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In this paper we present an application of deformable models
for the segmentation of volumetric tissue images. The three-
dimensional images are obtained using confocal microscope.
The segmented images have been used for the quantitative
analysis of the Fluorescence In Situ Hybridization (FISH)
signals. An ellipsoidal surface initialized around the cell of
interest acts as a deformable model. The deformable model
surface voxels are subjected to various internal and exter-
nal forces derived from underlying image features as well as
externally imposed constraints. The deformable model con-
verges to the optimum cell shape when the vector sum of all
the forces acting on the model is zero. The result of segmen-
tation is used to confirm the cell membership of the FISH
signals and to reject all the signals that lie outside the cell
nuclei. Three-dimensional region isolation and labeling tech-
nique is used to label and count the FISH signals per cell nu-
cleus. A simple study on the effect of different segmentation
methods over a quantitative analysis of FISH signals is also
presented.

Keywords: Confocal-microscopy, segmentation, noise, de-
formable models, energy, FISH-signal

1. Introduction

Quantitative evaluation of the features in a thick tis-
sue specimen image is helpful in the diagnosis and
prognosis of the patient. The accurate and detailed
analysis of the morphological, cytological as well as
histological features of the tissue specimen needs a

precise and complete segmentation of the tissue image
into isolated cells. Use of low level techniques such
as thresholding, edge-detection, region growing, relax-
ation labeling, etc., to segment the cells may not give
accurate results and is numerically expensive in the
case of complex three-dimensional (3D) images [1,2].
Methods based on mathematical morphology such as
watershed segmentation appear to be less practical due
to over segmentation of the tissue images. Dependency
of watershed methods on low level segmentation for
finding the zone of influence for each regional mini-
mum limits the accuracy of segmentation [3,4]. For an
accurate and reliable analysis of the cyto- and histo-
logical features in complex, multispectral, volumetric
images, a high level approach with some degree of in-
teractiveness is necessary.

In this article we used a deformable model or active
volume approach for segmenting the cells and assign-
ing the cell membership to Fluorescence in Situ Hy-
bridization (FISH) signals in volumetric prostate tissue
images. The deformable model presented here is the
3D extension of the active contour models or Snakes
proposed by Kass et al. [5]. An approximate geomet-
ric model of a cell such as ellipsoid surface is placed
around the cell either interactively or by other means.
The voxels belonging to this model surface act as a ref-
erence point for searching the actual cell surface. The
reference point is moved towards the actual surface of
the cell by applying image derived forces while main-
taining the smoothness of the surface. The model sur-
face converges to the cell surface when the vector sum
of all the forces acting on the model surface reference
points becomes minimum. Most of the 3D deformable
models are edge based in the sense that they consider
only the edge information during optimization process.
We have included the region based control over the de-
formable model surface by using the prior information
from low level segmented, labeled image volume. In
the following sections we show how deformable model
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based segmentation can be used in case of 3D tissue
specimen images and its usefulness in evaluating shape
features and other malignancy related features of the
tissue specimen. We demonstrate the utility of segmen-
tation by deformable models in quantitative evaluation
of the FISH signals.

In molecular pathology, morphological grading,
staging, tumour size and the number of FISH signals
per cell nucleus are mainly used to evaluate the malig-
nant potential of prostate cancer. The number of FISH
components indicate the gain (trisomy) or loss (mono-
somy) of certain base-sequences in deoxyribonucleic
acid (DNA). Several studies [6,7], have shown that an
aberration related to chromosome 7 is found in malig-
nant and non-malignant tumours of lung, kidney, brain,
as well as in prostate. Therefore, for improved diag-
nostic and prognostic values, quantitative evaluation of
FISH signal is useful. To guarantee a reproducible, un-
biased signal count per nucleus and realistic morpho-
logical feature values, a whole 3D nucleus has to be
studied [8]. Visual counting of the FISH signals in a 3D
stack of images is a tedious, time consuming and fa-
tiguing task. Until recent times, an area around the cell
of interest was displayed as a gallery of image slices
and the FISH signals were manually counted. This pro-
cess is neither reliable nor reproducible and nor feasi-
ble when testing a large volume of data. There is little
work done on automation of such processes as it in-
volves difficult tasks like precise segmentation of vol-
umetric tissue images, segmentation of FISH signals
from a noisy signal channel and assigning the FISH
signal membership. This work is an attempt to reduce
this highly interactive process by designing the de-
formable models for segmenting the cells of interest
and automatically measuring FISH signals per cell nu-
cleus.

2. Material and methods
2.1. Specimen preparation

Routinely processed, formalin-fixed and paraffin-
embedded tissue specimens from radical prostatec-
tomies of 19 patients with prostatic adenocarcinoma
were used in this study. Consecutive sections were
made consisting of 15 um sections for FISH with
subsequent CLSM scoring. Sections were mounted
on slides and baked overnight at 37°C for better ad-
herence. a-specific DNA probes specific for the cen-
tromeric region of chromosome 7 were generated

as described in [8]. The probes were biotin labeled
by nick translation according to standard procedures.
The hybridization mixture consisted of carrier DNA
(0.5 pg/pd herring sperm DNA), mastermix 2.1 (final
concentration: 55% formamide/l x SSC, 10% dex-
trin sulfate) and the labeled DNA probes. This mix-
ture was denatured at 72°C for 5 minutes and chilled
on ice until use. For FISH of thick sections, a mod-
ified Zitzelberger protocol was been used [7]. The
biotin labeled centromere 7 probe was detected by
streptavidin-fluorescein isothiocyanate (FITC) and bi-
otinylated anti-streptavidin conjugates. After washing,
the nuclei were counterstained with propidium iodide
(PI, Sigma) and subsequently mounted with an an-
tifade solution [8,9].

2.2. Image acquisition

The specific set-up features for acquiring volumetric
images of thick prostate specimen are as follows: Flu-
orescence images are scanned using a Confocal Laser
Scanning Microscope Zeiss LSM 410, Lens Zeiss PNF
100x, NA 1.3, zoom = 2, obtained by the scanning
unit. The scanned field of 62.5 ym x 62.5 um is sam-
pled to 256 x 256 pixels giving a lateral resolution of
0.25 pm. Excitation laser lines are selected according
to the fluorochromes used. Both propidium iodide (PI)
which is used as DNA counter stain and FITC labeled
signals both are excited by the argon line 488 nm. If
only the sampling theorem need be met, an approxi-
mate axial resolution of 0.5 pm can be achieved, keep-
ing in mind that the confocal axial resolution of a lens
with numerical aperture NA = 1.3 is about the wave-
length 0.6 pm of the excitation laser. This results in a
voxel size 0.12 ym x 0.12 pym x 0.3 pm. The fluo-
rescein emission containing information of the fluores-
cence in situ hybridization signals is associated with
the green channel and the counter stain emission show-
ing the morphology of the tissue is associated with the
red channel of a RGB color image.

3. Image enhancement and initialization of the
model

3.1. Image enhancement

Several quantitative distortions can be introduced
into 3D stacks of image slices (optical sections) dur-
ing data collection. Once the sources of these errors
are identified, some can be prevented by modifying the



P.S. Umesh Adiga and B.B. Chaudhuri / Segmentation of 3D cells and FISH 213

microscope system while others can be corrected ei-
ther at the time of data collection or afterwards. Here
we discuss the elimination of later type of distortions.
Some of the major artifacts in confocal tissue images
are the non uniform gradient magnitude along the cell
boundary, uneven illumination of the specimen, blur-
ring, and the low gradient magnitude where the cells
are touching or overlap. The fine textural nature of the
cell chromatin and the presence of dense intra-cellular
and intercellular matters adversely affect the automatic
analysis of the image. Thus, to highlight the desired
features and minimize the noise artifacts, the image
stack is subjected to enhancement steps such as de-
blurring by Weiner filtering [17], photobleaching, con-
trast stretching, window slicing, morphological open-
ing and closing, surface crispening, directional Gaus-
sian smoothing, etc. [10,11]. Some of these methods
are briefly explained below with respect to confocal
microscopy images.

The effect of non-cellular matter and uneven back-
ground can be reduced by window slicing. A local
threshold is chosen by examining the local histograms
in the image. Since most of the data sets show a uni-
modal histogram, we used (u + ko) as the thresh-
old value where 1 is the mean of the grey level his-
togram and o is the standard deviation of the grey val-
ues in the image, where k is an experimentally deter-
mined constant. All the voxels having grey value be-
low the threshold are assigned lowest grey value, i.e.,
dark, while other voxels considered as belonging to the
object, are kept undisturbed. The resulting image will
have the lowest grey value, i.e., zero for spatial back-
ground and hence the effect of dense non-cellular mat-
ter is reduced. Fig. 1(b) shows the result of window
slicing on a confocal image slice. However, window-
slicing may result in the appearance of small artifacts
in the background as well as small holes in the cells.
This may be due to the presence of dense intra and in-
tercellular matter in the tissue specimen image. These
artifacts are removed using size and shape heuristics.
The size of the isolated objects is calculated. The ob-
jects having a size below the pre-defined threshold are
considered as artifacts and removed. The size thresh-
old is chosen on a trial basis. Small hole-like structures
within the cells are restored to their original grey val-
ues. Figure 1(c) shows the result of applying a size and
shape heuristic filter.

Due to the absorption of light by the specimen as
well as photo bleaching of the fluorescent dyes, there
is a gradual reduction in the intensity of light when we
see through the depth of the image stack. We applied

a heuristic enhancement method to reduce the effect of
photobleaching.

Let I,,1,,...,I, be the average image intensity
of the approximate foreground voxels in the corre-
sponding image slices of the image stack. Let I; =
max{fl,fz, .. ,fn} If ﬂk: = |L — jk‘ for £k =
1,2,...,n then the correction for photobleaching is
applied as Ii (4, j) = Ii(4,j) + ¢ where ¢ is an ex-
perimentally determined constant. For all practical pur-
poses, the effect of photobleaching can be consider-
ably reduced by using this method. The intensity graph
shown in Fig. 2 plots the average intensity of the fore-
ground of each image slice against depth of the image
stack. Figure 2(a) is the intensity plot before restora-
tion and Fig. 2(b) is after intensity restoration by the
above method.

Many of the cells are connected to each other by
thin and frail connections that increases the interactive-
ness of the segmentation process. These thin and frail
connections can be removed by morphological open-
ing on the two tone version of the image, using an ap-
propriate structuring element [12]. We used 3 x 3 x 3
structuring element (6 connected) of unit magnitude.
Figure 1(d) shows the result of morphological open-
ing over a single image slice. The boundary enhance-
ment is obtained by adding the discrete Laplacian mag-
nitude to the image function. Figure 1(e) shows the
result of boundary enhancement over a single CLSM
image slice. Boundary enhancement by adding a high
pass signal also enhances the spurious noisy peaks.
Simple average filtering to reduce the noisy intensity
peaks blur the object boundary. In order to protect the
surface sharpness during the smoothing process and
to avoid the influence of distance pixels, we applied
a two-dimensional directional smoothing technique on
each image slice. The process of directional smoothing
using a kernel of size 5 x 5 is shown in Fig. 3. The av-
erage grey values for all the 4 directional sub-windows
were calculated. The maximum of these 4 values is
the smoothed grey value of the corresponding central
pixel. This reduces the blurring of the edges while
smoothing [13]. Figure 1(f) shows the result of sim-
ple spatial averaging for smoothing while Fig. 1(g)
shows the result of directional Gaussian smoothing of
the CLSM image slice.

The cell clusters in the volumetric image are then
labeled using a 3D component labeling algorithm [14]
and stored separately in a temporary file. Figure 1(h)
shows the result of 3D component labeling over a sin-
gle image slice. This labeled image is used to provide
the region based information for proper convergence of
deformable models.
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(2

Fig. 1. (a) Original image; (b) after window slicing; (¢) after size and shape filtering; (d) after opening; (¢) after edge enhancement; (f) after
spatial averaging; (g) after directional Gaussian smoothing; (i) after volumetric region growing and labeling.

3.2. Building potential surfaces

When the deformable surface is subject to image
forces, it moves in the image space to minimize the to-
tal potential energy associated with the model. For the
easy and smooth movement of the deformable model,
proper potential surfaces have to be developed. The
control points of the deformable model moves or slides
along these potential surfaces and converges to the de-
sired features. The potential surface consists of an im-
age intensity map, gradient map and distance map. The

control points of the deformable model are viewed as
moving in a respective potential surface(s) when the
external force(s) acting on the control points are de-
rived from intensity, gradient magnitude and distance
feature of the image, respectively.

The cell surface is marked by a local gradient peak.
Hence the gradient potential surface gives a good es-
timate of the location of the cell surface. The three-
dimensional gradient of the image intensity is calcu-
lated to build the corresponding potential surface. For
this purpose, an enhanced and window-sliced image is
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Fig. 2. Plot of average intensity of the foreground vs depth of the
specimen. (a) Before intensity restoration, (b) after intensity restora-
tion.

used. If f(i, j, k) is the enhanced image slice then the
gradient magnitude map can be written as

Ofe  Ofe  Ofe
2 "o "ok

lg(i, j, k)| =

Conventional distance transform methods [13] re-
place each voxel in the volumetric image by its dis-
tance from the nearest feature voxel. For our purpose
we do not need the distances of each voxel in the im-
age but only the voxels that fall within the pre-defined
search region around the overall cell surface. We used
a 3D dilation with a unit magnitude 3 x 3 x 3 structur-
ing element for calculating the distance transform. For
simplicity, we considered all the twenty-six neighbor-
hoods of the origin of a 3 X 3 x 3 structuring element
to be of distance 1 from the origin that approximately
gives a 3D chess-board distance. The overall surface
of the cells in the image stack is traced using a low
level edge detector such as Robert’s edge detector. Let
X be the set of voxels in the image before dilation.
Let X, be the set of object voxels after dilation. Then
X3 = X, — X will be the set of newly appeared ob-
ject voxels due to dilation. The voxels in X3 are given
a distance value of one. The process of dilation is re-
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Fig. 3. Directional smoothing operator.

peated and each time the newly appeared object voxels
X3, due to dilation, is given one higher magnitude than
the distance value given in the previous iteration. The
number of repetitions is proportional to the size of the
search region ©.

Figure 4 shows potential surfaces based on gradient
and distance maps. Only a single image slice is shown
for the lack of space. Figure 4(a) shows the gradient
potential surface of the image slice after noise cleaning
and enhancing. Figure 4(b) shows the distance based
potential map over a single image slice.

4. Initialization and optimization

A deformable model is mathematically defined as
an ordered set of n voxels or surface patches, V =
{v1, 02, ...,v,} where each surface patch v; is defined
over the finite spatial grid of size M. In simple words
a deformable model is an approximate initial model of
the object, consisting of n surface voxels. In the present
case we have considered an ellipsoid surface as an ap-
proximate model of the cell. After initializing the el-
lipsoid surface around the cell, the voxels belonging to
this surface are subject to different image forces until
they move along the potential surfaces and converge to
the actual cell surface.

The objective of the initialization is to place the
deformable shape in realistic positions and in proper
spatial orientation to facilitate quick and proper con-
vergence. Initialization of the model distant from the
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Fig. 4. (a) Potential surface by gradient map of an image slice after
noise cleaning. (b) Potential surface by distance map of an image
slice.

proper location results either in wrong segmentation
or creates too much of a computational burden. In the
case of 3D histo-pathological images, initializing the
geometric models is a difficult task. This is because
the cells can have irregular shapes and irregular spatial
orientations. Initialization can be done by using stan-
dard algorithms such as Hough transforms, etc. [15].
In the present case Hough-transforms do not provide
proper initialization due to the compact arrangement
of the cells in a tissue, amount of noise artifacts and
highly irregular cell shapes. When a small degree of
interactiveness is allowed for initialization, it is com-
putationally inexpensive to use the surface of a simple
geometric model as the initial reference.

If (z, y, 2) is the center of the ellipsoid then the sur-
face coordinates of the ellipsoid are given by

x =acosfsing, y =>bsinfsingp, z = ccosb,

(b)

Fig. 5. (a) Circular cursor for adjusting lateral radii and orientation
of initial model. (b) Elliptic cursor for adjusting lateral radii and ori-
entation of initial model.

where x,y and z are the Cartesian co-ordinates of the
center of the ellipsoid and a, b and c are respective ra-
dius in z, y and z directions. The spatial angle is rep-
resented by where 6 and ¢. 6 is the angle between XY
plane and the line joining the surface coordinate and
the center of the ellipsoid. Similarly, ¢ is the angle be-
tween the X Z plane and the line joining the same sur-
face coordinate and the center of the ellipsoid. Since
the image is displayed in XY, Y Z and X Z planes si-
multaneously, it is easy to locate the approximate cen-
ter of the cell and the number of image slices the cell
occupies. If Ny are the total number of image slices
the cell is occupies then N;/2 can be considered as
an approximate axial radius ‘c’ of the deformable el-
lipsoid. For providing the lateral radii ‘a” and ‘b> we
designed an elliptic cursor as shown in Fig. 5 whose
lateral radii and the angle of orientation can be varied
with the help of mouse buttons. It is extremely diffi-
cult to calculate the spatial orientation of the cell nuclei
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before segmenting them. This is because two touching
cell nuclei can have totally different spatial orientations
when compared to the orientation of the individual cell
nucleus. Hence the spatial orientation of the ellipsoid
model is interactively adjusted using the GUI and the
mouse buttons, where the angle of orientation is read in
with the help of elliptic cursor. If i, j, k and ¢/, j/, k' are
the orthogonal unit vectors in old coordinates x,y, z
and new coordinates 2/,/’, 2’ directions respectively,
then the relation of the old and new coordinate system
is given by

..

(¢',i) + ycos(i', 4)

)}

Y =ye+ {zcos(j’,i) + ycos(j,1)
+zcos(j', k) },

2’ =z, + {zcos

+ zcos(i', k

2=z, + {xcos(k',i) + ycos(k,1)
+zcos(k', k) },

where (¢, 7) is the angle between the vectors i’ and 1,
i.e., between new and old axis of abscissas, (j',1%) is
the angle between new axis of ordinates and old axis
of abscissas and so forth. OXY Z is the old system of
coordinates and O’ X'Y’Z’ is the new system of co-
ordinates. Figure 6(a) shows the initialized ellipsoidal
model in XY, Y Z and X Z planes.

Let v(s) be the initialized deformable model surface.
The potential energy associated with a deformable
model Epy can be defined as

1
Bo(v(9) = 5 [ f (Fintemst(0(5)) — (Feerma (0(5))
+Econstraints)) d5:| 5

where Eintemal; Eextemal; Econstraints are the internal en-
ergy, external energy and the energy due to imposed
constraints respectively.

The internal energy of the deformable model de-
pends only on the co-ordinates of the control points
and is given as

2 2 2
Eintemal(v(s)) = %wl(s) (%) + wZ(S) (%) ds.

The internal energy includes the elastic energy (first
derivative of the control point position) and the bend-
ing energy (second derivative of the control point po-

sition), where w)(s) and wy(s) are set to be small con-
stants to control the magnitude of the internal energy.
The internal energy of the deformable model forces the
model to shrink.

The external forces consist of energies due to the im-
age gradient, distance map, image intensity and other
externally imposed hard constraints. Use of only gradi-
ent energy as the external force requires initialization
to be very close to the global optima. This is a difficult
proposition as we initialize the ellipsoidal surface ap-
proximately around the irregular shaped cells. To avoid
the effect of noisy gradient peaks, we used distance
transforms to calculate the external energy in the initial
stages, and when the deformable surface moves close
to the global optimum; the grey level gradient energy
calculated from the enhanced image is used as a dom-
inant external force. The use of distance transforms
alone to calculate the external energy is not feasible
since it depends on the accuracy of the initial segmen-
tation done for calculating the distance transform. We
have not used the image intensity features as the image
stack is not uniformly illuminated and the variation in
the average intensity of the foreground voxels persists
even after enhancement and restoration.

To avoid the extreme variation in gradient magni-
tudes and distance values, we searched a small region
® = (1 x 3) along the normal vectors of the control
points for calculating the energy. The minimum gradi-
ent magnitude and the distance value within the search
region are used as external forces derived from respec-
tive features. Thus,

Eextemal(vi(s)) = Jnégll { dij (Uz(s))}
+ jrrelgl {gij(wi(s)},

where d;; and g;; are the distance and gradient values
for the ith control point in the corresponding search
region ©;. Discretization of the energy equations can
be found in [16].

If the cells are considerably shape deformed then
the deformable surfaces may fail to converge to distant
voxels representing the cell surface. In such cases one
can interactively mark distant surface voxels. These
marks are used as externally imposed constraints. The
control points of the deformable model that are near-
est to the marked constraints, are forced to converge
to these marked constraints neglecting the energy op-
timization of the model surface. Use of more external
constraints slows down the convergence and increases
the interactiveness in the optimization process.
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The properly scaled external force is added to the
total potential energy of the deformable model, i.e., if
T, Yt 2¢ are the coordinates of a control point at time
‘t’ then after one iteration of the optimization, the new
coordinates of the control points will be

Ti41 = Tp + (Eintemal(v(xt)) - (Eextemal (U(xt))
+ Econstraints (’U(xt)) ) ) P

Yrr1 =Yt + < internal (U(yt) ( external (U(yt))

) -

+ Econstraints (v(yr)) )

Zep1 =zt + ( internal (V(20)) — (Eexternat (v(21))
+ Eeonstraints (V(21)) )) :

The control point of the deformable model moves
in the direction to minimize the total energy of the
deformable model. When the external forces derived
from the image features balances the internal energy
of the deformable model, the optimization process is
stopped. The position of the control points or the de-
formable surface is taken as the loaction of the cell sur-
face.

As the external forces acting on the control points of
the deformable model surface are derived from the un-
derlying image features, there is every chance that the
part of the deformable model surface may become at-
tracted towards the strong surface features of the neigh-
bouring cells. This results in wrong segmentation. To
reduce this effect we made the deformable model sur-
face to be a function of the particular cell. This can be
done by considering the low level segmented and la-
beled image volume. The deformable surface has been
given the same label as that of the corresponding cell
of interest. Only forces due to the cell with the same
label are made to influence the optimization process.

Since the optimization process is an iterative pro-
cess, one of the important aspects is to formulate a ter-
minating criterion. If Eye,(v(s)) is the surface area of
the deformable model at any instant t, then we stop the
iterations when

| Earea (v(5, 1)) — Farea (v(s,t — 1)) | <
where ) is an experimentally determined small thresh-
old value and Eyres(v(s, 1)) = $(v(s, t))ds.

Figure 6 shows the application of the deformable
model technique to mark the surface of a cell belonging

to a fairly close cluster. Figure 6(a) shows the initial-
ization in of the ellipse in one image slice. Figure 6(b)
shows the sequence of the part of the image showing
the marked cell surface after optimization. Figure 7
shows the result of segmentation by active surfaces on
a different data set.

5. Segmentation and counting of FISH signals

We applied the results of segmentation by de-
formable models for counting the number of FISH sig-
nals in each cell nucleus. In molecular pathology, FISH
signals play a significant role in deciding the malig-
nancy potential of the prostate tumour [7]. The goal of
quantitative FISH evaluation is to measure the patho-
logical alterations, i.e., gain (trisomy) or loss (mono-
somy) of a particular chromosome (chromosome 7 in
the present case) in the cell nuclei. In the signal chan-
nel of a multispectral image volume, FISH signals ap-
pear as a tiny 3D object consisting of high intensity
voxels extending to several image slices and are lo-
cated entirely within the cell nucleus. Though signals
located outside the cell nuclei are not of pathological
importance since only the trisomy or monosomy of the
chromosomes within the cell nuclei is related to ma-
lignancy of the tumour. For a normal cell, the cell nu-
cleus contains two FISH signals due to aberrations of
chromosome 7 and any variation in FISH count can be
attributed to an abnormal pathological status [6,7]. But
counting the FISH signals depends on distinguishing
them from noise and ascertaining their membership to
a particular nucleus. Visual counting of the FISH signal
is a difficult, cumbersome and fatiguing process. The
only possible way for the visual inspection of signals
inside the cell nuclei is by displaying the gallery of the
images containing the cell and then counting the sig-
nals keeping in mind the three-dimensional nature and
hence the continuity of FISH signal to several image
slices. We used object isolation by the volume growing
technique to detect the signal.

5.1. Segmentation of FISH

Segmentation of the FISH concerns the proper se-
lection of the features to identify the FISH signals and
to reduce the various types of errors that may occur
while counting the signals automatically. Some of the
major features we used to identify the FISH signals are:
(1) size; (ii) shape (three-dimensional nature); (iii) av-
erage intensity; (iv) relative intensity; (v) location of
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Fig. 6. Results of segmentation of tissue by deformable models. (a) Initialization shown over one XY, Y Z and X Z planes of the image stack.
(b) Sequence of images in the stack showing the result of optimization of the deformable elipsoid.

the signal; (vi) number of intensity peaks within the nal is due to its three-dimensional nature. Consider-
signal, etc. An appropriate maximum and minimum ing the excellent axial resolution of the image stack,
size threshold for the signal are determined experimen- only those signals that occupy a minimum of two im-
tally. Only those signals that fall within the size are age slices in a continuum are considered as FISH sig-

considered for further processing. The shape of the sig- nals subject to other conditions. A threshold for aver-
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Fig. 7. Results of segmentation on a different data set. (a) Initialization shown over one XY, Y Z and X Z planes of the image stack. (b) Sequence
of images in the stack showing the result of optimization of the deformable elipsoid.

age and peak intensity of the signals is set experimen-
tally. Relative intensity is the ratio of total intensity of
the signal to average of the total intensity of all the sig-
nals within the cell nucleus. Signals that lie completely
within the cell are automaticaly chosen for counting.
A problem arises when the signals fall close to the
boundary or midway through the common boundary
between touching cells. In such cases, the signal is
given a membership of a cell in which more than 50%
of the signal is located. Still an error may occur due
to missed and split FISH signals, overlapping signals,
improper segmentation of the cells, etc. We tried to re-
duce these errors by signal enhancement and noise re-
moval steps explained below.

The region of interest in the FISH signal channel
(green channel in the multispectral image volume) is
defined by superimposing the surface of the cell as ob-

tained by optimum surface of the deformable model
in the red channel of the multispectral image volume
over the FISH signal channel. Once the region of in-
terest is defined, the task shifts to noise removal, seg-
mentation and counting of FISH signals in the defined
region. The isolated group of voxels are removed by
size filtering where a minimum size of a FISH signal
is used as a priori information. All the connected struc-
tures that are lower than this size threshold are consid-
ered as noise artifacts and removed. The signals that
exceed the maximum size limit are checked for over-
lapping. The number of intensity peaks in such a signal
is counted. If there are more than one intensity peaks
and the distance between the intensity peaks is above
the minimum threshold, the object is considered as au-
thentic signal. The number of signals counted in such
cases is equivalent to the number of intensity peaks in
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Fig. 8. Result of segmentation and counting of FISH signals. (a) Unprocessed FISH signal channel; (b) after noise reduction; (c) after signal
enhancement by top-hat filtering; (d) signal channel with a overlaid cell boundary.

the signal. There can be a cluster of noisy voxels that
are linked to each other by a thin and frail connection.
These clusters escape the size filter as the total volume
exceeds the threshold. We have applied morphological
opening to remove the thin and frail links as well as to
remove the isolated voxels. The FISH signals are en-
hanced using a 3D top-hat filter [20]. A top-hat filter
consists of a central core and a surrounded by a rim. If
the difference between the brightest values in the outer
rim region and the brightest value in the inner core re-
gion is above a pre-defined threshold, with core region
brightness being greater than the rim region, then the

voxels of the core region are enhanced further while
that of the rim region are reduced, and the result is writ-
ten into a separate image file. Figure 8 shows the FISH
signal channel as a sequence of images with a super-
posed boundary of the cell, with reduced noise and the
enhanced FISH signal.

The resulting image volume contains FISH sig-
nals with virtually superimposed cell surface. A three-
dimensional component labeling is applied separately
for labeling and counting the FISH signals within each
cell of interest. If Uy, is the image data set of a tissue
specimen containing N cell nuclei of interest, and if
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Table 1
Comparative analysis of FISH signal counting based on different cell segmentation approaches
Sp.  Cell  FISH count by  FISH count by 3D evaluation Error in count (%)
no. label 2D evaluation
Manual cell Deformable Erl Er2
segmentation ~ Model (DM)
method
01 1 2 3 3 40 0
2 2 2 2
3 2 2 2
4 1 2 2
5 1 3 3
6 2 2 2
02 1 3 3 3 20 0
2 2 2 2
3 2 2 2
4 2 3 3
5 1 2 2
03 1 2 2 2 40 0
2 2 2 2
3 1 2 2
4 1 2 2
5 1 2 2
6 2 3 3
7 2 2 2
04 1 2 3 3 50 10
2 2 2 2
3 1 2 2
4 2 2 2
5 1 3 3
6 2 3 2
05 1 2 2 2 0 0
2 2 2 2
3 2 2 2
4 2 2 2
5 1 1 1
6 2 2 2
06 1 1 2 2 20 0
2 2 3 3
3 2 2 2
4 1 1 1
07 1 2 2 2 20 10
2 2 2 3
3 1 2 2
4 2 3 3

(Continues)
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Table 1
(Continued)
Sp.  Cell  FISH countby  FISH count by 3D evaluation Error in count (%)
no. label 2D evaluation
Manual cell Deformable Er.l Er.2
segmentation ~ Model (DM)
method
08 1 2 2 2 20 0
2 2 2 2
3 1 2 2
4 2 2 2
5 1 2 2
09 1 2 2 2 0 0
2 2 2
3 2 2 2
10 1 2 2 2 27 15
2 1 2 2
3 1 2 2
4 1 1 1
5 1 1 1
6 2 3 2
7 2 3 2
11 1 2 2 2 0 0
2 2 2
3 1
12 1 2 2 2 0 0
2 3 3 3
3 3 3 3
4 2 2 2
13 1 1 1 1 10 10
2 1 2 3
3 3 3 3
4 2 2 2
5 2 2 2
14 1 1 2 2 25 0
2 1 2 2
3 2 2 2
4 2 2 2
15 1 2 2 2 28 10
2 2 2 2
3 2 3 2
4 1 2 2
5 1 1 1
6 2 2 2

Er.1 = (|2D_count — 3D_manual_count|)100/(2D_count).
Er.2 = (|DM_count — 3D_manual_count|)100/(DM_count).
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there are j FISH signals in the ith nucleus then they are
documented as U, (i) = j where = 1,2,..., N.

Figure 8 shows the result of processing the FISH
signal channel. Figure 8(a) is the unprocessed signal
channel. Figure 8(b) is the noise reduced signal chan-
nel. Figure 8(c) shows the result of 3D top-hat transfor-
mation and Fig. 8(d) shows the overlaid cell boundary
for counting the FISH signals in each cell nucleus.

6. Experimental results and discussion

The development and application of image analysis
procedures are performed under the Interactive Data
Language (IDL) and C on IRIX 5.2. As hardware de-
velopment platform a Silicon Graphics work station
INDY is used.

Figure 6 shows results of application of deformable
models for segmenting a cell of interest in tumour tis-
sue. Normally, all the cells in the tissue image are not
of interest to the pathologists. Use of deformable mod-
els has an advantage of selecting the cells of inter-
est before automatic analysis of the image. The preci-
sion with which we can trace the boundary using de-
formable models helps in accounting of FISH signals
that are very near to the surface and may not fall within
a low level detector segmented boundary. Moreover,
the precise shape features of the cell nucleus that can
be obtained by using deformable models for segment-
ing the cells can also be used as one of the factors in
deciding the pathological status of the tissue specimen.

Table 1 gives the comparative scoring of the FISH
signals by different methods, over several different
specimens. It also includes the count over 2D images
obtained on the same specimen. The comparison of 2D
and 3D results, considering the count by a pathologist
as the gold standard, proves the need for 3D analysis.
Comparison among various analyses tools shows how
the use of deformable models for segmenting the tissue
give precise and reliable results rather than other meth-
ods. The percentage error while counting the FISH sig-
nals by automatic methods is also shown in Table 1.

The high level segmentation and analysis techniques
such as the deformable models are computationally ex-
pensive and need a fair degree of interactiveness in the
process. In cases where the accuracy of boundary deci-
mation is not so important as compared to the automa-
tion, deformable models are not suitable for use. In
complicated image structures, the need for interactive
initialization and placing of hard constraints can take
more time than anticipated.
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