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Abstract

This paper aims to reveal the hidden structure of the disease curve involved in the available time series data on the number of
Plasmodium falciparum (malignant malaria) cases. At first we try to find out the important factors which impart greater influence
on the occurrence of malignant malaria and then try to fit a suitable regression model. We have taken into consideration the
environmental factors like temperature, humidity and rainfall along with the total number of malaria cases as the independent
variables in our first regression model. Next we have incorporated a social factor viz. monthly expenditure on Malaria Control
Programme by Kolkata Municipal Corporation (KMC), West Bengal, India into our model. A basic mathematical model on
malaria with environmental fluctuations is considered to compare the qualitative nature of the proposed regression model. It is
observed that Macdonald’s stability index takes higher value in the presence of stochastic fluctuations. Moreover, it is concluded
that social factors may be used for programme implementation in the case of disease outbreak.
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1. Introduction

The historical and epidemiological literatures pro-
vide informations on the infectious diseases of human
communities and their effects on population abun-
dance, social organization as well as on the unfolding
patterns of historical events. The application of math-
ematics to the study of infectious disease appear to
have been initiated by Berniulli, 1760. In recent years,
analysis of mathematical models and comparisons
with incidence data have uncovered fundamental
mechanisms that control the dynamics and persistence

of parasite infections (Bartlett, 1957; Anderson and
May, 1991; Rohani et al., 1999). Using a theoretical
approach, it has been possible to explore the relative
benefits of different potential immunization strategies.
Mathematical models have been useful for estimating
a critical vaccination level that will eradicate an in-
fection (Anderson and May, 1991; Agur et al., 1993).
In recent works, there has been an emphasis on the
application of control theory to epidemic models
(Wickwire, 1977), the study of the spatial spread of
diseases (Mollison, 1977; Cliff et al., 1983; Kallen
et al., 1985), the investigation of the mechanisms
underlying recurrent epidemic behaviour (Hethcote
et al.,, 1981; Aron and Schwartz, 1984), the impor-
tance of heterogeneity in transmission (Anderson and
May, 1986), and the extension of the threshold the-



180 J. Chattopadhyay et al./Ecological Modelling 177 (2004) 179—192

ory to encompass more complex deterministic and
stochastic models (Whittle, 1955; Becker, 1978;
Anderson and May, 1978, 1979; May and Anderson,
1979; Ball, 1983). Surprisingly, however, despite the
current sophistication of the literature, the insights
gained from theoretical work have, in general, had
little impact on empirical approaches to epidemio-
logical study and the design of public health policy.
Therefore, a much greater emphasis must be placed
on data oriented studies though the theoretical work
play a role in the solution of practical problems in
disease control and in the interpretation of observed
trends.

The discase malaria has a global significance as
a cause of human mortality and its role in the early
beginnings of epidemic and endemic theory is promi-
nent. Malaria in human is due to infection by one
of the four protozoan species belonging to the genus
Plasmodium namely P. falciparum, P. vivax, P.
malariae and P. ovale. The most pathogenic species
is P. falciparum which is a major cause of child
mortality in many areas of the developing world.
Among the several other epidemics, malaria is one of
the major epidemics observed in India. For this, the
major transitions are between regular cycles to irreg-
ular patterns (possibly chaotic epidemics) and also
between regionally synchronized oscillations to com-
plex epidemics (may be spatially incoherent). The
recent epidemiological status of malaria in Kolkata
Municipal Corporation (KMC) Arca, West Bengal,
India has been studied by Mukhopadhyay et al
(1997). Their study revealed that both mortality and
morbidity due to malaria in the area of KMC showed
increasing trend. Davis and Martin (1997) charac-
terized post-treatment clearance of young forms of
P. falciparum from the blood with three differential
equation models, a linear decline, a linear and then
logarithmic decline and the Michaelis—Menten ki-
netic equation, which were fitted to log-transformed
parasite counts from 30 semi-immune patients with
synchronous parasitaemias allocated to one of six
antimalarial drug regimens. The earliest attempts to
provide a quantitative understanding of the dynam-
ics of malaria transmission were that of Ross, 1911,
1915. Macdonald (1957) added a layer of biological
realism to these early models by his careful attention
to interpretation and estimation of parameters. The
value of mathematical studies to the design of malaria

control programmes and the interpretation of observed
epidemiological trends has been a topic of consider-
able controversy (Martini, 1921; Moshkovskii, 1950;
Macdonald, 1957; Bruce-Chwatt and Glanville, 1973).
So far our knowledge is concerned, no study has been
done on the dynamics of malaria considering the
real available data on the malignant malaria disease
over time. But in reality a simple malaria model can
explain both kinds of transition, prevalence and dis-
tribution of parasites. Aron and May (1982) observed
that the basic models demonstrate the seasonal pattern
in mosquito population density, if the total mosquito
population varies seasonally with an amplitude that
fluctuates randomly from year to year. In order to
access the actual situation of malaria in the city of
Kolkata, India, time series analysis of the morbidity,
mortality etc. of malaria for this place from the avail-
able epidemiological data is very much necessary.
Moreover, environmental stochasticity in terms of
variability in different environmental factors (temper-
ature, humidity, rainfall etc.) and social factors (ex-
penditure on malaria control programme etc.), for this
disease cannot be ignored. Although the basic model
gives a good overview of the dynamics of malarial
infection, particularly the basic factors that underlie
“stable” and “unstable” malaria, many of its predic-
tions are strikingly different from reality. Macdonald
(1957) estimated the stability index to explain the epi-
demic outbreaks of malarial infection and Aron and
May (1982) found rough estimates of Macdonald’s
stability index for several regions where malaria is
indigenous. Still, there is need to find out proper esti-
mation of Macdonald’s stability index in a more real-
istic sense by considering environmental fluctuations
in the system. Therefore, suitable model, and fore-
casting on the future occurrences of the discase based
on the environmental and social factors and proper
estimation of Macdonald’s stability index are likely
to be needed from the recurrent problems of malaria
epidemic.

In the present study, we try to fit a suitable regres-
sion model by considering important environmental
factors along with a social factor based on the avail-
able data. We compare the qualitative nature of the
model with the basic malaria model under environ-
mental stochasticity. Further, we propose a proper
estimation of Macdonald’s stability index for the sys-
tem under environmental fluctuation, with the help
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of the technique developed by Sarkar et al. (2001)
which is also used by Chattopadhyay et al. (2001).
We also compare the value of Macdonald’s stability
index estimated by this technique with the value ob-
tained by Aron and May (1982) for several regions
where malaria is indigenous. Lastly, we propose a
suitable value of Macdonald’s stability index for
Kolkata, India to reveal the realistic feature of the dis-
ease outbreaks and to chalk out a suitable eradication
strategy.

2. Data analysis and observations

To observe the effect of environmental factors on
the occurrence of the disease, at our disposal we have
monthly data on the following variables for three con-
secutive years viz. 1999, 2000 and 2001.

Var 1. Total number of malaria cases

Var 2. Total number of P. falciparum cases
(Pf. cases)

Var 3. Maximum temperature (°C)

Var 4. Minimum temperature (°C)

Var 5. Maximum humidity

Var 6. Minimum humidity

Var 7. Total rainfall (mm)

Also, to observe the effect of social factors, we have
monthly expenditure data on the Malaria Control Pro-
gramme by KMC for the years 2000 and 2001.

Now we are going to perform the regression anal-
ysis on this data set using the flowchart shown in the
Appendix A. To build a suitable regression model, the
total number of Pf. cases will be considered as the de-
pendent variable and the other factors as the explana-
tory variables.

We first try to have an insight of the data and see
whether any meaningful ideas about the interrela-
tionships between the variables are available without
going into more detailed analysis. For this purpose
two-dimensional scatter diagrams are drawn. These
are shown in the Figs. 1-6, where Var 2 represents
the total number of Pf. cases.

From the scatter diagrams 1-6, we are not getting
any linear relationship between the dependent and in-
dependent variables. Hence, after selecting the influ-
ential variables, we will try to refine our model by
variable transformations.

Total number of Total number of Total number of Total number of Total number of

Total number of

Pf. cases

Pf. cases

Pf. cases

Pf. cases

Pf. cases

Pf. cases

10000
*
* .
5000 . . PN R
0 ‘-’ ‘0 *

0 5000 10000 15000 20000 25000

Total number of malaria cases

Fig. 1. Scatter diagram of Var 2 vs. Var 1.
10000
*
J &
5000 ¢
0 ; —
0 10 20 30 40
Maximum temparature
Fig. 2. Scatter diagram of Var 2 vs. Var 3.
10000
*
g %
5000 . ot
L‘h—“ﬁ-«i
0 T
0 10 20 30 40
Minimum temparature
Fig. 3. Scatter diagram of Var 2 vs. Var 4.

10000

*
1 * 0
5000 R
) I S NP S . S
80 85 90 95 100

Maximum humidity

Fig. 4. Scatter diagram of Var 2 vs. Var 5.

10000
*
*
5000- R .
EEENNNDY VL AN
0 B
0O 20 40 60 80 100

Minimum humidity

Fig. 5. Scatter diagram of Var 2 vs. Var 6.

10000
*
5000 ¢ .
¥ PREXL o . *
0 200 400 600 800

Rainfall

Fig. 6. Scatter diagram of Var 2 vs. Var 7.

181



182 J. Chattopadhyay et al./Ecological Modelling 177 (2004) 179—192

3. Selection of influential variables and refinement
of model

3.1. Variable selection
Let us consider a regression model in the form of

Yi=po+ X1 +BXoi+------ + Bp_1Xp_1,i + &
Vi=1()n

it is suspected that not all X;’s are significant for the
model. To find out the more useful explanatory vari-
ables we are considering three methods of variable
selection namely,

1. Forward selection procedure
2. Backward elimination procedure
3. Stepwise regression procedure

3.1.1. Forward selection procedure

Regress Y on each X; respectively. Choose j such
that either 72 is largest or 8 ; has the lowest P-value or
the sum of squares due to error is the lowest. 72, The
coefficient of multiple determination is given by

where SSE and TSS imply sum of squares error and
total sum of squares, respectively.
Suppose X;f is selected. Then consider P—2 models

Yi=Bo+ BiX; + B Xia Yk # j*

for each of these models calculate , the partial
F-statistics,{b /s(b,)*}, where b is the estimate of B;.

If this value exceeds a pre-determined level (F-to
enter), include X; Next follow the similar procedure
by considering X; and X 7 already present in the model.

3.1.2. Backward elimination procedure

Initially consider all the variables in the model.
Choose j such that * is smallest. Eliminate X ; from
the model if the corresponding partial F-statistics are
smaller than a pre-determined level (F-to delete).

3.1.3. Stepwise regression procedure
This is probably the most widely used variable
selection method. It was developed to economize

on computational efforts, as compared with the all-
possible-regression approach, while arriving at a
reasonably “good” subset of independent variables.
Essentially, this search method develops a sequence
of regression models, at each addition or deletion
of X variable. The criterion for adding or deleting
an X variable can be stated equivalently in terms of
error sum of squares reduction, coefficient of partial
correlation, or F-statistics.

3.1.4. Search algorithm

Neter et al. (1985) describes the stepwise regression
scarch algorithm in terms of the F-statistic for the
partial F-test.

1. The stepwise regression routine first fits a simple
regression model for each of the P—1 potential X
variables. For each simple regression model the F-
statistic

_ MSR
~ MSE

where MSR is the regression mean square and MSE
is the mean-square error for testing whether or not
the slope is zero is obtained.

_ MSR(Xp)
" MSE(Xy)

recall that MSR(X;) = SSR(X}) measures the re-
duction in the total variation of Y associated with
the use of the variable Xj. The X variable with the
largest F-value is the candidate for first addition. If
this F-value exceeds a pre-determined level, the X
variable is added. Otherwise, the programme ter-
minates with no X variable considered sufficiently
helpful to enter the regression model.

2. Assume X7 is the variable entered at step 1. The
stepwise regression routine now fits all regression
models with two X variables. Where X7 is one of
the pair. For each such regression model, the partial
F-test statistic

Fy

_ MSR<Xk|X7)_{ b }2
£ 7 MSE(X7, X0 | s

is obtained. This is the statistic for testing whether
or not B = 0 when X7 and X} are the variables in
the model. The X variable with the largest F-value
is the candidate or addition at the second stage.
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If this F-value exceeds a pre-determined level, the
second X variable is added. Otherwise the pro-
gramme terminates.

3. Suppose X3 is added at the second stage. Now the
stepwise regression routine examines whether any
of the other X variables already in the model should
be dropped. For our illustration, there is at this stage
only one other X variable in the model, X7, so that
only one partial F-test statistic is obtained

_ MSR(X7|X3)
77 MSE(X3, X7)

tat later stages, there would be a number of these
F-statistics, for each of the variables in the model
besides the one last added. The variable for which
this F-value is smallest is the candidate for deletion.
If this F-value falls below a pre-determined limit,
the variable is dropped from the model; otherwise,
it is retained.

4. Suppose X7 is retained so that both X3 and X7 are
now in the model. The stepwise regression routine
now examines which X variable is the next can-
didate for addition, then examines whether any of
the variables already in the model should now be
dropped, and so on until no further X variables can
either be added or deleted, at which point the search
terminates.

It should be noted that the stepwise regression algo-
rithm allows an X variable, brought into the model at
an carlier stage, to be dropped subsequently if it is no
longer helpful in conjunction with variables added at
later stages. We have extensively used the SAS Soft-
ware (http://support.sas.com) to perform the regres-
sion analysis.

Results of the forward selection procedure:

Step 1. Variable 1 (total number of malaria cases)
entered

Model 7% = 0.6515 and C(P) = 28.1410

Step 2. Variable 6 (minimum humidity) entered
Model 7 = 0.8327 and C(P) = 5.1055

No other variable met the 0.05 significance level for
entry into the model.

Results of the backward elimination procedure:
Step 0. All variables entered
Model 72 = 0.8769 and C(P) = 7.0

Step 1. Variable 3 (maximum temparature) removed
Model 72 = 0.8769 and C(P) = 5.006

Step 2. Variable 5 (maximum humidity) removed
Model 7 = 0.8669 and C(P) = 4.3803

Step 3. Variable 6 (minimum humidity) removed
Model 7> = 0.8587 and C(P) = 3.5191

All variables left (total number of malaria cases and
rainfall) in the model are significant at the level 0.05.

Results of the stepwise regression procedure:

Step 1. Variable 1 (total number of malaria cases)
entered

Model 72 = 0.6515 and C(P) = 28.14

Step 2. Variable 6 (minimum humidity) entered
Model 7% = 0.8327 and C(P) = 5.1055

All variables left in the model are significant at the
0.05 level. No other variable met the 0.05 significance
level for entry into the model.

Deleting some independent variables usually biases
the estimates of the parameters left in the model. Sup-
pose out of k, we retain first P—1 independent vari-
ables. So bg, b1, ..., by are biased implying that
the predicted values are also biased. One measure of
this bias is called Mallows’ C(P). The key property
for it’s application is that, if a new model does not
lead to much bias in the predicted values, then

E[C(P)]~ P

thus, when the C(P) values for all possible regression
models are plotted against P, those models with little
bias will tend to fall near the line C(P) = P. Mod-
els with substantial bias will tend to fall considerably
above this line.

SSEPp
MSE(X1, ..., Xp_1)

where SSEp is the error sum of squares for the fitted
subset regression model with P — 1 explanatory vari-
ables.

Thus, by using the above three variable selection
procedures we have obtained the following variables
to be incorporated into our model

C(P) =

—(n—2P)
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1. Total number of malaria cases
2. Minimum humidity
3. Rainfall

It is to be noted that all the analyses done so far
are based on the available data for the years 1999 and
2000. We have considered total number of Pf. cases
as the dependent variable. In a separate analysis, tak-
ing total number of malaria cases as the dependent
variable it is found that there is a fair amount of posi-
tive correlation (0.30428) between minimum tempara-
ture and total number of malaria cases. Also, the vari-
able selection procedure supports this fact. Hence it
is not unreasonable to incorporate minimum temper-
ature into our present model for total number as af-
fecting the total number of malaria cases in the area
indirectly affects the total number of Pf. cases.

So we are now in a position to build a regression
model for the total number of Pf. cases by taking the
following explanatory variables

1. Total number of malaria cases
2. Minimum temparature

3. Minimum humidity

4. Rainfall

3.2. Model refinement

Simple Linear regression may not provide a good
fit. So we try to investigate curvature and interrela-
tions between the dependent and selected explanatory
variables more fully.

3.2.1. Transforming the response with one dependent
variable

A good transformation should make residuals
smaller. We now consider different transformation of
one or both of the original variables before carrying
out the regression analysis. Simple transformations
of either the dependent variable Y or the independent
variable X, or of both, are often sufficient to make
the simple linear regression model appropriate for
the transformed data. Let us now present a graphical
method for getting appropriate transformations.

Let us divide the range of the independent variable
into three portions, making a good compromise be-
tween getting an equal number of data points in each
portion and making the three portions roughly equal.
For each of the three sets of data points thus created,

log of the total
no. of Pf.cases
[4)]

0 T T T T T
0 5000 10000 15000 20000 25000 30000

Cube of minimum temparature

Fig. 7. Scatter diagram for transformed variables (log of total no.
of Pf. cases vs. cube of minimum temperature).

find a point (which may or may not be one of the data
points) which is a good representative of the set. For
cach set a good choice is the point whose co-ordinates
are the medians of the x and y values for the points
in the set. We now find the slope of the line joining
the first two points (going from left to right) and the
slope of the line joining the last two points. If these
two are equal, then the data points should describe
a straight line. If not, the middle of the three points
will be below (the convex case) or above (the concave
case) the line joining the other two. Then we follow
the flowchart shown below.

—1/y? f X
—1//y  if convex up the ladder x
log y x3
Al x?
y < We are here = by
»? N
y? if concave down the ladder  logx
y* I —1/Vx

starting from the linear relationships between the un-
changed variables we have found that a fair amount of
linear relationships exist between the logarithm of the
total number of Pf. cases and the cubes of minimum
temperature, minimum humidity and rainfall. These
relationships are clearly visible from the Figs. 7-9,
which show the scatter diagram for the transformed
variables. After comparing these figures with the fig-
ures (Figs. 3, 5 and 6) for unchanged variables, we

10

O
¢ o0 0 ¢

» o
IR XA N

0 100000 200000 300000 400000 500000
Cube of minimum humidity

log of the total
no. of Pf.cases
(4]

Fig. 8. Scatter diagram for transformed variables (log of total no.
of Pf. cases vs. cube of minimum humidity).
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Fig. 9. Scatter diagram for transformed variables (log of total no.
of Pf. cases vs. cube of rainfall).

decided to incorporate the transformed variables into
our model.

In Figs. 7-9, Var 10 represents the logarithm of the
total number of Pf. cases.

4. The proposed regression model

So far our analysis has been based on the monthly
figures for the years 1999 and 2000.We have not con-
sidered the social factor in our model. The result of
the regression procedure is given in Table 1.

Now we incorporate the social factor into our re-
gression model. Since there is a high positive corre-
lation between the total number of malaria cases and
total number of Pf. cases, in order to restore this inter-
relationship we transform the former to it is logarith-
mic form and consider it in the model. Again it is quite
reasonable to assume that there is a strong negative
correlation between the total number of Pf. cases and
the monthly expenditure on the Malaria Control Pro-
gramme. In our former model we have transformed the

original dependent variable into its logarithmic form.
The Figs. 10 and 11 reveal that the linear relationship
is stronger for the log-transformed monthly expendi-
ture than for the monthly expenditure with the log of
the total number of Pf. cases.

Thus our final regression model will be based on
the following transformed variables

Dependent Logarithm of the total number of
variable: Pf. cases

Independent 1. Logarithm of the total number
variables: of malaria cases

2. Cube of minimum temperature
3. Cube of minimum humidity

4. Cube of rainfall

5. Logarithm of the monthly
expenditure

5. Results and comparison with basic
mathematical model

The results of the regression procedure of our final
model is given in Table 2.

We observe that the model 72 has been increased
from 0.8436 in the former model to 0.9265 in the final
model which implies that the present model is better.
Fig. 12 shows the residuals against the time points.

Fig. 13 shows the total number of Pf. cases for
different months during the period 1999-2001. From
the available monthly expenditure data on the Malaria

Table 1
The regression procedure
Source DF SS MS F-value Pr>F
Analysis of variance
Model 4 48.83468 12.20867 25.61 <0.0001
Error 19 9.05712 0.47669
Corrected total 23 57.89180
Variable DF Parameter estimate Standard error t-value Pr > |t
Parameter estimates
Intercept 1 —5.49890 2.02682 —2.71 0.0138
Tmcases_log 1 1.62940 0.25200 6.47 <0.0001
Mintempcube 1 —2.09559E-8 0.00000268 —0.01 0.9938
Minhumcube 1 —0.00015395 0.00003769 —4.08 0.0006
Raincube 1 1.38684E-9 2.104503E-9 0.66 0.5178

Dependent variable: logarithm of the total number of Pf. cases. 2 = 0.8436. Adjusted 7** = 0.8106. *Adjusted 1? takes into account the
number of parameters in the model through degrees of freedom, which /2 does not. Adjusted 2 =1 — (MSE(TSS/n — 1)).
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Fig. 10. Scatter diagram for transformed variables (log of total no. of Pf. cases vs. monthly expenditure).
w0
- O
o wn 10
o8 L L™
£5 s N
5%
25 0 T T T T T
52 "o 2 4 6 8 10 12
Log of the Monthly expenditure
Fig. 11. Scatter diagram for transformed variables (log of total no. of Pf. cases vs. log of monthly expenditure).
Table 2
The regression procedure
Source DF SS MS F-value Pr>i
Analysis of variance
Model 4 80.65554 16.13111 75.65 <0.0001
Error 19 6.39660 0.21322
Corrected total 23 87.05214
Variable DF Parameter estimate Standard error t-value Pr > |
Parameter estimates
Intercept 1 8.04166 3.18760 2.52 0.0172
Tmcases_log 1 0.86017 0.22224 3.87 0.0005
Mintempcube 1 —0.00009258 0.00002382 —3.89 0.0005
Minhumcube 1 8.084269E-7 0.00000155 0.52 0.6057
Raincube 1 —6.6386E-10 1.39868E-9 —0.47 0.6385
Monthlyexp_log 1 —0.90353 0.19238 —4.70 <0.0001

Dependent variable logarithm of the total number of Pf. cases. 2 = 0.9265. Adjusted 72

Control Programme by KMC, we try to get hold of
two representative figures for the year 2000 and 2001.
They (Var 8) are shown on Fig. 13 by two spots. It is
clearly visible that as soon as the social factor, under
consideration comes into play, the occurrence of ma-
lignant malaria in the Kolkata Metropoliton Corpora-

=0.9143.

tion Area had been considerably reduced. Also it is
to be noted that the number of Pf. cases are small
corresponding to those months in which more money
had been spent on the control programme. So it is
recommended to keep a steady balance in spending
money throughout the months of a year in order to

(7]
5 0.57 /\
] 0 4+ r——7A~A vvvvvv"vvvvvv — Residual
3 \
7]
g 05 3\j( Vco\/ 3
-1

Timepoints

Fig. 12. Residual plot.
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Fig. 13. Total number of Pf. cases for different months during the period 1999-2001.

reduce the brisk and slack movement in the curve of
the total number of Pf. cases.

We have reached the above conclusion by perform-
ing statistical analysis on the available data. Fig. 14
shows the predicted number of Pf. cases for differ-
ent months during the period 1999-2001. We have di-
vided the graph into two parts. The first part (for the
year 1999, i.e. first 12 time points) shows the figure
without considering the social factor, while the second
part ( for the years 2000 and 2001, i.e. the remaining
24 time points) incorporates the social factor.

‘We have already mentioned in the introduction that
fluctuations in mosquito population change the pattern
of outbreak of the disease. In our study, so far we
have proposed a suitable regression model based on
the available epidemiological data and considered the
variations in environmental as well as social factors
to demonstrate a more realistic scenario behind the
disease outbreak.

5.1. Comparison with a mathematical model

Now we are in a position to observe the similarity
between the proposed model and the known basic
mathematical models with environmental fluctuations.
The carliest attempt to provide a quantitative under-
standing of the dynamics of malaria transmission was
that of Ross (1911, 1915). The basic deterministic
model which incorporates the interaction between

the infected human hosts and the mosquito vector
population may be written in the form

— =oy(l —x) — 1
” vyl —x) —rx (D
dy o

T acx(1 —y) — py 2)

where x and y are the proportions of the human and
female mosquito populations that are infected, a is
the bite rate of a single mosquito, ¢ is the propor-
tion of bites by susceptible mosquitoes on infected
people that produce a patent infection, r is the indi-
vidual recovery rate per human, p is the individual
death rate for mosquitoes and o = abM/N, where N
and M are the (constant) sizes of the human and fe-
male mosquito populations respectively and b is the
proportion of infected bites that produce an infection.
In this case, small changes in mosquito density or
the biting rate are more likely to result in substantial
changes in the proportion of humans infected. This
is the essence of Macdonald (1957) conclusion that
(ac/u = m, say) is an index of stability; in arcas
where mosquito vectors bite humans relatively often
and have relatively long life spans, this index is high
and malaria tends to be endemic (Macdonald’s stable
malaria); conversely, where mosquitoes bite on hu-
mans less often and have shorter life spans, the index
is low and malaria tends to be subject to epidemic out-
breaks (Macdonald’s unstable malaria). But the situ-
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§%¢
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N
cE A
c [ o o o o L R o o o R
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~ Y v v ON N N ™M o™
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Fig. 14. Predicted number of Pf. cases.
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ation depicted in this study was purely deterministic
and the effects of environmental fluctuations have not
been considered. To observe the environmental vari-
ability in the abundance of mosquito populations, we
therefore modify the basic model by incorporating a
random fluctuation in the form of colour noise, which
follow the Ornstein—Uhlenbeck process (Uhlenbeck
and Ornstein, 1954), in the second equation (which
describes changes in the proportion of mosquitoes in-
fected) of the basic model. The modified model can
be written in the form

(31—); =oy(l —x)—rx 3)
dy
i acx(1 —y) — uy +n@)y “

where the perturbation coefficient #5(f) is the
Ornstein—Uhlenbeck process. The mathematical ex-
pectation and correlation function of the process 1(f)
are given by

(n(®) =0, (n(t1) n(t2)) = e 8oexp(—dolt1 — 12]) (5)

where €, §g > 0 are respectively the intensity and
the correlation time of the noise and (.) represents
averages over the ensemble of the stochastic process.
The correlation function m(t) is the solution of the
stochastic differential equation

dn dw

— = =800+ dov (2e)—
& 01+ 8oy (2¢) o
where &(1) = dw/dt denotes the standard zero mean
Gaussian white noise characterized by

(M) =0, (§(n) &(r2)) = 8(t1 — 12) (7

with (7) as the Dirac delta function. Recently, Sarkar
et al. (2001) developed a method to estimate the op-
timal values of the parameters and the safe region.
They have solved the stochastic differential equa-
tions involved in the system, applied the idea of
Tchebycheff’s inequality to obtain a tolerance inter-
val and minimized the deviations of the populations
about the equilibrium level for an eco-epidemiological
model of Tilapia—Pelican populations proposed by
Chattopadhyay and Bairagi (2001). Chattopadhyay
et al. (2001) successfully used this technique to esti-
mate the inaccessible parameters in a plant-herbivore-
parasitoid system under environmental stochasticity.
In this study, we used their technique to obtain the

(©6)

critical value of the Macdonald’s stability index (m)
and observed that under the effect of environmental
fluctuation, the Macdonald’s stability index has the
following realistic value

_[r+~r+40? 60(r+0)+20—r
m = min > , 3 ®)
o o

To validate our analytical result, we consider the
values of the parameters used by Aron and May
(1982) in simulation of the basic model with a large
reproductive rate and variable mosquito density. We
observed that for ¢ = 20 per year, u = 50 per
year, r = 4 per year, N = 20, M = 50, b = 1 and
¢ = 0.85, the Macdonald’s stability index (m) is 0.34,
when there is no environmental fluctuation. But the
estimation of Macdonald’s stability index under envi-
ronmental fluctuation by our method is m = 1.0402,
which is much higher than the deterministic situation.
This depicts the fact that malaria becomes endemic
(Macdonald’s stable malaria) though previously esti-
mated as epidemic outbreaks (Macdonald’s unstable
malaria). It is interesting to note that this technique
of estimation will help us to provide sufficient in-
formation regarding a good estimate of Macdonald’s
stability index for several regions where malaria is in-
digenous (see, Table 14.6, p. 398, Anderson and May,
1991).

Now, to reveal the realistic feature of the outbreaks
of malaria disease in Kolkata, India, we have com-
pared the qualitative nature of the disease curve for our
proposed regression model (obtained from the avail-
able data) with the simulated diagram (see, Fig. 15)
obtained from the basic model under environmental
fluctuation. For this simulation we consider the default
values of the system parameters as a = 2 per year,
n=4peryear,r =3 peryear, N =3, M =5b=2
and ¢ = 0.95. We observe that when there is no envi-
ronmental stochasticity, then the Macdonald’s stability
index (m) is 2.25 and under the effect of environmen-
tal fluctuation the value of m is 1.633, which is much
lower than the deterministic situation. This reveals the
fact that malaria is epidemic in this area while consid-
ering the realistic scenario, whereas the deterministic
estimation shows that malaria is endemic. Thus, there
is a need of proper programme implementation for the
eradication of malarial outbreaks.
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Fig. 15. Numerical simulation of the basic model under environmental fluctuation (see text for the default values of the parameters).

6. Conclusion

Epidemiological research on micro-parasitic infec-
tion is largely based on two distinct measures of par-
asite abundance within communities of people. The
first of these is the incidence of infection or disease.
The second measure is the prevalence of infection or
disease. The measurement of incidence or prevalence
is often based on the stratification of the population
under study with respect to a variety of factors such as
age, sex, social factors, environmental variability etc.
Malaria, particularly falciparum malaria, is a major
cause of morbidity and mortality throughout many re-
gions of the world. The quantitative understanding of
the dynamics of malaria transmission under the effect
of environmental and social variations is therefore an
utmost need in this context. In this paper we have
tried to investigate the realistic features behind the
disease outbreaks based on available data. We have
(1) proposed a suitable regression model considering
the important environmental and social factors. The
results establish the significant dependence of total
number of malaria cases on only minimum humidity
and rainfall. We have obtained this result based on the
data available from KMC, Kolkata, India. It may not
be true in the world scenario, thus rigorous studies
in this particular aspect are urgently needed. But we
believe the techniques adopted here may be applica-
ble in global perspective. We have also tried (2) to

compare the qualitative nature of our proposed model
with the basic mathematical model under environ-
mental stochasticity. Further, we have proposed (3) a
suitable measure for the estimation of Macdonald’s
stability index of the basic model under environ-
mental fluctuations and compared this value with the
value obtained by Aron and May (1982). It has been
observed that Macdonald’s stability index for Kolkata
Municipal Corporation (West Bengal, India) is much
lower due to environmental and social factors, which
depicts the epidemic outbreak (Macdonald’s unsta-
ble malaria). This prediction helps us to control the
disease outbreak through proper implementation of a
vaccination or the immunization programme. There-
fore, quantitative understanding for the estimation of
parameters is very important in this context to design
proper malarial control programmes. Our study on es-
timation of parameters for the population abundance
under environmental fluctuation gives a much more
realistic interpretation in this direction.

Before ending this article, we like to compare the
advantages and disadvantages of our malaria model
with other models of disease spreading. The develop-
ment of mathematical models has been very useful in
the study of dynamics of infectious diseases. In recent
years, there has been significant change in modelling
approaches and methods on terrestrial ecology, sys-
tem ecology and epidemiology (see, Jorgensen, 1990,
1997,2000). It is well observed that analysis of mathe-
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matical models and its comparison with incidence data
have uncovered fundamental mechanisms that control
the disease dynamics. So far as literature is concerned,
several authors have tried to describe the dynamics of
malaria and its control through different approaches,
for example: basic differential equation models by
Ross (1911, 1915); interpretation of parameters by
adding a biological realisms to the early differential
equation models by Macdonald (1957); observing the
epidemiological trends to design the malarial control
programme by Bruce-Chwatt and Glanville (1973), in-
troducing seasonal variations in the mosquito popula-
tion to the basic models by Aron and May (1982) and
taking into account the spatial heterogencity of en-
vironment by Torres-Sorando and Rodriguez (1997).
However, there is a scarcity of models which take into
account the environmental and social factors based on
the available data.

In our model approach, we develop a regression
model which describes the pattern of the malaria curve
under important environmental and social influences.
Next, we compare this model with the basic malaria
model by introducing environmental stochasticity.
This approach help us to estimate the Macdonald’s

stability index for the system under environmental
fluctuation and reveal the realistic feature of the dis-
case outbreaks as well as suitable control strategy.
The above descriptions clearly indicate that the model
and the results obtained in this paper are different
from other models of disease spreading. We hope
these results will be useful for different countries as
well. However, we like to mention that the statistical
model is based on linear regression, but non-linear
regression model may give some other interesting
results. We also like to mention that before apply-
ing our results for environmental fluctuating systems,
comparison of the mathematical findings with real
life social data is urgently needed.
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