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triangle [14]. The execution time of our algorithm is a fraction

of a second for reasonably large values of k, but the existing

methods need about two weeks’ time [15,14]. Thus, our algo-

rithm is very useful for practical applications.

Apart from the base-stations placement for mobile commu-

nication, the proposed problem will find relevant applications

in the energy aware strategic deployment of the sensor nodes in

wireless sensor networks (WSN) [2,5]. In particular, [5] deals

with the case where the sensor nodes are already placed. It

proposes a distributed algorithm for activating the sensors such

that the entire area is always covered, and the total lifetime of

the network is maximized. Voronoi diagram is used in another

variation of the coverage problem in sensor networks where a

set of sensors are distributed in R
2, and a pair of points s and

t are given; the objective is to find a path from s to t such that

for any point p on the path, the distance of p from its closest

sensor is maximized [10].

The organization of the paper is as follows. In Section 2,

we will mention some related works on this topic. The al-

gorithm and the experimental results are given in Sections 3

and 4, respectively. Finally, the concluding remarks appear in

Section 5.

2. Related works

The problem considered in this paper is slightly different

from the well-known k-center problem in R
2, where we need

to place a set S of k supply points on the plane such that the

maximum Euclidean distance of a demand point from its nearest

supply point is minimized. For a given set D of n demand

points, the k-center problem can be solved using parametric

search technique when k is small. For a fixed value of k, the

best known algorithm for this problem runs in O(nO(
√

k)) time

[8]. But, if k is a part of the input, then the problem becomes

NP-complete [6]. For a detailed discussion on this problem, see

[1]. Another variation of this problem available in the literature

is that the center of the (equal-radius) disks are fixed and the

objective is to cover the points in S with minimum number

of disks. Stochastic formulations of different variations of this

problem appeared in [4].

In our case, the set of demand points D is the entire convex

region under consideration, and the problem is referred to as

a covering problem in the literature. Two variations of this

problem are studied:

(i) finding the minimum number of unit-radius circles that are

necessary to cover a given square, and

(ii) finding the arrangement (positioning) of the members in

S and determining a real number q such that the circles

of radius q centered at positions in S can cover the unit

square, but for any real number q′ < q, there exists no

arrangement of S which can cover the entire unit square.

In [18], a lower bound was given for problem (i); it says that if

m is the minimum number of unit circles required for covering a

square with each side of length r, then 3
√

3
2

m > r2 +cr, where

c > 1
2

. Substantial studies have been done on problem (ii).

People tried to cover a unit square region with a given number

(say k) of equal radius circles, and the objective is to minimize

the radius. In [17], graph theoretic approach was adopted to

obtain a locally optimal circle covering of a square with up to 10

equal circles. No proof for optimality was given, but later it was

observed that their solution for k = 5 and 7 are indeed optimal.

The same idea was then extended in [7] for covering a rectangle

with up to 5 equal circles. Several results exist on covering

rectangles and squares with k equal circles for small values of k

(= 6, . . . 10, etc.) [13,12]. For a reasonably large value of k, the

problem becomes more complex. In [15], simulated annealing

approach was used to obtain near-optimal solutions for the unit

square covering problem for k630. As it is very difficult to

get a good stopping criteria for a stochastic global optimization

problem, they used heuristic approach to stop their program.

It is mentioned that, for k = 27 their algorithm runs for about

2 weeks to achieve the stipulated stopping criteria. For k >

28, the time requirement is very high. So, they have changed

their stopping criteria, and presented the results. In [14], the

same approach is adopted for covering a equilateral triangle of

unit edge length with circles of equal radius, and results are

presented for different values of k less than or equal to 36.

3. Algorithm

Consider a set of points P = {p1, p2, . . . , pk} inside a con-

vex polygon P where the ith base-station is located at point

pi ∈ P. We will use Voronoi diagram [3] of the point set P,

denoted by VOR(P ), to formulate the update mechanism of the

positions of the members in P to achieve the optimal place-

ment. VOR(P ) is a data structure that stores the partition of the

plane into n disjoint convex polygonal region (closed/open),

such that, (i) each region contains a member of P, (ii) the re-

gion containing point pi ∈ P is denoted by vor(pi), and (iii)

for any arbitrary point q ∈ vor(pi), d(pi, q)6d(pj , q), for all

pj ∈ P . Here d(p, q) denotes the Euclidean distance of the

pair of points p, q. Since we need to establish communication

inside P, if a part of the region vor(pi) goes outside P for

some i, then the region vor(pi)
⋂

P is used as vor(pi). Thus,

in our case, vor(pi) is a closed convex polygon for each pi ∈
P (see Fig. 1 for a demonstration).

Note that, all the points inside vor(pi) are closer to pi than

any other point pj ∈ P . Thus a mobile user inside vor(pi) will

directly communicate with pi . As all the base-stations are of

equal range, our objective is to arrange the points in P inside

the region such that the maximum range required (q) among

the points in P is as minimum as possible. Our algorithm is

an iterative one. At each step, it perturbs the point set P as

described below, and finally, it attains a local minimum.

In each iteration, we compute VOR(P ) [3], and then com-

pute the circumscribing circle Ci of each vor(pi) using the al-

gorithm proposed in [9], for each i = 1, 2, . . . , k. Let ri denote

the radius of Ci . It is easy to understand that in order to cover

a convex polygon by a base-station with minimum range, we

need to place the base-station at the center of the circumscrib-

ing polygon of that convex region, and the range assigned to

that base-station is equal to the radius of that circle. Thus, for
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Fig. 1. Illustration of our problem.

each i = 1, 2, . . . , k, we move pi to the center of Ci and assign

range ri to it. Next, we compute q = max{ri, i = 1, 2, . . . , k}.

Lemma 1. At each iteration, (i) the newly assigned position

of each point pi lies inside the corresponding vor(pi), and (ii)

the value of q decreases.

Proof. (i) The smallest enclosing circle of a convex polygon

either passes through the farthest pair of vertices of the polygon,

and the line-segment joining that pair of vertices define the

diameter of the smallest enclosing circle, or it passes through

three or more vertices of polygon. In the first case, lemma

obviously follows, and in the second case, if the center lies

outside the convex polygon, there exists a vertex-free arc of the

smallest enclosing circle of the convex polygon whose length

is greater than half of the perimeter of the said circle. This is

impossible (see Chapter 16 of [16]).

(ii) Let {p1, p2, . . . , pk} be the position of the base-stations

prior to an iteration, and qold be the corresponding value of

q. During the iteration, we compute the Voronoi diagram, and

then compute the smallest enclosing circle of each vor(pi). Let

{p′
1, p

′
2, . . . , p

′
k} be the center of these circles, and C∗ be the

largest one among these circles. In other words, qold is equal

to the radius of C∗. Note that at this iteration, the positions of

the base-stations are revised to {p′
1, p

′
2, . . . , p

′
k}. The Voronoi

polygon around each p′
i in the next iteration is obtained as

follows:

Draw copies of C∗ with centers at {p′
1, p

′
2, . . . , p

′
k}. Let

C∗
i be the copy of C∗ with center at p′

i . Consider the line-

segments defining the chord-of-intersection of each C∗
j with

C∗
i (j 6= i) and the edges of the convex polygon P. Next,

compute the envelope of these line-segments around p′
i .

pi′

Fig. 2. Illustration of vor(p′
i
).

This defines the Voronoi polygon vor(p′
i) around p′

i for the

next iteration. In Fig. 2, the region bounded by the solid

lines demonstrates the Voronoi region of p′
i ; this is the

envelope around p′
i of the dotted line segments. It needs to

be mentioned that the envelope of a set of line-segments

around a point a, is a closed polygon containing a such

that every point on the boundary of this polygon lies on

one or two line-segments of the aforesaid set, and for any

point b on the boundary of this polygon, the line-segment

joining a and b will not intersect any of those line-segments

excepting the one on which b lies.

Note that, for each point p′
i , vor(p′

i) is properly inscribed by the

corresponding circle C∗
i with center at p′

i . In the next iteration,

we compute the smallest enclosing circle of each vor(p′
i) which

is completely enclosed in C∗
i . This proves that, if qnew is the

revised value of q in the next iteration, then qnew 6qold. �

Remark 1. The iteration terminates when the value of q

reaches to a local minima, or in other words, qnew = qold is

attained.

We also apply a refinement step to improve the solution. Note

that, if a point (base-station) pi is on the boundary of P, then

at least 50% of the area of Ci lies outside P, and hence this

region need not be covered. This indicates, the scope of further

reduction in the area of Ci . Thus, if a point goes very close to

the boundary of P, we move it to the centroid of P, which is

computed as follows:

Let P be a n vertex convex polygon, and (xj , yj ) denote

the jth vertex of P, j = 1, 2, . . . , m. The centroid of P is

the point having the coordinates
(

1
n

∑n
j=1 xj ,

1
n

∑n
j=1 yj

)

.
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Table 1

Covering a unit square

k qopt using q∗
opt using

method in [10] our method

4 0.35355339059327376220 0.353553

5 0.32616054400398728086 0.326165

6 0.29872706223691915876 0.298730

7 0.27429188517743176508 0.274295

8 0.26030010588652494367 0.260317

9 0.23063692781954790734 0.230672

10 0.21823351279308384300 0.218239

11 0.21251601649318384587 0.212533

12 0.20227588920818008037 0.202395

13 0.19431237143171902878 0.194339

14 0.18551054726041864107 0.185527

15 0.17966175993333219846 0.180208

16 0.16942705159811602395 0.169611

17 0.16568092957077472538 0.165754

18 0.16063966359715453523 0.160682

19 0.15784198174667375675 0.158345

20 0.15224681123338031005 0.152524

21 0.14895378955109932188 0.149080

22 0.14369317712168800049 0.143711

23 0.14124482238793135951 0.141278

24 0.13830288328269767697 0.138715

25 0.13354870656077049693 0.134397

26 0.13176487561482596463 0.132050

27 0.12863353450309966807 0.128660

28 0.12731755346561372147 0.127426

29 0.12555350796411353317 0.126526

30 0.12203686881944873607 0.123214

It can be shown that, the centroid of a convex region is

always inside that region.

It is observed that, such a major perturbation moves the solution

from a local minima, and it leads to a scope of further reduction

in q. We again continue the iterations with the perturbed set

(mentioned above) as the initial placement until it again reaches

another local minima.

The following theorem analyzes the time complexity of each

iteration of our heuristic algorithm.

Theorem 1. The worst case time complexity of an iteration is

O(n + k log k).

Proof. The factors involved in this analysis are as follows:

• Computing VOR(P )—this can be done in O(k log k) time

[3].

• VOR(P ) splits the convex polygonal region P into k closed

cells. Each edge of VOR(P ) appears in at most two cells. As

the number of edges in the region P is n, identifying these

k cells need O(n + k) time.

• Computing the circular hull of a convex polygon needs time

linear in its number of edges [9]. Thus, computing Ci for all

i = 1, 2, . . . , k, needs O(n + k) time. �

It is observed that the number of iterations needed to reach

to a local optima from an initial configuration is reasonably

small. The overall time complexity depends on the number of

times we apply the refinement step.

Table 2

Covering a equilateral triangle

k qopt using q∗
opt using

method in [8] our method

4 0.2679491924311227065 0.267972

5 0.2500000000000000000 0.250006

6 0.1924500897298752548 0.192493

7 0.1852510855786008545 0.185345

8 0.1769926664029649641 0.177045

9 0.1666666666666666667 0.166701

10 0.1443375672974064411 0.144681

11 0.1410544578570137366 0.141252

12 0.1373236156889236662 0.137633

13 0.1326643857765088351 0.133379

14 0.1275163863998600644 0.127829

15 0.1154700538379251529 0.115811

16 0.1137125784440782042 0.114574

17 0.1113943099632405880 0.112141

18 0.1091089451179961906 0.109890

19 0.1061737927289732618 0.107288

20 0.1032272183417310354 0.104049

21 0.0962250448649376274 0.099165

22 0.0951772351261450917 0.095877

23 0.0937742911094478264 0.094625

24 0.0923541375945022204 0.093982

25 0.0906182448311340175 0.091688

26 0.0887829248953373781 0.090231

27 0.0868913397937031505 0.088238

28 0.0824786098842322521 0.086795

29 0.0818048133956910115 0.084545

30 0.0808828500258641436 0.082246

31 0.0798972448089536737 0.081665

32 0.0788506226168764215 0.080457

33 0.0776371221483728244 0.079604

34 0.0763874538343494465 0.078827

35 0.0751604548962267707 0.076918

36 0.0721687836487032206 0.075950

4. Experimental results

An exhaustive experiment is performed with several convex

shapes of the given region and with different values of k. It is

easy to show that, for a given initial placement of P, at each

iteration the value of q is decreased. As the process reaches

a local minima, the quality of the result completely depends

on the initial choice of the positions of P. We have studied

the problem with random distribution of P. It shows that in

an ideal solution, the distribution of points is very regular. So,

while working with unit square region, we choose the initial

placement of the points in P as follows: compute m = b
√

kc.

If m2 = k, we split the region into m × m cells, and in each

cell place a point of P randomly. If (k − m2) < m, then split

the region into m rows of equal width. Then, arbitrarily choose

(k−m2) rows and split each of these rows into (m+1) cells; the

other rows are split into m cells. Now place one point in each

cell. If (k − m2) > m, then split the square into (m + 1) rows,

and each row is split into m or (m + 1) rows to accommodate

all the points in P.

For each k, we have chosen 1000 initial instances. For each of

these instances, we have run our algorithm, and have computed
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Table 3

Performance evaluation of the algorithm

k q∗
opt qaverage SD Time (s)

4 0.353553 0.395284 0.040423 0.052

5 0.326165 0.326247 0.000201 0.073

6 0.298730 0.309837 0.008433 0.090

7 0.274295 0.27603 0.001668 0.107

8 0.260317 0.26131 0.003079 0.124

9 0.230672 0.231119 0.000540 0.143

10 0.218239 0.218244 0.000004 0.164

11 0.212533 0.213855 0.000894 0.184

12 0.202395 0.205567 0.000908 0.206

13 0.194339 0.194960 0.000645 0.228

14 0.185527 0.189217 0.001722 0.258

15 0.180208 0.182782 0.001883 0.279

16 0.169611 0.174669 0.003178 0.303

17 0.165754 0.168231 0.002336 0.327

18 0.160682 0.164347 0.001092 0.351

19 0.158345 0.160797 0.000885 0.377

20 0.152524 0.156772 0.000877 0.405

21 0.149080 0.153131 0.001253 0.436

22 0.143711 0.148640 0.000582 0.465

23 0.141278 0.145498 0.001738 0.499

24 0.138715 0.142105 0.001507 0.531

25 0.134397 0.139549 0.001572 0.557

26 0.132050 0.136489 0.001618 0.587

27 0.128660 0.133725 0.001298 0.623

28 0.127426 0.131589 0.001357 0.655

29 0.126526 0.129241 0.000964 0.688

30 0.123214 0.127069 0.000881 0.719

qmin which is the minimum value of q observed during the

experiment. Finally, we report q∗
opt = minimum value of qmin

over all the 1000 instances. Thus, q∗
opt indicates the minimum

value of q that is achieved by our experiment. In Table 1, we

have compared q∗
opt with the value of qopt obtained by the

algorithm in [15] for different values of k.

We have also compared our method with that of [14] when

the region is an equilateral triangle. The experimental results

for different values of k appear in Table 2. Fig. 1 demonstrates

the output of our algorithm for covering a given convex polygon

with 13 circles.

In order to present the performance of our heuristic, we report

the minimum, average and standard deviation of the value of

qmin over all the 1000 instances for different values of k with

unit square region (see Table 3). Thus, column 3 of Table 1 is

equal to the column 2 of Table 3. We have performed the entire

experiment in SUN BLADE 1000 machine with 750 MHz CPU

speed, and have used LEDA [11] for computing the Voronoi

diagram. The average time for processing each instance is also

given. Similar results are observed with equilateral triangles.

5. Conclusion

We have presented a very simple algorithm for placing a

given number of base-stations in a convex region, and assigning

range to them in the context of mobile communication such

that every point in the region is covered by at least one base-

station, and the maximum range assigned is minimized. This

problem is equivalent to covering a convex region by equal ra-

dius circles such that the radius of the circles is minimized.

Existing methods for this problem can work for only squares,

rectangles and equilateral triangles [15,12,14]. But, we did not

notice any algorithm for this problem which can work for cov-

ering any arbitrary shaped region by a given number of circles

of same radius.

We could compare the results produced by our algorithm with

that of the existing ones when the region under consideration is

a square or an equilateral triangle. Experimental results indicate

that the solutions produced by our algorithm are very close to

those of the existing results on this problem where the region is a

square [15] and an equilateral triangle [14]. It is also mentioned

in [14,15] that for a reasonably large value of k (>27), their

algorithms need to run couple of weeks to get the solution,

whereas our method needs a fraction of a second. This is very

important in the context of the particular application mentioned

here.
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