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SUMMARY. So far tho study of ophmnht) ol' block dosigna (elunuml.mg howmgoneny
in two directions) has boon confinl 1 ly ta i where the
structure is orthogonal (in tho senso that all cells are non-ompty). In this article wo pose and
eolvo tho optimality problorn {(for inforring on & full mot of orthonormal treatment contrasts)
in tho setting of block desigus involving bx b arrays whero all the colls nlong a transvorsal aro
empty. Forb = ] (mod v} universally optimal designa are available and for = 0 (mod r)
4-, D-, and E-optimal designa have beon charncterisod and constructad.

1. INTRODUCTION

There is a good dea! of literature available on the combinatorial, construe-
tional, and analysis aspects of designa eliminating heterogeneity in two or
more directions. Usually, in such set ups, it is assumed that the row column
structure is orthogonal. That is to say, the incidence pattern of row column
is taken as one represented by the matrix J = ((1)) of all I's. Technically,
this means that all the cells are assumed to be non-empty. However, in
practice, situations may arise when some cells may remain empty because
those combinations of levels are infeasible. In such cases, the usual analysis
breaks down and appropriate modifications are needed. Aggarwal (1966a)
derived the distribution of adjusted row and column sum of squares and the
conditions for orthogonality of estimable row, column and treatment contrasts
for a general row-column incidence structure, allowing for such empty cells.
In subsequent papers {Aggarwal (1968b, )066c), Aggarwal & Sharma 1976) he
presented a series of two-way designa covering the situations where the cells along
the principal diagonal are empty. Recently Adhikary and Panda (1883) brought
out and explained some concrete physical situations where a sort of peculiarity
in the row-column structure canno! be overlooked. This is that some combi-
nations of rows and columns may not be feasible when identified with Jevels
of some organic and inorganic manures in the contest of agricultural experi-
ments. These are what motivated ua to take up a study on the analysis of
designs underlying two-way elimination of heterogeneity with a non-orthogonal
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row-column structure, non-orthogonality in the*sense of empty cells along &
transversal. Without any loss of generality, the transversal can be and will be
taken along the diagonal. In this article, we consider an arrangement of v
treatments in a square array of size bxb, where the cells along the principal
diagonal are supposed to be infeasible. We have characterized the combina-
torial aspects of the optimal designs under this non-orthogonal set up assuming
usual fixed effects model. We have also considered the construction of some
series of such designs. In the process it turns out that construction of such
optimal designs is rather invalved. This leads us to the study of the relative
efficiencies of Aggarwal’s (1906b) designs and their generalizations having
certain nice simple structure compared to the actual optimal designs charac-
terized by us. It turns out that these designs are indeed highly efficient
with respect to the usual optimality criteria.

The usual fixed effects model e.g.,
ypph) = ptogtBpinte, 1Ay 1Kj#5<b
where p, ay, By, 7y stand respectively for general effect, j-th row effect, 5'-th
column effect, h-th treatment effect and ey’s are iid. N(0, 0%) will be taken
for granted under this non-orthogonal set up.
For a specified design

Lioxyy = ((hg)), Moty = (mag))y Noaxcry = ((mgy))
stand respectively for ‘treatment-row’, ‘treatment-column’ and ‘row-column’,
incidenco matrices. In the present set-up, N = J—1I, where Iy is the identity
matrix of order b.

As usual, following Kiefer (1958, 1975), Cheng (1978), Bagchi (1982),
we are interested in linear inferential problems involving treatment
contrasts only and as such we refer to the underyling C-matrix of the design.
Let # = (r,. 75 ..., 7o)’ be the vector of treatment replications. Let further

b ]
ngp = Emp, my = n
g =1
Then, following Aggarwal (1968a),
Cc= B,,—X;,A:,X“
where . . 1 1 1
B,, = diag(ry, 75 .., ro)—L diag ( ; el o, ) L

Xig = — M+ ding ( . 7

e T T

) 3 1 1
4,, = diag(n.y, Ny, ..., np)—N’ diag (T' - ) N.
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Here » over a matrix denotes‘its generalized inverse. We will deduce explicit
expreasion for the C-matrix with N = J—el where e = 0 or 1. Let k denote
tho constant row and column sizes ie. k=np =1n4, 1< 5,5°< . Note

that for ¢ =0, k=b and for e = 1, k=b—1. Thus we get .
um- 2 —{—uﬂ%}(u—"%} (s
N }‘

Next note that

[1— c, % J) = u—apr =1-Jp fore=o0or 1.

LU MM
Ere kte

k+e

Hence Cz= D,— -;,— (L+M)L+ MY+ (F—c)ok )bk

For ¢ = 0, we get the usual form of this C-matrix and for ¢ = 1, we get

LU MM (L+M)L+M) L
Ca=Dr— == =5 =~ pp—gy  Te=ne=g — "V

In our later derivation we will use the above O-matrix in (1.1). InSection 2

we discuss the problems of characterization and construction of optimal

designs under the special case of b =mv+1. Then, in Sections 3 and 4,

we take up the same problem for the case of b = mv. In Section 5 we will

caleulate efficiency of some classes of other designs considered by Aggarwal.
2. UNIVERSAL OPTIMALITY RESULTS FOB b = my+1

Let Q be the relevant class of bxb array designs. We will see below
that whenever b = mv+1, universally optimal designs (vide Kiefer, 1975)
exist. We state below Proposition 1 in Kiefer (1975) for this purpose.

If there exists & design d® in (2 such that
(1) d* is completely symmetrio (0.5.) i.e. Uge is of the form al+bJ.
(2) d* maximizea the trace of Cg in Q,

then d* i universally optimal.
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In case of b = my+1, let d* be a design which assigns each treatment
m times in each row and in each column. Then d° is universally optimal.
The proof is extremely simple. Firat we show that d* meximizes the trace
of Cs. Referring to (1.1),

b3 o moy g2
bra.oeong—);‘n—Z E 3y M
=1 i1 gm my+l o g motd

37 _ybm) £
(a1 g1 (mo1){mo—1)  mo(mo—1)

l v mo+1 1

“mn i LR ()]
1 v [ mo y 3

T mot1 E,[ E, ("H/_;/,b{l—l’) ]

1 L] ”‘ 2
T (my—N){mo+1) ,Z_:, [ a1 (lﬂ-l—m“ mv+l) ]
l v
) 5
mot) me+1
Note that Z ly= Z my=n, i=12..,»
Jm1 =
The sum of squares are all *“ > 0" and “="0 for d* since in d*, ly's and

my's are all equal to m. Moreover, Z ¥ is the least for d* since d* is equi-
replicate. This settles the part on t.rwe maximization. Next, it is also
evident that Cye is completely symmetric. Hence d* is universally optimal.
Such types of designs can be easily constructed. We construct a Latin Square
with b = mv+1 symbols, say 0,1, 2, ..., mv such that along the diagonal
the symbol 0 occurs. Then we delete the diagonal and reduce the rest of
the symbols mod v.

3. SPEOIFIO OPTIMALITY RESULTS FOR b = my
Let A be the relevant class of conneoted designs for b = mv. In such a
cage, the C-matrix of an 4-, D-, and F-optimal design is completely symmetric
but it does not necessarily produce maximum value of the trace of Cg in A.
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Take, for example v = 3, m = 2. The design d, has larger tracs than that
of d* {(which will be shown to be E-optimal) where (0,1,2 denoting the
treatments)

Xo101 2 X12020

1 X0 1 20 1 X0 2 21

21 X100 20 X011
&= d* =

020 X211 001 X1 2

012 0X1 0221 X0

102 20X 1 212 00X

Thus Proposition 1 of Kiefer (1975) is no! applicable as regards universal
optimality. So we look for specific optimality. Let d* be a equircplicate
design for which (i) Cge is completely symmetric and (ii) the diegonal compo-
nents are such that

ch for every k.

G"‘Mn = !:n&

X
{ded :ra=7)
(Here 7 stands for the t plication size of the treatments under 4° i.e.
7 = m{mv—1)).
In the following we will eatablish D-, A-, and E-optimality of d*. We
follow essentially the technique in Kiefer {1975).
Let

G@={0,1,2, .., mymv—1)}
G, = (n:n¢@, and n js a multiple of myv}.
(O, D) is defined to be an elementary interval, where C, D are two consecutive
integers e G,.
F = m{mv—1), ¥ 6 [((m—1)ymv, mmv) = (0, D,) sey.
S it is raquired to minimize ¢*(Cg) over alld 6 A. Suppose, further,

134

¢°* has the representation
#ap Xap o Aa-) = E S0,

where f is convex, and d to be i ging over [0, o] and
Ag's $=1,2,...v—1 are the non-zero characteristio roots of the cs-matrix.
We say
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-1
that d* is Yy optimal in A if's f(/\‘.‘) is minimum over all possible designs in
=1
A. Using steps 4 in Kiefer (1975), one gets

= v—1 2 v
T f0a)> "7 2 ST o)
where g(r)) = max Capp
{deA : h-th replication=mry}
The problem then reduces to checking that If (1% g(r,\)) attaing its mini-

mum for d = d°*. In effect, we have to establish the validity of

sf (25 ow) > o ;25 90) . 31

we define
v
at) = —f( 25 o)
where r is taken to be only non-negative integer. Then (3.1) would follow
at once if g(r) were concave i.e. g{r) were concave but this is not the case
always. This is what motivates further development (vide Kiefer, 1975).
Let g(r) be the concave envelope of g(r) i.e. the function » ¢ for which
second order differences
Fr+D+3A—2(r+1) are all < 0.
Then (3.1) will still hold if
3l = alf). - (32)
We will show that a sufficient condition for (3.2) to bold is that
gr+1)—q(r) 4 in 7 for €y, € r < Dy—1
ie. ¢ is concave in Cy € r < D,—1 and, moreover,
9 +1)—q) > ¢(Do)—g(Dy—1).

Set 7, = mv[% ]+l.

= my u+£ say,

where [%—] is the largest integer not greater than % . Then

c LS L Fm
= r— — _— m
= T e SN e ™

1 mo e
~ my(mv—2) ,E gty )I+(mv—1)(mu—2).

B1-7
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We derive below the expression for g(r,) i.e., max of CGM subject to the condi-
tion ‘:)':: Iy = a and !:z'l maf =ry. Tt is olear that the minimum of "):_" 1,
my

subject to!_Zl by =ry is attained when ¢ of l's are u+1 and mv—¢ are u,
Similarly for mp;'s. Now in order to attain minimum of :Zz (Irg+mpg)? such
that T (lny+mag) = 2ry, first note that

uﬂdet"-claae (8) e.g. ¢ < muf2

ﬂ]:g[l]:h
my my

and hence the minimum is attained when 2¢ of (lhy+mp) 5= 1,2, ..., mv are
2u+1 and rest are 2u.

Agpin, under case (ii) eg. when t > ﬂ;,

%] =22 |41=2ut1.

Hence, the minimum is attained when 20—mv of (hy+mas) are 2u-+2 and
rest 2(mv—t) are 2ud1.

It can be checked that
under case (f): ¢ < myf2

)= mex C,
9t) {d:ra=r) ]

=r— % {—mout+(2r—mv)u-r}

| 2 —dmyud+Bur4-2r— 2mvu
" my—T)(my—2) my(my—2)

[t = r—mou)

and under case (i8): ¢ > my[2

2 Yz L 1 "‘
90r) = r———{—mwut+2r—mojutr}4 =T)mv=2)

_ —dmyud+ 8ur- br — Gmou— 2my
mo(my—2)
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80 that
( o) = A +Bfr) ife< T
. . r r 1
o0 = 1 i it o[ ]<7
9a(r) = Alr)4-By(r) if t> 1;2
. . r r 1
| ie. if e [W]>§
where

2 7 dmpu?—8
Al = r= oo mmwd Qr—mojutr)+ W =3y T(:" v_:;

1

= =Tm—g "t {1————— —
4mou?

my(my—2)

+2ut+2u+

2r—2mvu

Byr) =~ mo{my—2)

6r—6movu—2my

By = — my(mv—2)

aln) if umv < r < umv+myf2
glr) =
{ gofr) fumv+myf2 Lr<(u+lmyv u=0, 1,2, ..., my—2.
Note also that for umytme/2 < r < (utlymy, ©=0,1,2,..., my—2

4r—dmou—2my
QN —galr) = —  ——o—

my(my—2)
_ Ar—mvu)—2my _ 4—2mv .
= =D = mm—3 > 0ift 3 mof2, ... (8.3)

Since our problem is to find a concave envelope of g(r}= —j‘(v%l g(r)) and —f

is inereasing, it suffices to find a concave envelope of & larger function. How-
ever, for (3.2) to hold, it is necessary that ¢ remains unchanged at . So
instead of working with the two different expressions for g(r) in the two halves,
we will work with g,(r) alone in all the intervals except for the interval [Cy, Dy}
containing 7. In other words we will work with
nlr), r € Og+[mvf2], r> D,
glr) = {

alr) CotImof2l+1 < r < Dy—1.
denoting by [z], the greatest integer < z.
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Now we study some properties of the function g(r). The first property
relates to its nature over the range of values of . We have

Ay(r) = gilr+1)—gir)

_ 2mor +[(mv)?—5(my) 4+ Tmo—2]— dumo{my—1)
B mu(myv—1){my—2)

sesuming [ 1= ] =

For fixed u, as r T, this difference 1. Further, in the u-th interval, at the
least value of r e.g. myu, one has

. (34)

(mP?— bmA? 4 Tmy— 2) —2umu(my—2)

Aymou) = mu{my—1){myv—2)

and this is positive iff
m¥P—5Smi+ Tmy—2 -
T >u>0 (me>2)

- mh:—3my-1
i.e. iff g 'T-‘;]
m2—3myv 41
v (3.5)

Again, when r = (z41)mv—1 ie. at the penultimate value of the u-th

= greatest integer contained in

interval, we get, using [;:;—] =, [%l] =u+],

—2u m’v’ Smd2 4+ Tmy—2

Ayflut hymo—1) = (my—1) T mamy—1)(mv—2) 39
and  A(utlymo—1)> 0iff 2 < [’""”;%ﬂ] — u (s8y). .. (37)

Thus (3.5) and (3.7) together imply that g,(r) T right from the start (i.e. r = 0)
to r = (uy+1)mv, covering thereby all the intermediate points in the intervals
corresponding to & = 0 through % = wu,. A similar behaviour of the function
ga(r) can be observed. A study of the functions g, and g, inside [C,, Do)
reveal the following facts :

0 G =integer:g (Ot 2 ) = (64 T ) < (0,.+3'21+1)
< ... € BDy—1) < (D)

1 3
(i) 3 # integer : g, (00+— +1) < ﬂl(on‘l' mot mt

)<a (Ct™5
< o € A Dy—1) € il Do)
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Aggin, taking r = (#-4-1)mv—2 in the u-th elementary interval (so that
r41 = (u+1jmo—1), we get,

_ —2u  m—3mi4Imy—2
Affutym—2) = S+ mo{mo— 1) (my—2)

9

and thisis < 0iffu> %H. - (38)
Thus (3.7) and (3.8) together imply that g, in r for u > uy+2. In the
interval [(uy+1)my, (4,4 2)mv) we cannot infer about the behaviour of g(r).
To finalise, we see that the function g exhibita the following pattern (noting
that %, is to the right of D).

-9,

Fig. 1 Co Do UMV (Up+1)mv (ug+2)mv
Fig. 1

We now derive a sufficient condition for (3.2) uaing the properties of g.
Suppose D € G is the first integer where g attains its absolute maximum,
By the sbove derivation, Dy< D < (41 2)mv. Since —f is monotone, to prove
(3.2) it is enough to consider @'={r:re G, r D—} Again in any elementary
interval [C, D], C, D & D there may exist # ¢ [C, D] such that g{r') < g(C).
Then because of the increasing nature of —f, we have g(r') < ¢(C).

Since we are concerned with a concave envelope of g(r), @ can be replaced
by its subset G” obtained by excluding such points ¢’ so that for any two points
r, and 7, in G" we have g(r,) < g(r;) whenever r, < r,. Now a sufficient
condition for existence of a concave envelope with §(F) = g(F) is local concavity
of g at #. That is,

qlry+-1)—g(r) > glry)—g(r—1), - (38)
whatever r,+1 7 < r,—1, 1y, ry e G,
We mey note thet r,—1 neetl not belong to 6”. As in Kiefer (1975) one
can establish (3.9) by proving (i) to (iii) stated below :
min i +1)—q(r)] = g(F)—gq(F—1
O o) lg(n+1)—a(r)] = 9F)—g(F—1)
@)  max [g(ry)—g(ry—1)] = g(F+1)—gfF) o (3.10)
<’
) g(F)—gF—1) > gF+1)—g(F).
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Wa will show that for (3.10) to hold, a enfficient condition ia
concavity of ¢ within C, £ r € Dy—1 }

and ¢(F+1)—q(7) > ¢(De)—q(Do—1)
Remark 1: It has been pointed out later that (3.10)(iii) is not satisfied
when m = 1. So we take up a proof of sufficiency of (3.11) below for m > 2.
Clearly (3.11) directly implies (3.10)(iii).
To prove (3.10)(i) take r, in [C, D] where [C, D] is an elementary
interval to the left of [Cy, Dy) so that D < C,.

By (34) A,(r) » AC) ¥ 1, € CHmo—2.
Again, for r, = C+mv—1, by (3.0)

(3.11

A(ry)ymu(my—1)(mv—2) = —2mo(my— 2)u+ (me)>— 5(m)+ Tmy—2
where we write C = mou.
Also, by (3.4),

A (Cymy(my—1)(mv—2) = 2(mv)u+(mv)*—5(mv)2+Tmy— 2—dump(my—1)
so that
[Ay(ry)—A(C)mv(my— 1) (mv—2) = 0.

Hence, A(r) > 84(C) ¥ n e[C, D), 1y < D.
Let Dy = uymv and Dy = uymv, u3 > ;.
By (3.4),
{A(Dy)—Ay(Dg)ymu(mo—~1)(mv—2)
= oy —ty) — Amv(mv— 1) — 1)
= 2mv(u,—u,)(2—mw) > 0 since u; < u, and my > 2.
This implies A;(Dy) > Ay(Dy).

Thus, finally,
Ay(ry) > 8,(C) > Ay(Cg) > 0
where C = (m—1)mv. The last inequality follows from (3.5) a8
m2:—3mu4-1
< 2my

m—1 forv» 3, m > 2.

8ot now g(r,41) =y, 9(r1) = ¥s 9(Co+1) = ¥, 9(Co) = ¥
Then A(ry) > A(Cp) > 0 means

B<h%U<y
and h—t%h> %> 0
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Sinoe —f 1 and concave, by Mean—Value Theorem,

=Sy -+ ) > =/ (]/a) +fyd)

N —Y
ie. —fu) e > ”‘ ”' > =S+ > () +fw]
[ 91i—% > ys—yd
ie. glr+1)=glr) > g(Co+-1)—4(Co)
So miuo lglry+1)—g(r))] = 9(Co+1)—q(Cy).

This, together with (3.11), i.e. concavity of ¢ within Cy & r < Dy—1 implies

min [q(n+l) qlr)] = g(F)—g(F—~1)
0r <

8o that (3.10)(i) is settled.
We pext prove that (3.11) == (3.10)(ii)
For this take any r, € [C, D] such that C > D,

By (34), for any r,¢ [ ]_ [fz+1 ]—["*2]—u,

2

Ay(ry+1)—A\(ry) = Ty =2y > 0.

Agein, when r, = (u+1)mv—2, r,+1 = (u+V)mv—1, 7,42 = (u4-1)mv, by
(3.4) and (3.5),

A Lpmy—1)—Ay((ut 1)mo—92) — % <.

Hence A,(r,) < A(D—2) for 7,¢[C, D] with C = umy, D = (ut1)mo.
Also when D, = wymv, D, = w;mv, u, > 1w, by (3.4),
mu(my—1)(mv—2){A,(Dy—2)—A(Dy—2)} = (ug—1uy)(— 2m*t4-4mv) < 0
80 that A,(Dy—2) < Ay(D—2).
Thus for rye¢[C, D], C » D, writing A(r) = g(r+1)—g(r),
0 < Afry) € A(D—2) € A(Dy+mv—2).
Again refering to the point D,, we get

A(Dy—2) = gy(Dy—1)—g5(Dy—2) = Al(D“_z)_Wt—z)
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and a
A(Dy—1) = g3(Do)—gulDy—1) = A(De—1)+ e

Further, we verify directly that

A(Dy+mv—2) & ADy—2) & A(Dy—1)
Now, an application of the Mean-Value Theorem yields

2(Dy)—g(Dy—1) > qlra+1)—q(ry) ¥ 7 > Do—1.
Also, local concavity for Cp & r € Dy—1 ensures
qF+1)—q(F) 2 qF+2)—gF+1) > ... 3 q(Dy~1)—q(D,—2).

However, A(D,—2) < A(Dy—1) implies

9(Dy—1)—q(Dy—2) < ¢(Do)—g(Dy—1).

This explains Remark 1 mede earlier ag #+1 = D, for m =1, A such, we
require an additional condition to be verified. This is that

9 +1)—q(7) > q(Do)—q(Dy—1).
This forms the second condition in (3.11).
Thus, whenever condition (3.11) obtains, we get

max qlra+1)—q(r,) = q(F+1)—q(F) which is (3.10)(ii).
r<ned

Thus we find that ,-optimality follows from a verification of (3.11).
We will now adopt specific optimality criteria and interpret (3.11).

V- v-.
D-optimality criterion by f(Aa() = log ( l'll A3l ) g0 that
1 faml

JAae) = log 1/Aa

and at) = — 25 9t = —log2; atr) = tog (25 0(r) ).
So (3.11) reads
log glr+1)—log g(r) € log glr)—log g(r—1) 4 Co < r < Do—1 ... (3.120)
and log g(F+1)—log g(7) 3> log g(D,)—log g(Dy—1) ... (3.12b)
Recalling the expressions for g(r), we rewrite (3.12b) as
9;(:(3 ] P gf('[(,fl),) w. (3.12b)
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Now define gj(r) = my(my—1)(my—2)g(r) i =1, 2.
Direct caloulations yield
gaF+1) = mi¥(v—1)—dm&i(v— 1)+ miu(v2+v—3)
—mPy(v—4)—mlv+2)4-2
ga(Dp—1) = mbe¥(v— 1)—mts3(Bv—2)— mA(v—4)+ mPv(v—4) 4 Imr—2
g (F) = mir¥{v— 1) —dmb(v— 1)+ 3mdo(v— 1)+ 2mPy—2m

02(Dy) = mAu2{miv(v—1)—m(3v—2)+2}
so that

73+ 193Dy — 1) —g3(F)g}(Dy)
= mIA(sP— 60 6)— MO (s* — 462 — 1 1+ 18) + me¥(208 — 200°+ 1604 12)
+ M3+ 1 Ly—33)— 2m3y(4v?— 100 — T) (v —22)
+am@o+1)—4 > 0 2D 5 ¥ m > 2,
This verifies (3.12b).
Now to check (3.12a), we have to show
(i) g8 > qlr—Nar+1) ¥ Cy <7 < Cotmo2

mv;—l) > .‘h(cn+

my—1

) )g‘(c°+mv;3)

i) g ( Cot

in case mv/2 # integer. Otherwise a similar inequality has to be verified.

(i) ghr) > gulr+Dgalr—1) ¥ Cot "o +1 < r < Dy=2.
Recall that
g1(r) = r*my+r(mo—1)(mt—dmy4-2)+2(m—1)(my— 1)(m3®—mv)

so that

g —gir—)gh(r+1) = r32m23-+r-2mp(my— 1)(mB?— dmiv+ 2)—miv?

+(mo— 1) (mivt—4miy+ 22— d(m—1)(mv—1)}m¥Ei—mo)my. ... (3.13)
Thus, in order to verify (i) above, equivalently one has to achieve non-negativity
of (3.13) for Oy <7 < C°+7%v. Differentinting (3.18) with reapect to r,
we get,
4mBir 4-2mu(my— 1)(mivd— dmv4-2)
B1-8
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whioh is positive for v » 5. Therefore, replacing r by Cy+1 = mo(m—1)+1 in
(3.13), we get

o) —gitr—L)gilr+1) > 2mbt(m—1)'+mt* +4miim—1)
+ 2m%}(mo— 1)(m— 1)(m¥%®— 4mtv+ 2)+ 2mo(my— 1)(mto* — 4mv--2)
+(my—1)YmWS—4mby+ 2)2—4(m— 1)(myv— L ymy(mPvS—mv). e (3.14)
In (3.14)
2miv¥(my—1)(m—1)(m¥S—4mtv+2)— 4(m— 1)(mv— 1 }mo(mvt—my)
= 2my(mv—1)(m—1)(mPe}(v—8)+4mv) > 0%+ v > 6, % m > 2,
The remaining pert of (3.14) is always > 0.
So (3.14)is D 0 v 6, ¥ m 2 2
Aggain, note that (3.14) can be rewritten as
2mt(m— 1)+ mio - 4m¥d(m— 1)+ (my— 1)} (mip*—dmPy 4 2)2

+ 2mo(my— 1)(mtv*— 4miv4-2)+ 2mu(mo— 1)(m — 1) (n*® — 6m2v? -+ 4mv)
. (3.5
It can be checked that for » = 5, (3.15) is » 0% m > 2. )

This (i) holds for all v > 5, m > 2.
Remark 2: It may be noted that in checking (i) we do not make use of
the upper bound of r. So it still holds as an adgebraic inequality even for

r> Cot "’g
Next we proceed to check (ii).

For % = integer, ¢, ( C’,+— ) =g ( Co+ o )
and, hence, (ii) follows from the above remark and (3.3)

For ﬂ; # integer using the relation (3.3), we bhave

9% (Co+ mo+tl )—71 (Cn+ mo—1 ) I (Co+ '”w+3)

Yo (0ot 257

- oot ) 0t 25

+2(mv—1)4-g, (oo‘l' motl ) 3A1(0°+ mw= l) o (310)
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In view of the above remark, writing X for Co+ m112+1 the gqnantity inside

{...} in (3.15) is nonnegative and so (3.16) would be nonnegative whenever
(X)—3A,(X—1) is so.

But
§(X)—37(X—~1) = X*mv+ X{(mv— 1)(m%*—dmiy{ 2)—6mv)
+ 3(6mi?—Tmy+ 2)+ 2(m— 1)(my— 1)}{m®*2+ bmo) —8m¥?
and this is clearly nonnegative for all » > 5, m > 2.
Hence condition (ii) is verified for v » 5, & m > 2.
It remains to verify condition (iii) which is done below. Using the rela-
tions (3.3) and (3.13), we get, on simplification,
732 —gstr+ Ngy(r—1)
= 2m% i+ r-2my(mo~ 1) (22— dmiv—2) —mip?
+{my— 1)} (m*?—4mP-+2) -+ 4mu(my— 1){6mts+ 3mo—8m)
—4m2p¥(my— 1)(m¥v—m=—m-+2mv+1). ... (3.16)
As in case (i) (3.16) is also an increasing function in r. So putting the least
value of r namely, (m— l)my+ "g)-l—l one can see that (3.16) is 3 0 % v > 5,
¥om > 2
Hence D-optimality holds for » 2> 5, % m > 2.

A-optimality For A-optimality (which meane f(Ag) = 1/Ag) we have
to show

giNiglr+1)+g(r—1)) > 29(—1g(r+1) % Co <r < Do—1 o (3.079)
1 1 1 1
_— .3 —— . 3.17b
»d 0= "oy > T D (G.170)
Recalling the expression for g(r) we rewrite (3.17b) as
GF+1)ga(F)A(D—1) < g3(Dolge(Do— AE)- - (3.17b)

Since d* is completely symmetrio, D-optimality of d* for v » & will auto-
matically imply its A-optimality for v > 5. For v = 4, both the relations
hold; consequently d* is A-optimal. For v = 3, (3.17a) fails to hold. (We
omit the details). As such, we cennot infer about A-optimality.
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E-optimality. The task of proving E-optimelity is so fascinating that
by now there have appeared in tho literature o considerable number of articies
dealing exclusively with E-optimality. In the same spirit, we also provide
below a very general result on E-optimality of d* for all v» 3. The proof
does not require kmowledge of velidity of D- and or A-optimality for any
combination of m and v.

Referring to Keifer (1976), we note that

min eigenvalue of (PC4P’) - Y

— win C,
=1 he(,..0 3

1y
So it suffices to verify that d* maximizes min C‘nn' We do the vertification
A
below :
For any design, there exists a treatment, say X, such that r, <7.

Recall that ¥ = (m—1ymyv4+m(v—1) belongs to second half of the elementary
interval [(m—1)mv, m'mv]. We now distinguish between the following cases :

Case (i). umy 1y, umot 1’;‘ =012 .. m—-1
o

(rAG covering all r values in the first halves of the elementary intervals upto

and incl

ding the one containing 7).
" my
Case (ii). (a) umy+ -5 K My <(utlimo,u=0,1,2, ..., m—2

(r“0 covering all r values in the second halves of the elementary intervals upto

but excluding the one containing 7).

(b (m—ymo+ "L; < &P
(r, covering all the r values in the second half of the elementary intervals
°

[Cq D,) containing 7).

Under case (i). It is enough to establish that

0‘%‘9 < nln) <o) = Cq,-
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Also under case (ii) (a) and (b) it is enough to verify,

Cd"o"o < (h("no) < g:lf) = 03;.-

Clearly, these in their turn will establish E-optimality of d*. We proceed
through the following steps.

Step I: Forr, belonging to the first (second) half of eny interval, upto
0
and including [Cy, Dy], we find upper bounds to gy(r, ) (respectively gy(r, ))
o )
involving g-values at points in the first (respectively second) half of the (bagic)
elementary interval [C,, Dy] containing 7.

Step I1 :  We establish that (i) go(r) 1 in 7 in the second half of [C,, Dy]
and further that
i) 2 (Co+ #) >0 (C°+ "W;{ ) in case mv is odd.

Step IIT: Once we arc through, with the above two steps (verification
given below), we argue as follows :

Case (). nng <o (Cot | 5 ]) (by Step T)
<a(Ct[F |+ (by Step II(i))

<ol (by Step II(i)

Caae (i)8). 0ol ) < Bilr,) (using 8.3)
<af0+[3)] (vide Fig. 1)

AN (by steps followed

in oaso (1)

Oase (B)b). 0ulry ) < ) (by Step TI(i)).



62 RITA SAHA BAY
Verifications (Step I) : Figure 1 supports the olaim that

ﬂx(’np) <0 (co+[”—;”])

whenever er i8 in the first half of eny interval upto and including (C,, D).

As regards g, the property (3.3) together with the i ing natore of g, at
least upto [C,, D,] justifies the claim

my
91(",,") <4 (Co+ [T ])
for any r, in the second half of any interval upto but excluding [Cy, Dyl
)

Step I1(i) : Referring to definition of g(r) as adopted (just below (3.3))
and (3.3), (3.4), we get,

As(r) = AY(r)—4(mv—1)

which is increasing in r with A;(C.,+ %)) > 0 for all v > 3, m > 2. Hence
the claim.

Step T1(ii) : si(Cot 2 ) gt (C0t ™o 1)

simplifies to
m(mv?— 2my— 2v+4)

which is nonnegative for » » 3, m > 2.

Thus, finally E-optimality of d° is settled for any v » 3, and m > 2.

4. CONSTRUOTION OF OPTIMAL DESIGNS
From the c.a. of Cye it necessarily follows that for d° to exist b= my

=(;)A for A'> 1, integer, i.e. m='i21,\. For m=1, d° cannot exist

unless v = 3. In fact for v = 3 also d* does not exist. We will present here
construction of @* for (i) v even, and (i) v odd prime or prime power under s
spocial gituation. Note that given v > 3 it is sufficient to construet d* for
the least possible value of m, since for any other multiple of this m say,
denoted by m® = km, the same design for the given m ocan be inserted as
block diagonsls & times, off diagonals being filled up suitably by appropriate
Latin Squares or F-squares,
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For » = 3, it ia sufficient to congider d° for m = 2, and m = 3—the designs
for all m > 38 following from them easily. These designs are as follows.

v=8 m=2 v=3 m=3
X12020 X01221012

1 X0 2 21 2X0122001

Case (i) : v even integer.

For » even, a v—1 resolvable BIBD always exists with number of blocks
b= ( ; ), and block size k = 2. The blocks of the BIBD can be split into
v—1 sets of v/2 blocks so that each set contains each of the » treatments

exactly once. Let one of the representative sets say i-th set of blocks be

(i 3y)s (B2 G2)s <o) (o, Jusg) Where 4, 35, ..., S5y, J1s Jar --o» Juse COMPpTises the set
of all v treatments. A square with migsing diagonals can be constructed with
the mentioned v symbols as follows :

Consider the square

X v—1 v—2 »—3 1

0 X v—1 —2 2 !

1 0 X v—1 3 |
A= - . . . . .

-3 u-t i X e

v—2 v—3 0 X
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The pairs missing each twice in the same row and column numbers are precisely
(0, v—1), (1, v—2), ... (% -1, %J . Corresponding to the t-th set of the given
BIBD construct 4, from 4 by permuting the symbols (0, 1, 2, ..., v—1) to
{835 %3y --» Foyp) Joss Jose—1 - Ji). Thus in 4, the pairs missing (each twice)
in the same row and column numbers are precisely given by the blocks of the
t-th set of the BIBD. Each set of blocks thus gives rise to a similar square
A4y, t=1,2,...,v—1. The resultant design with m = »—1 (which is its
least value) is thus given as

whero L's are Latin Squares with » treatments.
Case (ii) : v = odd prime or prime power > 3.

Let =0 =1, o ..., Qo1 , Ts—1, = —a,
2 T ¥

R = —y, ... = —o-
“'_rl” gy voy Apy %

be the v distinct elements of GF(v).

Let us assume that it is possible to construct a vx v square A with missing
diagonals such that the i-th row (column) contains all the v symbols of (/F(v)
except o (respectively (g+a)) where 0 # aeGF(r). 1 =0,1,2, ..., v—1

Let Ag=ad, or —y4d i=1,2,..., t}%l. Then,
4, L L L
L V: N L .. L
L L L Aer

is the required design with m = 11_21, where L’s are any Latin S8quarea with v
symbols of GF(v).
Example: v=25.
=0 a=1, ag=2 ay=—ay =4, gy = —a;=3.
are the elementa of QF(5).
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A can be chosen ag
X

0
3
2

4

3
0

0

1

X

2

1

X

85

(with & = 1).

Below we present the forms of the matrix 4 for v =7 and v = 9 a8 well.

v=17
X
3
8
A=| ¢
5
2
_0

v=19
X z+1
z+2 X
20+1 2242
0 2
4=| 2242 o
2 2241
z 1
z4+1  z42
2 z

z+2
2
X
2241
1
2242
0
z

2z

4 2 8
5 (] 2
X o 4
0 X 5
1 3 X
8 1 3
2 5 1
1 2
z+1 2z
2 1
X 2242
2z+1 X
z z+2
2212 2241
2z ]
0 z+1

5 17

0 4

1 3

2 68 |(witha=1)

4 2

X o

3 X_

z 2 2242 2z+1

2+2 0 2+l =z

z4+1 242 [} 2z
2 1 z z+2
2% z z+1 2
X  z+l 1 0
z+2 X 2 z+l

2z+1 2 b4 1
1 2242 z+2 X

(witha=_l)
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5. EFFIOIANOY OF AGGABWAL'S DESIGNB

Aggarwal (1066b) presented a series of two-way Latin Square designs
with all distinct elements misaing along the diagonal. These designs can be
goeneralized to the case of myXxmy arrays (for m > 1) by placing such vXyv
designs along the diagonal block matrices and ordinary Latin Squares along
the off-diagonal blocks. Clearly such designa are pot optimal. However,
they possess & high degree of efficiency as is demonstrated below tith respect
to the A-optimality criteron.

Note that for the optimal design (d*) as well as for the above-mentioned
Aggarwal’s design (d, say), the C-matrices are completely symmetric. Hence,
one gets for the efficiency of d, the expression

B = 2 T V(7,—7y) using d* -3z 1 T /_1
4 T X V(5—7) usingdy - '\dal /\'ﬂa

= ui: using the repreasentationa C"n = ay(l—Jv) and C,y = a® (I—J}v).
Recalling now the expressions for C"M' A(F) and g,(r) (vide Section 3), we get

2(20—3)
ymy—2)

(1__:) o = AF)—
-1y gy =i 2 (—mum 1P —mo)m— 1)+
( 7) H=T" (my—1) mv—2)

_ 4mtm(y—1)+4m(m—1)*

my(my—2)
. 4(v—))
= 4f)- v(my—2)
= EF) (say).
E; now simplifies to E(F)2 .
’ Ber+ V(my—2)

Caleulations indicate that even for moderate values of v and m, E’n is
olose to unity.
8. CONOLUDING REMARES
Our investigation on non-orthogonal row-gol incid structure
admita of the following generalizations, First, a general m-way heterogeneity
non-orthogonal set-up could be studied. A search for optimal neated two-
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q

way designs under orthogonal row structure has been recently under-
taken (Sinha, Mukhopadhyaya and Bagchi, 1984). We intend to carry out
gimilar investigations under the present frame-work. A study of similar
problems under mixed effects model will be undertaken shortly.
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