k to suit the experimental
requirements. Similar models for the case k = 3 are used to analyse datasets, by John &
Quenouille (1977 p.213), Patterson (1970) and others.

Under model (1), a direct extension of the usual method of analysis and proof as given in
Cheng & Wu (1980) become intractable. Instead, model (1) can be conveniently studied by
first noting that cross-over designs may equivalently be looked upon as factorial experiments
and then applying the calculus for factorial arrangements introduced by Kurkjian & Zelen
(1962) to study these designs.

Consider t**t! = v treatment combinations of the form (hi,ha, ... hkg1), 0 < hy,...
wooyhgy1 <t —1, suchthat hy (h;,i = 2,...,k + 1) represents the treatment producing
the direct effect ((i — 1)th order carry-over effect, i = 2, ..., k+ 1) to an experimental unit.

Thus a design in €2, ,, , can be looked upon as a symmetric tk+1 factorial experiment where
the direct and the (i — 1)th order carry-over effects of a treatment may be interpreted as the
main effects of factors F7 and F; respectively, and the interactions between the treatments in
the k£ + 1 successive periods are given by the corresponding factorial interactions.

Noting this correspondence between cross-over designs and factorial experiments, model
(1) may be written in the following equivalent form in the factorial context:

EYij) =p+a+p+16 O<i<p-1,1<j<n), )
where the 1 x 1 vector

€ = (£00..0, £00...1, - - - » £00...t— 15 £000..010 £00..0115 - - - s E1=1,0..05 « - - » Er—1,1—1,..t—1) "

is the vector of the r**! treatment combinations,
Aij = eq(i,j) R edi—1,j) Q- D ed(i—k,j)» fork<i<p-1,1<j=<n, Q)
andfor0<i<k-—1,1<j <n,
Aij =eqi,j) ®edi-1,)) @ - Qeqo,) @{I® i), 4)

where ® denotes Kronecker product, I1® denotes the Kronecker product of (k — i) terms;
eq(i,j) isa t x 1 vector with 1 corresponding to the treatment d(i, j) and zero elsewhere; and
1; isa t x 1 vector with all elements unity.

Let Xy denote the design matrix for a design  in €2 , , under model (2). Then it can
be shown from model (2) that

np nly, ply L
nl, nl, 1,17 Nj

X'X = , 5
pl, ln1; pli M %)
L;; Ng Mg Vy
where
p—1 n p—1 n

La=D D hp Va=D D hhy. ®)

i=0 j=1 i=0 j=1



238 MAUSUMI BOSE AND BHRAMAR MUKHERIJEE

-1

n n n p—1 p—1
Nd=(ZAO,-,ZAU,...,Z,\,,_U>, Mdz(ZA,-l,Zkiz,...,ka). 7
j=1 j=1 j=1 i=0 i=0 i=0

The matrices Ny and My in (5) are the treatment-versus-period and the treatment-versus-
unit incidence matrices respectively, where the treatments are actually the %! treatment
combinations in &.

From (5) it follows that the coefficient matrix of the reduced normal equations for esti-
mating & from a design d in €, p is given by

C;=V, 1NNT 1MMT+1(1\11)(N1)T (8
d = Vd L vatld pdd np dlp dlp) -

3. Optimality results

Definition 3.1. A design in €2, ;. is called uniform if the treatments occur equally often in
each period and also equally often in each unit.

Definition 3.2. Under model (1), a design d in $2;,, , is called strongly balanced of order k
if each consecutive subset of i periods in d contains each i -tuple of treatments equally often,
i=2,...,k+1.

Let a uniform strongly balanced design of order k in €2, , , be denoted by d;.

The following two lemmas are used in the proof of the optimality result. Lemma 3.1
is from Mukerjee (1980). Lemma 3.2 follows from the condition for universal optimality in
Kiefer (1975). For the definition of universal optimality we refer to Kiefer (1975).

Lemma 3.1. In an s™ factorial experiment in a design d, the best linear unbiased estimators
of contrasts belonging to a main effect F;,i = 1, ..., m are orthogonal to those of contrasts
belonging to all other main effects and all order interactions if and only if Z;C4 can be
expressed as a linear combination of Kronecker products of permutation matrices, where

Zi = (% Ua s Ua = Is Ifa 7é l.7
1 I, ifa=Ii,

and J; = 1,1]

s1¢, I is the identity matrix of order s.

Thus, putting i = 1 in Lemma 3.1, one obtains the condition under which the best
linear unbiased estimators of contrasts belonging to the direct effect are orthogonal to those
of contrasts belonging to all order carry-over effects and interactions. Similarly, other values
of i give the conditions of orthogonality of the (i — 1)th order carry-over effect with all other
effects.

For d in €, ,,, let C; be the coefficient matrix of the reduced normal equations for
estimating a full set of orthonormal contrasts belonging to the direct effects. The expression
of C} involves a lot of notations and so is given in Lemma A.1 in the Appendix. Let tr(A)
denote the trace of matrix A.

Lemma 3.2. A design dy in 2, is universally optimal for the direct effects in S , p if it
maximizes tr(C}) over Q2 , p and if C;I is completely symmetric.
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The following theorem gives the optimality properties of d; under model (1).

Theorem 3.1. Under model (1), dy is universally optimal for the separate estimation of direct
effects in the class of all designs in 2 , p.

Proof. By Lemma 3.1, the best linear unbiased estimators of contrasts belonging to direct
effects are orthogonal to those of contrasts belonging to carry-over effects of different orders
and also to interactions between direct and carry-overs and to interactions between the carry-
over effects of different orders, if we can express Z1Cy, as a linear combination of Kronecker
products of permutation matrices, where Cy4, is givenby (8)and Z1 = ([; ® J; @ - - - ® Jp).

From (7), (3) and (4),

n p
N, 17_(

j=1 i=0

—q np
Aij :F[1t®“'®1t]v

since d; is uniform. So,
2 2

n
Z1(Nay1p)(Nagy 1) = M U ®-® Jp). ©)
Similarly, from (3), (4) and (7), it follows after some algebra that
n2p
Z\Ny N}, = [1,® @ 1L1(Ng 1) = k+2(1,® -® ), (10)
ZiMy, M, = 21, @+ @ 11(Na, 1) = HZ[J,@ -® . (1n

Again, from (3) and (4),

n

.
D hojhdy = 2k[2(6d|<01>€d1(01))®ft® ®Jt] 2k+][1’®‘]’® " ® Jil,
L =

since, because of uniformity on periods in dp, each of the ¢ treatments occurs a total of n/¢
times in the initial period over all the j subjects. Also, by Definition 3.2, it can be shown that

117 17
ZM,)\ Z[edm D) ® a0, ¢ 0.) ® 7 @ ® ,2]
j=1

n
=t7[1;®1t®ft®~-~®fz],

n
Z)‘Zj)‘;j: g ®L®L® ) ® - ® J,

n
Y My = k+2 L®L® - ®L®

p—1 n
n(p —k)
ZZ)‘U T T i@ & 1L].

i=kj=1
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TABLE 1

Relative A-efficiencies of carry-over effects

A-efficiency of carry-over effect of ith order

Number of relative to the direct effect
treatments
i=1k=2 i=1,k=3 i=2,k=2 i=2,k=3
2 0.953 0.915 0.825 0.819
3 0.957 0.931 0.841 0.791
4 0.959 0.892 0.850 0.705

Hence, by (6), it follows that Z;Vy, is a linear combination of Kronecker products of
I; and J; matrices. This, together with (9), (10), and (11), shows that with Cg4, as in (8),
Z1Cy, can be expressed as a linear combination of Kronecker products of /; and J; matri-
ces. This, in turn implies that Z1Cy4, can be expressed as a linear combination of Kronecker
products of permutation matrices. Thus, Z;Cy, satisfies the condition of Lemma 3.1. Now,
by Lemma 3.1, it follows that in the design dj, the estimates of direct effects contrasts are
orthogonal to the estimates of contrasts belonging to the carry-overs and interactions.

From this, it can be shown that d; satisfies the conditions of Lemma 3.2. (See Lemma A.2
in the Appendix.) Hence, by Lemma 3.2, the theorem follows.

Remark 3.1. In Theorem 3.1, the optimality criterion is applied to the estimation of direct
effects since, in most cross-over experiments, the primary objective is to study the direct
effects of treatments, even though the models include a number of other effects which have
to be taken into account when studying the direct effects. However, if one also wants to
estimate the other residual and interaction effects separately, it can be shown that d;, though
optimal for the direct effects, does not remain optimal for the estimation of the carry-over or
the interaction effects. This is because the condition of orthogonality, as given by Lemma 3.1,
does not hold for these effects in dj.

Remark 3.2. To evaluate the performance of d; for the separate estimation of residual effects,
we compute the relative efficiency of estimation of the carry-over effects relative to the direct
effects, based on the A-efficiency or the average variance criterion. The upper bound of these
efficiencies is unity. Table 1 lists these A-efficiencies of d; for some values of 7, k and i; it
shows that the efficiency of d; for the estimation of carry-over effects is quite high because
they are very close to unity. The efficiencies decrease as k increases and as the order of the
carry-over increases. So the design d is useful in the sense that, from this design, one can
estimate the direct effects optimally and the residual effects with high efficiency.

Remark 3.3. The optimality result in Theorem 3.1 is quite general because the competing
class is the class of all designs in €, , ,. Moreover, as universal optimality is a very strong
optimality criterion, design d; is also optimal under the weaker and more commonly used
optimality criteria of A-, D-, E-optimality.

4. Construction of the optimal designs of order & in &, , ,

By Definition 3.2, the conditions

*n,  tlp, p=(k+ Dt (12)
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are necessary for the existence of the optimal design d; in €2, ,. We give below a method
of constructing dy in $2; jk+1 (jq1y;-
We first construct a (k + 1) x % matrix Goo whose first two rows are given by

000 ... O 0 000 ... O 0O ... 000 ... O 0
012 ... t—2 t—1 012 ... t—2 ¢t—1 ... 012 ... t—2 t—1.

Then the other rows are filled up as follows: the % positions in the third row of G are
grouped into ¢ disjoint sets of ¥~ consecutive positions each. Let these sets be numbered
Co, C1,...,Ci—1, respectively. For the third row, a symbol in any position in the set C; is
obtained by adding the symbol i, modulo ¢, to the element in the corresponding position in
the second row of Gog, i =0,1,...,¢t — 1.

The fourth row of Ggg has ¥ positions to be filled up. The t*~! positions in the fourth
row, corresponding to each of the sets C; of the third row, are further divided into ¢ subsets
of t*=2 consecutive positions each, j = 0,1,...,¢t — 1. Let these subsets be numbered
Djo, Dj1, ..., Dj—1, respectively. Then, the symbol in any position in the subset Dj; is
obtained by adding the symbol i modulo ¢ to the symbol in the corresponding position of Cj
of the third row of Gog, i =0,1,...,t—1, j=0,1,...,t—1.

Continue this procedure until (k + 1) rows have been filled up and we get all the (k + 1)
rows of Gop.

Now, let G;o be the matrix obtained from Gy by adding the symbol i modulo ¢ to all
the symbols in the first row of G, keeping the other rows unchanged, i = 1,...,¢ — 1.

Let Go = (Goo, G10, - .-, Gr—1,0). Then dy € @ p of order k is given by

Go

G

G

where fori =1,...,t—1, G; = Gy + i],ltTH, , addition being done modulo ¢.

Remark 4.1. A design d; in the general class €2, ,, where t,n, p satisfy (12), may be
constructed by taking suitable copies of the design constructed above.

Remark 4.2. The above construction, together with Remark 4.1, shows that the conditions
(12) are also sufficient and thus the issue of existence of d; is completely settled.

We illustrate the method by the following examples.

Example 1. To construct d; in 23279 for k =2

000000000
Goo = | 012012012 |,
012120201

000 000 000 111 111 111 222 222 2227]
Go= | 012 012 012 012 012 012 012 012 012 |,
| 012 120 201 012 120 201 012 120 201

111 111 111 222 222 222 000 000 000 ]
Gy =120 120 120 120 120 120 120 120 120 |,
| 120 201 012 120 201 012 120 201 012




242 MAUSUMI BOSE AND BHRAMAR MUKHERIJEE

222 222 222 000 000 000 111 111 111
G, =201 201 201 201 201 201 201 201 201
201 012 120 201 012 120 201 012 120

The required design is given by
Go
G
G,

Example 2. To construct dj in €3 168 for k =3

00000000 11111111
Goo = 01010101 Gio = 01010101
01011010 |’ 01011010 |’
01101001 01101001
0000000011111111 1111111100000000
Go = 0101010101010101 Gy = 1010101010101010
0101101001011010 |’ 1010010110100101
0110100101101001 1001011010010110

The required design is given by

o]

5. Concluding remarks

Using the model and the designs suggested in this paper, the experimenter can choose an
appropriate value for k and thus allow for the presence of carry-overs up to the order which the
experimenter believes to be suitable for the experimental conditions. The model and designs
also allow for the presence of interaction terms. This is unlike previous studies in which the
experimenter had to assume that the carry-over stopped after just one period and that there
was no interaction between treatments.

Since the model is so general, the optimum designs under this model naturally turn out
to be larger than the optimum designs under the simpler model. The actual number of units
required to achieve this optimality increases with k. So, the size of the design for an exper-
iment really depends on the number of carry-over terms which the experimenter believes to
be present for that experiment. The smaller the value of k, the smaller the design.

Appendix

Lemma A.1 (Derivation of the expression of C;,‘, for a design d in 2, ). Following the
notation in Mukerjee (1980), let P; be a (t — 1) x t matrix such that (t~'/*1,, PxD
is orthogonal, P} = t='/21] if x; = 0, and P" = P, if x; = 1. For any vector x =
(X1, X2, o Xk 1), % = 0,1, i =1,2,....k+1,let P"=P" QP ® .-@ P*'.
Then P'0-Of js a full set of orthonormal contrasts belonging to the direct effects. Let

10...0 .
P = (PP)' ), where y = (V1, Y2, - Yk+1), Yi = 0,1, i = 1,...;k+1, y #
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(1,0,...,0), y#(0,0,...,0). Then, ford in 2 p,,, the coefficient matrix of the reduced
normal equations for estimating P'0-0¢ is given by

C:; — PlOOCd(PIOO)T _ P]OOCd(Py)T [Pycd(P_y)T]— P)?Cd(Plo...O)T’ (A])

where Cy4 is as in (8) and [A]™ denotes the generalized inverse of a matrix A.
Lemma A.2. A design dy in @, y,, satisfies the conditions of Lemma 3.2.

Proof. For the design d; in 2, ,, ), PIO“'OCdl (PY)T = 0 because in the proof of Theorem 3.1
it has been shown that in d; the estimates of direct effects contrasts are orthogonal to the
estimates of contrasts belonging to carry-overs and interactions. Hence,

C;l — Plo‘..OCdl (PIOO)T (A2)

Note that P10-0C,; = t3*2p (1, @ 1T ® --- ® 17)Z'%0Cy,, and by (9), (10), (11)
and the expressions for Z;zl Ao jkg j derived in the proof of Theorem 3.1, it follows after
some algebra that

n 1
710-9¢, :tk%[(I’_?J’)@J’@”'@Jt]'

So, from (A.2), it follows on simplification that

np
Ci = k1. (A.3)
and hence tr(C}; ) = np(t — 1)/t**1.

Now, from (A.1) it follows that for any d in €, p, pl0-0c,(pl0-.0yT _ C;’I‘ is non-

negative definite. So,

1 1
t—ktr[vd(l,mt@--.mt)—;Vd(J,®J,®m®J,>]

np(—1)

after simplification using (3), (4) and the definition of V; in (6).
From (A.3) and (A.4), C:;] is completely symmetric and for any d in € , p, tr(C}) <
tr(C:;1 ). This proves that d; satisfies the conditions of Lemma 3.2.
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