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An application of Genetic Algorithms (GAs) to evolve Hopfield type optimum neural
network architectures for object extraction problem is demonstrated. Different optimiz-
ing functions involving minimization of energy value of the network, maximization of
percentage of correct classification of pixels (pec), minimization of number of connec-
tions of the network (noc), and a combination of pcc and noc have been considered. The
noc value of the evolved (sub)optimal architectures is seen to be reduced to two-third
of that required for the fully connected version. The performance of GA is seen to be
better than that of Simulated Annealing for this problem,
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1. INTRODUCTION

Genetic Algorithms (GAs)'™® are adaptive computational procedures modeled on
the mechanics of natural genetic systems. They express their ability by efficiently
exploiting the historical information to speculate on new offspring with expected
improved performance.! GAs are executed iteratively on a set of coded solutions,
called a population, with three basic operators: selection/reproduction, crossover,
and mutation.m>> They use only the payoff (objective function) information and
probabilistic transition rules. GAs are theoretically and empirically proven to pro-
vide robust search in complex spaces.

Since GA works simultaneously on a set of coded solutions, it has very little
chance to get stuck at lecal optima. This feature also helps to introduce a large
amount of implicit parallelism in the computational procedure. Again, GAs do not
need any sort of auxiliary information, like the derivative of the optimizing function.
The resolution of the possible search space can be controlled by varying the coding
length of the parameters.

Neural networks (NNs) are designated by the network topology, connection
strengths between pairs of neurons/modes, node characteristics, and rules for
updating status. In spite of the wide range of applicability of NNs, there is no
formal procedure to design an optimum neural network for a given problem. Re-
cently, some attempts are made in this regard using GAs.*® These investigations
are mainly concerned with multi-layer networks; no attempt is made (as to the
knowledge of the authors) on Hopfield type models.!?
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In this article we describe a method where the searching capability of GAs is ex-
ploited to evolve Hopfield type optimum neural network architectures, particularly
for the problem of object extraction. The use of Hopfield type neural network for
object background classification is described in Ref. 11 where a neuron is assigned
corresponding to each pixel of the image. The conmnectivity of each neuron with
its neighbors was considered to be fixed and full. Note that, the connectivity of a
neuron allows the neighborhood information to be used for deciding the class of the
corresponding pixel as object or background. So if most of the neighbors belong to
object class then the possibility of that pixel being classified as object will increase.
In case, some of the neighbors are corrupted by noise and turned into background
class, then full connectivity (which considers maximum neighborhood information)
may result in misclassification of the said pixel. It is therefore necessary, partic-
ularly in a very noisy environment, to deal with variable connected networks for
improving the quality of the segmented output. This will also enable one to have
less connectivity (i.e., less expensive networks) as compared to the fully connected
one, besides the improved performance.

The present investigation attempts to evolve such a variable connected network
using GAs, and it consists of three parts. At first, networks are evolved for pro-
viding optimum segmented output irrespective of the number of connections in the
network. Here the output performance is evaluated in terms of both energy value
of the (converged) network and the percentage of correct classification of pixels. In
the second part, we have obtained architectures for providing maximum number
of correct classification of pixels with less number of connections. The final part
consists of determining the architecture with minimum number of connections for a
desired output. The merit of using the variable connectivity over the corresponding
fixed full connectivity is established for a set of images. The searching capability
of GA is also compared extensively with that of the Simulated Annealing (SA) for
the said problem.

2. EVOLUTION OF HOPFIELD TYPE NEURAL NETWORK
ARCHITECTURES FOR OBJECT EXTRACTION

In this section we first of all describe the principle of object extraction using Hopfield
type neural networks as described in Ref. 11. This is followed by evolutionary
schemes based on GA and SA for designing such networks.

2.1. Principle of Object Extraction using Hopfield type Neural Network

To use a Hopfield type neural network for object background classification,'! a
neuron is assigned corresponding to every pixel. Each neuron can be connected to its
neighbors (over a window) only. The connection can be full (a neuron is connected
with all of its neighbors) or can be partial (a neuron may not be connected with all of
its neighbors). The network topology for a fully connected third order neighborhood
is depicted in Fig. 1. Here the maximum number of connections of a neuron with
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Fig. 1. Topology of the neural network with third order connectivity (in the proposed system all
connections may not exist).

its neighbors is 8. In practice, all these connections may not exist. Again, different
neurons may have different connectivity configuration within its neighbors.

The energy function of this model has two parts. The first part is due to the
local field or local feedback and the second part corresponds to the input bias of
the neurons. In terms of images, the first part can be viewed as the impact of the
gray levels of the neighboring pixels, whereas the second part can be attributed to
the gray value of the pixel under consideration. The total energy contributed by
all pixel pairs will be — Z Z W,;ViV;, where V;, V; are the status of ith and jth
neurons, respectively and Wijj is the connection strength between these two neurons.

For every neuron i, the initial input bias I; and the initial state V; are taken to
be proportional to the actual gray level of the corresponding pixel. If a gray level
of a pixel is high (low), the corresponding intensity value of the scene is expected
to be high (low). The input bias value is taken in the range [-1, 1]. Under this
framework an ON (1) neuron corresponds to an object pixel and the OFF (—1) one
as background. So the threshold between object and background can be taken as
0. Thus the amount of energy contributed by the input bias values is — Z LV;. So

the expression of energy for the object extraction problem takes the forr;
E=-)"5S"w,Viv,- > LV. (1)
1 7 i

Stable states of the network (the local minima of its energy function) are assumed
to correspond to the partitioning of a scene into compact regions. So from a given
initial state, the status of a neuron is modified iteratively to attain a stable state.
It is to be noted that in order to get the input to all neurons of the network (of
size N1 x N,) at an instant (t + At) one has to solve Ny x N differential equations
with given initial values at time ¢. For this, the Euler method is used here i.e., we
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iterated
Ui(t + At) = Ui(t) + AtD_ Wy V5(t) + I - Uy(t)) (2)
j
until convergence; U,-(t) is the total input to a neuron i at any instant £. Numerical
solutions for these differential equations require a stopping criterion which can be
taken as
| Ui (t + At) = Us(t) |< e,V1 (3)

where ¢ is a preassigned small positive quantity. The network is assumed to attain
a stable state if for every neuron i, | V;(t) — Vi(t + At) |< &', where €' is another
preassigned small positive quantity.

2.2. (Sub)optimal Architecture Evolution using GAs

A chromosome of the GA represents a network architecture. For an m X n image,
each pixel (neuron) being connected to at most k of its neighbors, the length of
the chromosome is m x n X k. If a neuron is connected to any of its neighbors,
the corresponding bit of the chromosome is set to 1, else 0. The initial population
is generated randomly. Each network is then allowed to run for object extraction
as described in Sec. 2.1. The energy value (Eq. (1)) obtained at the converged
state of a network is taken as the index of fitness of the corresponding chromosome
(minimum energy corresponds to maximum fitness) for its selection for the next
generation. Crossover and mutation operations are performed on these selected
chromosomes to get new offspring i.e., to generate new architectures. The whole
process is continued for a number of generations until the GA converges. The best
chromosome of the final population represents a (sub)optimum architecture (with
respect to energy value) for object extraction.

Further, if the desired output images (i.e., the target values of pixels) are known,
we can measure the percentage of correct classification of pixels (pce) of the con-
verged (evolved) network and use it as a fitness value for selecting networks. pcc is
defined as,!!

pee = (tee x 100)/(m x n), (4)

where, tcc is the total number of pixels correctly classified for an m x n image. The
higher the pcc value, the better is the chromosome.

In the first part of our investigation, we have considered energy and pcc based
fitness measures to evolve networks for providing optimum segmented output. In
the second part, to obtain architectures for providing maximum number of correct
classification of pixels with minimum pumber of connections of the network, the
fitness value is taken as

fitness = tee + (maznoc ~ noc) /100, (5)

where, maz_noc is the maximum number of connections i.e., the number of con-
nections of a fully connected network. (Note that, one could have used some other
combinations of tcc and noc.) Finally, to obtain a desired output quality with
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minimum number of connections, the noc value is taken as the fitness value of the
network so that the minimum value corresponds to maximum fitness.

For the simulation of GA, following steps are adopted. The population size is
kept fixed at 30. Generational replacement technique® is used. Both the elitist
model (i.e., by copying the best member of each generation into the next one,
replacing the lowest fitted string)? and the standard GA (SGA) i.e., without elitism,
are implemented.

Linear normalization selection procedure® (which works better in a close com-
petitive environment) is adopted. The difference between successive fitness values
is taken as 1 and the minimum fitness value is kept to 1. The number of copies
produced by the 4th individual (chromosome) with normalized fitness value f; in a
population of size n is taken as round(c;); where ¢; = n X fi/> o, fi.

The experiment is carried out with three different sets of crossover and mutation
probabilities e.g. (p. and p,,) = (0.8, 0.02), (0.9, 0.02), and (0.8, 0.05). Mutation
operation has been kept embedded within the crossover operation. We have run
the algorithm for 200 iterations (it is seen that the average fitness value of the
population is not changing much after this).

2.3. (Sub)optimal Architecture Evolution using SA

In a part of the experiment we compared the results obtained by GA with that
of simulated annealing (SA). The implementational aspect of simulated annealing
algorithm is described here, in brief.

Here each state of the system is referred to a chromosome. The meaning and
representation of a chromosome are identical to that of the GA based methods. The
initial chromosome is chosen randomly. A new chromosome (neighbor) is generated
from the present one by mutation. The searching of the neighbor of a chromosome
is guided by Metropolis algorithm.'? The algorithm has been changed accordingly
for maximization problems.

The parameters of the simulated annealing algorithm are selected so as to main-
tain parity with the proposed GA based methods as much as possible. The investi-
gation is done with three different values of initial Temperature, 7. They are 100,
50, and 10. The temperature decay rate is set to 0.95. Since GA is being executed
200 times for each run, we have also fixed the minimum 7" to 0.0036, 0.0018, and
0.00036, respectively, so that SA can also execute with 200 different 7" values. Fur-
ther, since the population size of the GA is taken as 30, the simulated annealing
algorithm is also executed 30 times for each value of T'. This ensures that the same
number of chromosomes is being searched using both GA and SA based methods.

3. ANALYSIS OF RESULTS

The effectiveness of the proposed technique has been demonstrated using some syn-
thetic images (Figs. 3(a), 4(a), 5(a)) and two real images of ‘BIPLANE’ (Fig. 6(a))
and ‘Blurred Chromosome’ (Fig. 7(a)). The synthetic input images are generated
by adding N(0, ;%) noise to each pixel of the binary (two-tone) image shown in
Fig. 2. The size of each image is 64 x 64.
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Fig. 2. Original synthetic image.

_

(¢) (d)

Fig. 3. Results for a noisy version (¢ = 15) of the synthetic image. (a) Input. (b) Output using
SGA with energy as fitness measure. {c) Output using fully connected architecture. {(d) Output
using SA.
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Fig. 4. Results for a noisy version (¢ = 24) of the synthetic image. (a) Input. (b) Output using
SGA with energy as fitness measure. (¢) Output using fully connected architecture. (d) Output
using SA.

The percentage of correct classification of pixels of the best chromosome in
the last generation using pcc and energy based fitness measures for different noisy
versions (Figs. 3(a), 4(a), 5(a)) of the synthetic image is depicted in Table 1. The
number of connections of these evolved architectures is put in Table 2. Note that
the noc of the corresponding fully connected architecture is 64 x 64 x 8 = 32,768,;
which is almost one and a half times larger than that of the proposed GA based
methods.

It is seen from Table 1 that the pec based fitness measure performs better than
the corresponding energy based one (except the case of SA with T' = 100 for ¢ = 32).
This is due to the fact that the former one considers information about the actual
image (original two-tone version) for the evaluation of the fitness of chromosome,
whereas the latter one does not. Moreover, standard GAs mostly yielded superior
output compared to the corresponding elitist version. This may be due to the fol-
lowing reason: the adopted selection procedure produces more copies of the best
chromosome; elitism adds one more copy of the same, and thus accelerates prema-
ture convergence. From the table it is also found that the GA based methods are
better than the SA based ones (except the case of elitist model with energy based
fitness measure, and p, = 0.08, p,, = 0.02 for the image with ¢ = 15). In order
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Fig. 5. Results for a noisy version (¢ = 32) of the synthetic image. (2) Input. (b) Output using
SGA with energy as fitness measure. (c¢) Output using fully connected architecture. {(d) Output
using SA.

to demonstrate the effect of different parameter values, we have included, as an
illustration, the results corresponding to three sets of p., p,, and T values (using
energy based evaluation) for SGA and SA.

As a typical illustration, output images obtained by SGA (with energy based
evaluation and p. = 0.08, p,, = 0.02) are presented in Figs. 3(b), 4(b), and 5(b).
The corresponding outputs obtained by the fully connected architectures (as em-
ployed in Ref. 11) and SA based technique {(with 7" = 100) are shown in Figs. 3(c),
4(c), 3{c) and 3(d), 4(d), 5(d), respectively for comparison. It is seen from these
segmented outputs that for highly corrupted images, GA based technique performs
significantly better than those using fully connected architecture!! and simulated
annealing.

Results corresponding to maximization of Eq. (5) for obtaining architectures in
order to provide maximum number of correct classification of pixels with minimum
number of connections, are put in Table 3. The terms inside the brackets associated
with the fitness values represent the corresponding tec and noc values. This table
also shows that the fitness values for the GA based method are much higher than
those of SA.
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(d) (e)

Fig. 6. Results for ‘BIPLANE’ image. (a) Input. (b) Output using SGA with energy as fitness
measure. (c) Output using elitism with energy as fitness measure. (d) Output using fully connected
architecture. (e) Output using SA.

Finally, for a given pcc value we have obtained architectures by minimizing
number of connections. Here we have considered ouly the noisy image of Fig. 5(a)
as input. The pcc value is prefixed to 88.0. It is found that the noc values of
the evolved networks using SGA (p. = 0.08, p,, = 0.02) and SA (7' = 100) based
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method are 19586 and 20469, respectively. The corresponding pcc values obtained
from these networks are 88.94 and 88.09. This further shows the superiority of GA
over SA.

(®) ()

(d) (e)

- Fig. 7. Results for ‘Blurred Chromosome’ image. (a) Input. (b) Output using SGA with energy as
fitness measure. (c) Output using elitism with energy as fitness measure. (d) Output using fully
connected architecture. (e) Output using SA.



458 __S.K.PAL, S. DE & A. GHOSH

Table 3. Results corresponding to maximization of Eq. (5) for the noisy (synthetic) images.

Image with Fitness (tcc,noc) values using
5GA SA
pe = .08,pm = .02 T =100
o=15 4211.74 (4091,20694)  4187.67 (4065,20501)
o =24 4182.07 (4065,21061)  4116.72 (3994,20496)
o =32 4160.19 (4046,21349)  4012.50 (3890,20518)
x10
-1.9 T T T T T T T = e

Avecage energy value

'26 M o | E— | I— A 1 1 ] L A
20 40 60 80 100 120 140 160 180 200
Generation

Fig. 8. Variation of average fitness value using SGA (energy based evaluation): (a) for noisy image
with ¢ = 15, (b) for noisy image with o = 24 and (c) for noisy image with o = 32.

Objects extracted using SGA (p. = 0.08, p,, = 0.02) and elitist strategy for the
‘BIPLANE’ (Fig. 6(a)) and ‘Blurred Chromosome’ (Fig. 7(a)) images are shown
in Figs. 6(b) and 6(c) and Figs. 7(b) and 7(c), respectively. Here energy value
is considered as the fitness measure, since the target values of pixels are unknown
(unlike the synthetic images). The corresponding outputs obtained by the fixed fully
connected version and SA based technique (with T = 100) are shown in Figs. 6(d)
and 6(e) and 7(d) and 7(e), for comparison.

Finally, we demonstrate in Fig. 8 how better the network architectures are grad-
ually evoluted with generation. Here we consider, as an example, the variation of
average energy value (when SGA is used) with generation for the input images of
Figs. 3(a), 4(a), and 5(a). Energy values are seen to decrease gradually with gen-
eration, attaining a stable state (representing optimum architecture) around 200th
generation.

The experiment is performed on a Sun SPARC Classic Workstation (frequency
59MHz). To execute each generation, CPU time requires 2 minutes (approximately).
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4. CONCLUSIONS AND DISCUSSION

The effectiveness of GAs and SA for evolving Hopfield type optimum neural network
architectures for object extraction has been demonstrated. The proposed techniques
are able to find out automatically the network architectures subject to different ob-
jective functions, namely, optimizing segmented output, maximizing output quality
with minimum number of connections, and minimizing number of connections for a
desirable output. Fitness function to optimize segmented output is defined in terms
of the energy value of the network and/or the percentage of correct classification
of pixels, wherever applicable. The evolved networks always provide less number
of connections compared to the corresponding fully connected version. For the pa-

rameters considered here, the performance of GA is seen to be better than that of
SA.

Although we have considered here the problem of object extraction, other ap-
plication areas of Hopfield type networks can also be handled within the proposed
framework. In the present investigation, connection strengths are taken as 1 and 0
(i.e., connection is present or absent). In practice, the connection strengths could
also be real numbers. Therefore, investigation involving such networks may consti-
tute a part of future work.
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