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Self-Organization for Object Extraction Using a
Multilayer Neural Network and Fuzziness Measures

Ashish Ghosh, Nikhil B, Pal, Member, IEEE, and Sankar K. Pal, Feifow, IEEE

Absfract—The feedforward muliilayer perecptron (MLP) with
back-propagation of ervor is described. Since nse of this network
requirnes a sct of labeled inpot-ontput, os such it cannot he nsed
for segmentation of images when only one image s available,
{However, il inages (0 be processed are of smilar nature, one can
uvse u set of known images forr learning and then nse the network
for processing of other imuages.) A self-organiziog multdlayer
nevral network architecture swvitahle For image processing is
propesed. The proposed architecture s also a Feedforward one
with back-propapation of croors; but like MLFP it does not
require any sopervised learning. Each ncuron s cnooected fo
the correspunding neucon in the previoos layer and the set of
neighhors of that neuron. The output status of newrons in the
outpul layer Is described o a fuzzy set. A furviness measure
of this [uzzy set is used os 4 measure of error in the system
(instability of the oweiwork). Learning rates for various measores
of fuzriness have been thenrclically and experimentally studied.
An application of the proposed network in ahject extraciion from
nnisy seenes iv alse demonsteated.

Index Terms— Iinage processing, object extraction, forxy sets,
neural networks, muliiluyer perceptoon.

I INTRODUCTION

IMAGE scamentation and objecl cxtraction play a key role
In image analysis and computer vision. Moso of the existing
wechiigques, both classical {1], [2] and fuzzy set theoretic
[21-15] are sequential in natwre and the scepmentesd oulpoe
cannot be obtained in real time. On the other hand, there are
some reluxatiom |2] ype alaorithins for which parallel imple-
mentations are possible, but robusiness of these algorithms
uswally depends on some prior knowledge about the image.
which may be difficulr to obtain,

With a view o ublaining the cutput 10 real Lme by pacallel
processing, recent researchers have heen frying to develop
neweal nepwork (NN [ 1] based information processing
systems. Here the basic aim is to emulate the human neural
information processing system, therchy making the sysiem
artificially intelligent, The approach is highly robust and noise
insensitive and hence can he applied even when information
is ill defined andfor detactive/partial.

Meural networks are designsted by e nevwork opol-
ogy, comncction sirength Between paics of neurons, node
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characteristivs, and (he staws gpdating rules. The neurens
operute in parallel, thereby providing outpat o real time, Since
there are interactions among all the neourons, the colleciive
computational property inherently reduces the computationat
task. '

A wide variely of newal network {12]-[15] models has
been proposed in the lieerature. Thoungh they share some
commmon features, they differ in struciure amd details. Among
the ditferent models proposed, the following are very popular.

« Hopfield's model of associative memory;

+ Kohonen's model of self-orgamization;

» Carpenter and Grossherg's model of adaprve-resonance:

« Muliilaver perceplron {MLP) of Bumelthard e af,

In this article we will e concemed with the MLF type of
NN, The MLP cequires several input patterns [rom dillerent
classes [or learning | 16], [17] and acls as a muliidimensiconal
patteen discriminator {supervised classifier). TF the types of
images to be processed are of similar nature (e, have some
common characleristicsd then one can train the network with
aosel of images and use the oained not on fulure imgees.
Howewver, if the dnmages do not share some common (ealures
and 2 set of images with known wwrgels (may be synthetic
images) is not available, this network, as such, may not be
usedd for image provessing.

In the present work a self-orgewizing multilayer newral
ek architecture i the line of MLP but suable for image
processing 15 proposcd. Unlike MLP, there is no conccpt of
supervised learning in the present casc, The leaming technigue
emploved 15 self-supervized, therehy atining sell-organizing
capability. Tn calenlate the emor of the system, conceps
of furzy sets are used. Different mathematical models for
calculating {he crror of the syslem have alse been described in
this respeel. A comparative sludy on the raee of leamning for
these models s also done. Given a single input, the system
antomatically finds out the structare in the input data by self
supervisiondself-organization, The final pulpul comes in two
types only, vne with vutput status O and the other with outpul
stalus |,

e application of the proposed network s demonstrated
here. The nctwork has been employed o exuact objects trom
noisy covironments, The simwlation study was done using
a synthetiv image corrupted by N[0, #2) additive neise and
a real image. The results obtained are found o be guite
satisfactory even when the SNR is as low as 0.73; where the
SNR I8 defined as
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The results obtained show that the extracted objects preserve
their shapes and boundaries to a great extent, even when the
noise level is very high.

II. Fuzzy SETS AND THEIR MEASURES OF INFORMATION

In this section a brief overview on the measures of fuzziness
of a fuzzy set is given.

A. Definition of a Fuzzy Set

A fuzzy set [3]-[5] A in a space of points X = {z} is
a class of events with a continuum of grades of membership
and is characterized by a membership function g4 (), which
associates with each point in X a real number in the interval
[0, 1] with the value of pa(z) at = representing the grade
of membership of z in A. Formally, a fuzzy set A with its

finite number of supports x1,x2,Z3, ", %, is defined as a
collection of ordered pairs
A= {(palz:),z;),i=1,2,...,n}; )
where the support of A is the subset of X defined as
S(A) = {z|z € X & pa(z) > 0}. (2)

This characteristic function, p4(x), in fact, can be viewed as a
weighting coefficient which reflects the ambiguity in a set, and
as it approaches unity, the grade of membership of an element
in A becomes higher. For example, p4(z) = 1 indicates a
strict containment of = in A. If, on the other hand, = does
not belong to A, pa(x) = 0. Any intermediate value would
represent the degree to which = could be a member of A.

B. Measures of Fuzziness of a Fuzzy Set

Let us now discuss some measures which give the degree
of fuzziness in a fuzzy set A [5], [18]. The degree of fuzziness
expresses the average amount of ambiguity in making a
decision whether an element belongs to the set or not. Such a
measure (I, say) should have the following properties:

1. I(A) = minimum iff pa(z;) =00rlVi.

2. I(A) = mazimum iff pa(z;) =0.5Vi.

3. I(A) > I(A*), where A* is a sharpened version of A,

defined as

pa- () > palzs) if pa(z:) 205
< palz:) if pa(z;) <0.5.
4. I(A) = I(A°), where A° is the complement set of A.

Several authors [18]-[22] have made attempts to define such
measures. A few measures relevant to this work are described
here.

1) Index of Fuzziness: The index of fuzziness of a fuzzy
set A having n supporting points is defined as

V(A) = d(4, 4), ®

where d(A, A) denotes the distance between fuzzy set A and
its nearest ordinary set A. An ordinary set A nearest to the
fuzzy set A is defined as

[0 if, pa(z) <05
na(z) = {1 ua(z) > 0.5, )
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The value of k depends on the type of distance used. For
example, k = 1 is used for generalized Hamming distance,
where as k = 0.5 for Euclidean distance. The corresponding
indices of fuzziness are called the linear index of fuzziness
v(A) and the quadratic index of fuzziness v,(A). Thus we
have

I

vi(A) % Z lpa(z:) — palz:)l
=1

= %z [min{pa(z:), (1 - pa(z:))}]. )

Similarly, for Euclidean distance, we have

ve(A) = % g{m(%)—ué(%)}? . (6)

2) Entropy: Entropy of a fuzzy set as defined by De Luca
and Termini [19] is given by

H = i DSl D

with

Sn(pa(zi)) = — pa(z:) In(palz:))
—{1 = pa(@)}n{l - pa(z:)}. @)

Another definition of entropy is given by Pal and Pal [22] is
1 n
=— = Sn ) — 1}, 9

with

Su(pa(@:)) = pale)e 4 (1 — pa(ws))era =,
(10)
All the above measures lie in [0, 1] and satisfy properties 1
through 4.

It may be noted that a definition of higher order entropy
[HT(A), r > 1] for a fuzzy set A (using both logarithmic
and exponential gain functions) has recently been reported
[23] which takes into account the properties of collection of
supports in the set. Equations (7) through (10) correspond to
r = 1. Here we have considered only r = 1, and it will be seen
in Section IV that the network structure and the membership
function incorporate the properties associated with collection
of supports (local information of pixels).

In the following sections we shall use these measures to
compute the error or measure of instability of a multilayer self-
organizing neural network. Since understanding the working
mechanism of the proposed network requires a knowledge of a
multilayer perceptron, a brief description of the same follows.

III. MULTILAYER PERCEPTRON

A concept central to the practice of pattern recognition
[17], [16] is that of discrimination. The idea is that a pattern
recognition system learns adaptively from experience and
does various discrimination, each appropriate for its purpose.
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Fig. 1. Schematic representation of multilayer perceptron.

For example, if only belongingness to a class is of interest,
the system learns from observations on patterns that are
identified by their class labels and infers a discrimination for
classification.

One of the most exciting developments during the early
days of pattern recognition was the perceptron [24]. This may
be defined as a network of elementary processors arranged
in a manner reminiscent of biological neural nets which will
be able to learn how to recognize and classify patterns in
an autonomous manner. In such a system the processors are
simple linear elements arranged in one layer. This classical
(single-layer) perceptron, given two classes of patterns, at-
tempts to find a linear decision boundary separating the two
classes. If the two sets of patterns are linearly separable,
the perceptron algorithm is guaranteed to find a separating
hyperplane in a finite number of steps. However, if the pattern
space is not linearly separable, the perceptron fails and it
is not known when to terminate the algorithm in order to
get a reasonably good decision boundary. Keller and Hunt
[25] attempted to provide a good stopping criterion (may not
estimate a good decision boundary) for linearly nonseparable
classes by incorporating the concept of fuzzy set theory into
the learning algorithm of the perceptron. Thus, a single-layer
perceptron is inadequate for situations with multiple classes
and nonlinear separating boundaries. Hence the invention of
the multilayer network with nonlinear learning algorithms
known as the multilayer perceptron (MLP) [8].

A schematic representation of a multilayer perceptron (MLP)
is given in Fig. 1. In general, such a net is made up of sets of
nodes arranged in layers. Nodes of two different consecutive
layers are connected by links or weights, but there is no
connection among the elements of the same layer. The layer
where the inputs are presented is known as the input layer. On
the other hand the output producing layer is called the output
layer. The layers between the input and the output layers are
known as hidden layers. The output of nodes in one layer is
transmitted to nodes in another layer via links that amplify
or attenuate or inhibit such outputs through weighting factors.
Except for the input layer nodes, the total input to each node
is the sum of weighted outputs of the nodes in the previous
layer. Each node is activated in accordance with the input to
the node and the activation function of the node. The total
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Fig. 2. Sigmoidal activation function.

input (I;) to the sth unit of any layer is
I; = Z w;;05,
J

with o; the output of the jth neuron in the previous layer and
w;; the connection weight between the ith node of one layer
and the jth node of the previous layer. The output of a node
¢ is obtained as

an

0; = f(I;),
where f is the activation function [8]. Mostly the activation
function is sigmoidal, with the form (Fig. 2)

1
@) = e

(12)

13)

The function is symmetrical around 6, and 6, controls the
steepness of the function. # is known as the threshold/bias
value.

Initially very small random values are assigned to the
links/weights. In the learning phase (training) of such a
network, we present the pattern X = {z;}, where z; is the ith
component of the vector X, as input and ask the net to adjust
its set of weights in the connecting links and also the thresholds
in the nodes such that the desired output {t;} is obtained at
the output nodes. After this, we present another pair of X and
{t;}, and ask the net to learn that association also. In fact,
we desire the net to find a simple set of weights and biases
that will be able to discriminate among all the input/output
pairs presented to it. This process can pose a very strenuous
learning task and is not always readily accomplished. Here the
desired output {t;} basically acts as a teacher which tries to
minimize the error.

In general, the output {0;} will not be the same as the target
or desired value {¢;}. For a pattern p, the error is

FE = %Z(t,‘ — 0,‘)2,

i

(14)

where the factor of one half is inserted for mathematical
convenience. The procedure for learning the correct set of
weights is to vary the weights in a manner such that the error
E is reduced as rapidly as possible. This can be achieved by
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moving in the direction of negative gradient of E. In other
words, the incremental change for a particular pattern p is

Aws o JOE __OE _ OE 9l
7 Bwﬁ - naw]‘,' - nan awﬁ
=nd;0; [from eq. (11)] 15)
with
__9E _ 9Edo;
1T 78I, T oo, 01,
oF
=-2p(1)  [fomeq. (12].  (16)
an

As F can be directly calculated in the output layer, for the
links connected to the output layer the change in weight is
given by

OF
Awji =1 (— 6——) f'(I;)o:.

05

amn

If the weights do not affect the output nodes directly (for
links between the input and the hidden layer, and also between
two consecutive hidden layers), the factor 9E /Jo; cannot be
calculated so easily. In this case we use [8] the chain rule to

write

oF oF oIy, OF 0

5o, = 2 3 Bo, = 2 91, B, 2 k%

oF
k k
Hence
OE\ ,,
o(~5 )70
ij,- = (19)

n Z Srwis | f/(I;)0i
J

for the output layer and other layers, respectively. In particular,
if
1

0= — 20
7 1+€_(Zi 147:,1-01—9]') ( )
then
’ do;
[ = 3L, ~ 0;(1 - 0;) 21
and thus we get
oF
W(‘g;)“j(l —0;)0i
Awj; = ! (22)

n(z 5k'wkj) 0;(1 — 05)0;
' k

for the output layer and other layers, respectively.

It may be mentioned here that a large value of 7 corresponds
to rapid learning but might result in oscillations. A momentum
term of aAwj;(t) can be added to increase the learning rate

and thus expression (15) can be modified as
iji(t + 1) = 7]6]'01‘ + aAw]-i(t), 23)

where the term (¢ + 1) is used to indicate the (¢ + 1)th time
instant, and « is a proportionality constant. The second term
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is used to specify that the change in wj; at the (¢ + 1)th
instant should be somewhat similar to the change undertaken
at instant ¢.

A few approaches to object extraction using neural networks
can be found in [26]-[29]. In addition to these, several authors
[30]-[32] have used the multilayer perceptron also for image
segmentation/texture discrimination. Blanz and Gish [30] used
a three-layer perceptron trained with a set of similar images
for pixel classification. On the other hand, Babaguchi ez al.
[31] used a similar concept for histogram thresholding. It is to
be noted that all these perceptron-based techniques require a
set of images for learning, which may not always be available
in real life situations.

IV. SELF-ORGANIZING MULTILAYER NEURAL NETWORK

It has already been mentioned that an MLP, as it is, cannot
be used for image segmentation/object extraction when only
one input image is available. In such cases there will not
be enough scope of learning (supervised). For this type of
problem it will be appropriate if we can apply some sort of
self-supervised [17], [16] learning technique. Besides this, for
an M x N image if we connect each neuron with every other
one, the connectivity will be drastically high. In the following
subsections we will be describing a new self-organizing [10],
[11], [33]-{36] multilayer neural network model whose basic
principles will be similar to the previously described MLP, but
will differ structurally and functionally to a great extent.

A. Description and Operation of the Network

Before describing the architecture of the network, we need
to define a neighborhood system. For an M x N lattice (L),
the dth order neighbor, leij, of any element (%, j) is defined as

Ng = {(i,5) € L}

such that

* (i,7) ¢ N&

o if (k,1) € N, then (i,5) € Ny,

Different ordered neighborhood systems can be defined consid-
ering different sets of neighboring pixels of (i, 7). N = {N};}
can be obtained by taking the four nearest-neighbor pixels.
Similarly, N? = { N2} consists of the eight pixels neighboring
(i,7) and so on (as shown in Fig. 3). Due to the finite size
of the used lattice (the size of the image being fixed), the
neighborhoods of the pixels on the boundaries are necessarily
smaller unless a periodic lattice structure is assumed.

1) Architecture: In Fig. 4 we depict the three-layered ver-
sion of the proposed network architecture. In each and every
layer there are M x N neurons (for an M x N image).
Each neuron corresponds to a single pixel. Besides the input
and output layers, there can be a number of hidden layers
(more than zero). Neurons in the same layer do not have
any connections among themselves. Each neuron in a layer
is connected to the corresponding neuron in the previous layer
and to its neighbors (over N 4); thus each neuron in layer
i(i > 1) will have |N¢| + 1 (where |[N¢| is the number of
pixels in N?) links to the (i — 1)th layer. For N, a neuron
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Fig. 4. Schematic representation of Self-organizing multilayer neural
network.

has five links, whereas for N2 nine links will be associated
with every neuron. However, for boundary nodes (pixels), the
number of links may be less than |[N¢| + 1. Every neuron in
the output layer is also connected to the corresponding neuron
in the input layer. It may be noted that this architecture differs
from the standard MLP in two major points:

o the distribution of links and

 the feedback connection from the output layer to the input

layer.

2) Initialization: The input to a neuron in the input layer
is given as a real number in [0, 1] which is proportional to
the gray value of the corresponding pixel. Since we are trying
to eliminate noise and extract spatially compact regions, all
initial weights are set to 1. No external bias is imposed on
the weights. Random initialization (of weights) may act as a
pseudo noise and the compactness of the extracted regions
may be lost. As all the weights are set to unity, the total input
(initially) to any node lies in [0, n;] (where n; is the number
of links a neuron has); hence the most unbiased choice for
~ the threshold value # (for the input output transfer function,
eq. (13) would be n;/2 (the middle most value of the total
input range).
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3) Operation: The input value (I;) to any neuron in the
ith layer (except the input layer) is calculated using (11). The
transfer function f (eq. (13)) is then applied to get the output
status of the neurons in this layer. These outputs are then fed
as input to the next layer. Starting from the input layer, this
way the input pattern is passed on to the output layer and the
corresponding output states are calculated. The output value
of each and every neuron lies in [0, 1].

Here our intention is to extract spatially compact regions
through the process of self-organization using only one noise-
corrupted realization of a scene. The way the network is
organized, under ideal condition when the image is not noisy,
the output status of most of the neurons in the output layer
will be either 0 or 1. But due to the effect of noise the output
status of the neurons in the output layer usually will be in [0,
1]; thus the status value will represent the degree of brightness
(darkness) of the corresponding pixel in the image. Therefore,
the output status in the output layer may be viewed to represent
a fuzzy set “bright (dark) pixels.” The number of supports of
this fuzzy set is equal to the number of neurons in the output
layer. The measure of fuzziness of this set, on the global level,
may be considered the error or instability of the whole system
as this will reflect the deviation from the desired state of the
network (considering properties 1 through 4 of subsection II-
B). Thus when we do not have any a priori target output
value, we can take the fuzziness value as a measure of system
error and back-propagate it to adjust the weights (mathematical
expressions for this are given later) so that the system error
reduces with the passage of time and in the limiting case
becomes zero. The error measure, E, can also be taken as
a suitable function of a fuzziness measure, i.e.,

E = g(I), (24)

where I is a measure of fuzziness (eqs. (5)—(7), (9)) of the
fuzzy set.

After the weights have been adjusted properly, the output of
the neurons in the output layer is fed back to the corresponding
neurons in the input layer. The second pass is then continued
with this as input. The iteration (updating of weights) is
continued as in the previous case until the network stabilizes;
i.e., the error value (measure of fuzziness) becomes negligible.
When the network stabilizes, the output status of the neurons
in the output layer becomes either 0 or 1. Neurons with output
value O constitute one group and those having output value 1
constitute the other group. It may be mentioned here that the
scene can have any number of compact regions.

It is to be noted that the system actually does some sort of
self-supervised learning and thereby self-organizes and finds
out the structure in the input data. Thus for problems such as
clustering {17], [16] where there is no concept of a priori
teaching, such systems will be of the utmost importance.
In self-supervised learning the system learns to respond to
“interesting” patterns in the input. In general, such a scheme
should be able to form the basis for the development of feature
detectors and should discover statistically salient features of
the input population. Unlike the other learning methods, there
is no a priori set of categories into which the patterns are to
be classified. Here, the system must develop its own featural
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representation of the input stimuli which captures the most
salient features of the population of the input pattern. In this
context it can be mentioned that this type of learning resembles
the biological learning to a great extent.

B. Weight Correction for Different Error Measures

The mathematical derivation for weight updating rules us-
ing back-propagation with different fuzziness measures (egs.
(5)—(7) and (9)) are as follows. The derivations are given only
for correcting the weights of the links connected to the output
layer. For other layers similar expressions, as in the second
part of (19), are applicable.

1) Weight Correction for Linear Index of Fuzziness: Let us
consider

E=g(w)
=wu, (25)
where the linear index of fuzziness is
2 -
=— in(o;,1 —0,)}, 26
m== ;{mm(o], 0,)} (26)
n being the number of neurons in the output layer. Here
2
OE —— if,0<0; 0.5
—o— =4 o ! @7
o; 05<0; <L
n
Thus from (19) we obtain
2
m ——)f’(Ij)oi if, 0 S 0; S 0.5
iji = 2 n (28)
m -)f’(Ij)oi 05<0; <1
n
or
o —ﬂf’(Ij)Oi if, 0<0; <0.5
Awji = {nf'(l,-)o,- 0.5<0; <1, 29

where = 1 x 2/n.
2) Weight Correction for Quadratic Index of Fuzziness: Let
us choose the error function, F, as

E = g(vq)
=g, (30)
where the quadratic index of fuzziness is
Vg = 2 Z{min(o,-,l -0j)}?]. 31
v \ 5 !
Now
4 . R
V2= - Z{mln(oj, I—-0;)}? 32)
B
and
4 .
SE —{-20;} if, 0<0; <05
- = (33)
6()]'

;{2(1 - OJ‘)} 0.5 <o0; <1.0.
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Thus
4
no—(—20;) f'(I;)0; if, 0 <0; <0.5
AU']',' = ! ’ ! (34)
7’[2;’1-{2(1 - Oj)}f'(Ij)Oi 0.5 S 0; S 1.0.
In other words,
- 77(-0]‘)]”(1]')01' lf, 0 S 0]' S 0.5
Awgi = {n{(l oIy 05<o0; <10 Y
where 7 = 12 X (4/n) X 2.
If we define the target output {¢;} as follows:
_ [0 if,0<0; <05
b= { 1 05<o0; <10, (36)

then this fuzziness measure becomes equivalent to the sum of
the squared errors.

It may be noted here that F/do; is not defined when
0j = 0.5 for both v; and v,. Thus, when implementing the
algorithm, if o; takes a value of 0.5 for some node, then
movement can be made in any one of the directions by a
small amount.

3) Weight Correction for Logarithmic Entropy: Now we
consider

E =yg(H)
- H,

(37
(3%)

where H is the entropy of a fuzzy set (eq. (7)) defined as

R S
H(A): —mn—(2—)j=1{0jln0j+1—Ojlnl—Oj}. 39)
Thus
oOF 1 04
_B_Oj " nln(2) In 1-o0; (40)

Here we notice that

as  o;—0orl, abs {ln

05
— 0
1—0]'

as o; — 0.5, abs {ln %i } — 0:
1-o0;

whereas

For a fuzzy set, we know that the fuzziness value is minimum
when the membership values of all the elements are 0 or 1
and maximum when they all are 0.5. So for the network the
error is minimum (i.e., the network has stabilized) when all
the output values are either 0 or 1 and is maximum when
they all are 0.5 (the network is most unstable). From the
previous discussion (egs. (16), (19), and (40)) we notice that
abs(0E /o) is minimum (= 0) when all the output values
are 0.5. Thus, if we use the gradient descent search, the rate
of learning is minimum at the most unstable state. Hence,
to expedite the learning, it is desirable to make the weight
correction large when the network is most unstable (i.e., when
all the output values are 0.5). In other words, for a neuron,
the weight correction for its links should be maximum when
its output status is very close to 0.5 and is minimum when its




output status is close to 0 or 1. This can be achieved by taking
(refer to eq. (19), first part)

oF
Awﬁu#%’—?, g>1 (41
do;
1.e.,
oF
Awj; = —ngﬂf’(ln)(f g>1, 42)
: oF |77 VT ’
90

where |0E /do;! represents the magnitude of the gradient.

Such a choice for Aw;; does not violate the necessary
requirements for gradient descent search. In any gradient
descent search, the gradient vector determines the direction of
movement, while the quantum of movement is controlled by
a scalar multiplier which is generally preselected by the user.
The magnitude of the gradient vector is not very important
as far as the gradient descent search is concerned. In the
present case since we are changing only the magnitude of
movement, keeping the direction same, it is also equivalent to
a scalar multiplication. However, if the scalar multiplier is too
small, search would be slow; if it is too large, it may result
in oscillation.

Henceforth we will be considering only ¢ = 2. When q = 2,
for the logarithmic entropy we get

1 1
A’ll)ji = —‘ﬂgﬁ—f,(lj)oi = 7]3(”1112)'——0j—f’(1j)0,'

- n

aoj‘ 1—o;
1

Lo, )
In —2
1- 0;

with n = 93 x (nln2), ie,

1 .
=g f'Ij)oi if,0<0; <05
n———
p (44)
o F;)o;  05<0; <10.
n

A’u}]',’ =

I—OJ'

The expression of Awj; has been divided into two parts
in order to preserve the analogy with that of the index of
fuzziness.

4) Weight Correction for Exponential Entropy: If we con-
sider

E =g(H)
:H’

(45)
(46)

where H is the exponential entropy of a fuzzy set (eq. (9)) with

1 . —0j o
H(A) = (=) ]Ezl:{oje‘ i 4 (1—0;)e% — 1}, (47)
th
" QI_{_ S 1 Nel—oi 0 48
G0, = me (L o)e ™m0} @®)
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Applying an argument similar to that of logarithmic entropy,
for exponential entropy also we get

1
Awji = —magz f'(Ij)oi

do;
= — ’ IYos 4
"(1 - Oj)el—"j — OjeDj f ( ])Ol 49)
with 7 = n4 X n(y/e — 1). In other words,
{

_ .
7](1 _ Oj)el‘o" _ Ojeoj f (I])O,
if 0<0; <05

1 !
I;)o;
0je% — (1 —oj)el=o F(L)e

{ 0.5<0; <10

Considering (29), (35), (44), and (50), one can see that in each
of the four cases, the expression for Aw;; has a common factor
nf’(I;)o;:. Therefore, for the sake of comparison of different
learning rates the common factor [nf’(I;)o;] can be ignored.
The remaining part of the expression for Aw;; will be referred
to as the learning rate because only that factor is different for
different measures of fuzziness.

In the next section we shall investigate the rate of learning
under the previously described schemes.

n

V. LEARNING RATE FOR DIFFERENT ERROR MEASURES

As mentioned earlier, ignoring the common factor of
nf'(I;)o; in (29), (35), (44), and (50), the learning rate for
different error measures can be written as

Awlioc -1 for 0<0; <05

x 1 for 0.550;L1.0 (1)

for the linear index of fuzziness, as

Aw?icx —o0; for 0<0; <05

x1l—-o0; for 0.5<0; <10

(52)

for the quadratic index of fuzziness, as

1

jpry for

Awﬁ x —
In

0<0; <05

05
1
05

x for 05<0;<1.0 (53)

1
nl—()j

for the logarithmic entropy (¢ = 2), and as
_ 1
(1 —0j)el=% — 0;e%
1
0j€% — (1 —o;)et=%

AwsS x

i for

OSO]‘SO.5

for

0.5<0; <10
(54)
for the exponential entropy (¢ = 2).

A critical examination of (51) through (54) reveals that in
each of the four cases the learning rate is <0 for o; < 0.5 and
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Fig. 5. Rate of learning with variation of output status for different error
measures.

is > 0 for o; > 0.5. In other words, the direction of change
is always the same in all the four cases. Therefore, if one
compares different learning rates separately for o; € [0,0.5]
and o; € [0.5,1.0], one can forget about the sign (direction) of
learning rate. For example, if Aw'S = —5 and Aw§f = -3,

Ji
then although Awé‘i < A'w;'f, the rate of learning is more for
Auwte

<.
Fig. 5 depicts the rate of learning for different error mea-
sures with variation of status value of an output neuron.
Because of the reasons mentioned in the previous paragraph,
only the magnitude of Aw?; (where * = I/q/le/ee) have been
plotted. From the figures it is noticed that for all the error
measures, the rate of learning is low when the neurons are
very close to stable states (i.e., status value 0|1) and is high
when the neurons are highly unstable (i.e., status value 0.5).
The curves are also symmetric around 0.5 of the status value.
For linear index of fuzziness the learning rate is constant.

A comparative study of the different curves shows that
the learning rate is minimum (for all status values) for the
quadratic index of fuzziness and its absolute value is < 0.5.
For linear index of fuzziness it is constant and is = 1. On
the other hand, for entropy measures the rates of learning are
high. For status values very close to 0.5, the learning rate
is more for logarithmic entropy than that of the exponential
entropy, whereas for output values close to 0|1 the learning
rate is less for the logarithmic entropy. In other words, the
change in rate of learning for exponential entropy is less
than that of logarithmic entropy. So outputs are going to
be more noise immune for the exponential entropy than for
the logarithmic entropy; but will take more time to converge.
Regarding learning rate the following proposition can be made.

Proposition: The learning rate for quadratic index of fuzzi-
ness is the minimum.

Proof: To prove the proposition it suffices to prove
< Aw;-l-
< Awﬁ-‘;
; < Awgf.

61

Fig. 6. Original synthetic image.

Proof of condition 1 (Awf; < Aw}): Leaving aside the
signs

Awgi =K

—J 9%
K_{1-OJ'

But Awl; = 7 x 1.0. Evidently Aw}; < Aw};.
Proof of condition 2 (Aw}; < Awl): Leaving aside the
signs

with
if, 0 < 0; <05
0.5 < 0; < 1.0.

n—3 y if, 0 <0; <0.5
In
Awéf 101
7]1 0; 0.5<0; <£1.0.
n 1- Oj

Proving the relation Aw; < ij—‘z is equivalent to proving

1
— > 05 for OSOJ'SO.5
9j

1=
In
05
and
g—or >1- 0; for 0.5< 0; < 1.0.
1—o0;
Now to prove
1
—q =5 >0 for 0<0;<05
—o;
In
05
or,
In 1-0 i
0j 0]‘
or,
1 1
in (— - 1) < —
0j 0j
or,

In(z - 1)<z with == i
05
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(e)
Fig. 7. Results for a noisy version (¢ = 10) of the synthetic image. (a) Input. (b) Extracted object with linear index of
fuzziness. (c) Extracted object with quadratic index of fuzziness. (d) Extracted object with logarithmic entropy. (e) Extracted
object with exponential entropy.
Suppose or,
y=1In(z - 1). 0; 1
— 0 — 0;
Then 7 7
rz=1+¢eY or,
2
- vy.¥ 1
_1+1+T+§+"'0‘“ In(z —1) <z with T=1—
! — 0.
J

>y [since > 2 and thereby y > 0].

Hence, In(z — 1) < z, thus proving the first part.
In order to prove the other part

1
5— >1—0; for 05<0; <1.0
In —1—

1*01'

The rest of the proof is as in the previous case; hence we have

the relation

1

T 1—o0;
In 9%

>o0; for 0<0; <05

0j
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(a) (b)

© (@

(e)

Fig. 8. Results for a noisy version (¢ = 20) of the synthetic image. (a) Input. (b) Extracted object with linear index of
fuzziness. (c) Extracted object with quadratic index of fuzziness. (d) Extracted object with logarithmic entropy. (e) Extracted
object with exponential entropy.

and and

>1-o0; for 05<0; <10 L —>1-0; for 05<0;<10.
0je% — (1 —oj)el=0

ln —2
. 1-o0;
Proof of condition 3 (Aw?i < Awgf): Leaving aside the Now to prove

signs 1
. —0;)el=% — 0.e%
K 1-o 0 if’ 0 S 05 S 0.5 (1 0])8 7 oj€
Aw;f = (1 - Oj)e 1 I — 0;€% or
K 0.5 <o0; <1.0.

>0]' for OSO]'SO.5

% — (1 — 0. )el—0; 1
03¢ (1= o0j)e (1—-2)e! ™" —ze® < e for z €[0,0.5]

Proving the relation Aw; < Aw$ is equivalent to proving
1 (for notational simplicity  has been used in place of o;) or
>o0; for 0<0; <05

(1 —o0j)e' =% — oje% (1 —z)el™® — 2% < 1
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(e)

Fig. 9. Results for a noisy version (¢ = 32) of the synthetic image. (a) Input. (b) Extracted object with linear index of
fuzziness. (c) Extracted object with quadratic index of fuzziness. (d) Extracted object with logarithmic entropy. (e) Extracted
object with exponential entropy.

or, Hence,
ze! 7T — (e ) < 1 max{ze! ™"} = %\/(_ <1,z €[0,0.5].
or, On the other hand,
zel ™" < 14+ 2 (el 7T 4 ). min{l + z%(e! 7 + %)} = 1.
Let Hence the relation.
f(z) = zet™* To prove the other part
f(z)=(1-2)e!™ > 0.2 €0,0.5] 1 >1-0; for 05<0; <10

0% — (1 — 0. )el~
X 0je® — (1 —oj)et~e
— xe”~ " monotonically increases for « in [0,0.5] or
,
— ze! ™% attains the maximum value at © = 1/2 for .
o -0
0je® = (1=o0j)e % < ———
z €1[0,0.5]. j (1 =05 s
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(e)

Fig. 10. Results for the noisy tank image. (a) Input. (b) Extracted object with linear index of fuzziness. (c) Extracted object with
quadratic index of fuzziness. (d) Extracted object with logarithmic entropy. (¢) Extracted object with exponential entropy.

or,
1
(1-z)e™® —ze® < — with z=1-o0;,z€[0,0.5].
T

The rest of the proof is as in the previous case and thus we
can write

1

(1—o0;)et=9 —o0je%

>o0; for 0<0; <05

and

1

fi
0j€% — (1 —o0;)el° or

>1—0]‘ 05501310

This completes the proof of the proposition.

VI. AN APPLICATION TO OBJECT EXTRACTION

A. The Object Extraction Problem

An application of the proposed network architecture is
shown in object extraction (specially from noisy environments)
problems. The object extraction problem can be stated as
follows: Given a noisy realization of a scene the objective is to
estimate the original scene that has resulted in the observation.

To solve the problem a three-layered version of the proposed
network with N2 is used. A neuron thus gets input from nine
neurons in the previous layer. The threshold value @ in this
case is 9/2 = 4.5. The input gray levels are mapped in [0, 1]
by a linear transformation and is given as input to the network.
The network is then allowed to be settled. When the network
has stabilized, the neurons having the status values O constitute
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(b)

©

(d)

Fig. 11. Results for a noisy version (¢ = 20 and N!) of the synthetic image. (a) Input. (b) Extracted object with linear index
of fuzziness. (c) Extracted object with quadratic index of fuzziness. (d) Extracted object with logarithmic entropy. (e) Extracted

object with exponential entropy.

one region type say, object (background), and the remaining
neurons with output status 1 constitute another region type, say
background (object). Investigation has also been done with
NL

B. Computer Simulation and Results

In order to check the effectiveness of the proposed tech-
nique, computer simulation has been done on a synthetic
bitonic image (Fig. 6) corrupted by noise. The corrupted
versions were obtained by adding noise from N(0,0?) dis-
tribution with different values of o (10, 20, 32). Three noisy
inputs are shown in Figs. 7(a), 8(a), and 9(a). The images are
of dimension 128 X 128 and have 32 levels. A simulation study
has also been done on a real image of a noisy tank (Fig. 10(a)).

The noisy tank image is of size 64 x 64 with 64 gray levels.
For the simulation study » value has been taken as 0.2.

The objects extracted by the proposed technique with dif-
ferent expressions of error for different noisy versions of the
synthetic image are included in Figs. 7-9. Fig. 10 depicts the
objects extracted from the noisy tank image with different error
models. As a typical illustration, curves (drawn on the same
scale) reflecting the (amount of) change of error (i.e., AF) for
different error measures with (time) number of iterations for a
noisy input image (with o = 20) are depicted in Fig. 12.

Examining the results, it can very easily be inferred that,
as the noise level increases, the quality of the output, as
expected, deteriorates, but approximate shapes and outlines
are maintained. Comparing results of different error models,
it is noticed that outputs with index of fuzziness measures
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Fig. 12. Change of average system error with time for the image in Fig. 8(a).
(a) Linear index of fuzziness. (b) Quadratic index of fuzziness. (c) Logarithmic
entropy. (d) Exponential entropy.

(linear/quadratic) are better than those obtained by entropy
measures (¢ = 2). Among the two different entropy measures,
the exponential function is found to be more immune to noise.
This is possibly due to different learning rates. For a fixed
value of ), the learning rate is low for the indices of fuzziness,
whereas it is higher for entropy measures. When the learning
rate is high, a particular neuron influences its neighbors to a
great extent; thus the noisy elements affect the results strongly.
The system thus fails to remove all the noise. Of the two
entropy measures the exponential one is more noise immune
due to its lower learning rate at the initial stage of learning.
A critical examination of the results reveal that the index
of fuzziness (both linear and quadratic) is consistently better
than entropy measures for maintaining the compactness of the
extracted objects. But shapes of objects are better preserved
by entropy measures. This observation can be explained as
follows: Since for the index of fuzziness, the rate of learning
is slow, it smoothes out noises and creates compact regions,
while for entropy measures because of rapid learning all noisy
pixels may not be removed, particularly when the SNR is very
low. On the other hand, entropy measures enable the network
to preserve object boundaries as learning rate is very high near
the most ambiguous region (0; ~ 0.5).

The study is carried out with first order (N'!) neighborhood
system and, as expected, results are not as good as with N2
As an illustration the outputs (for different error measures)
corresponding to the input image shown in Fig. 8(a) are
depicted in Fig. 11. Investigation has also been done for higher
values of g.

Fig. 12 depicts the variation of average system error (ASE),
drawn to scale, with time (number of iterations). A compar-
ative study of the curves reflects the following: The initial
ASE’s for the entropy measures are much higher than those
for the indices of fuzziness. In fact for the quadratic index
of fuzziness the initial ASE is the minimum. For all cases
the ASE drops to a very low value (close to zero) within
a few iterations, which indicates a fast convergence of the
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system. Note that in each of the four cases the ASE drops to
almost the same low value in more or less the same number
of iterations, but the initial ASE’s for the entropy measures
are much higher than those for linear and quadratic indices of
fuzziness. Hence the rate of change of the ASE for an entropy
measure is much higher than that for either of the indices
of the fuzziness. Again, of the two indices of fuzziness, the
linear one has a much higher initial value of the ASE, but both
of them drop almost to the same low value in more or less
the same number of iterations. This indicates that the rate of
change of ASE for the linear index of fuzziness is greater than
that for the quadratic index of fuzziness. These observations
conform to the proposition stated and proved in Section V.

VII. DISCUSSIONS AND CONCLUSION

The limitations of the feedforward muitilayer perceptron
with back-propagation of error for image processing (segmen-
tation/object extraction) have been addressed.

A self-organizing multilayer neural network suitable for
image processing applications is proposed in this regard. Each
neuron in the network corresponds to an image pixel. A neuron
in one layer is connected to the corresponding neuron in the
previous layer and the neighbors of that neuron. Neurons in the
output layer are also connected to the corresponding neurons in
the input layer. The output of the neurons in the output layer
has been viewed as a fuzzy set, and measures of fuzziness
have been used to model the error (instability of the network)
of the system. Various mathematical models for calculation of
fuzziness of this fuzzy set have been described. The weight
updating rules under each model have been developed. This
error is then back-propagated to correct weights so that the
system error is reduced in the next stage. A comparative study
(both analytical and experimental) on the rate of learning for
different error measures is also done.

An application of the proposed architecture has been shown
in object extraction problem from noisy environments. The
algorithm has been implemented on a set of noisy images, and
the approximate shapes and boundaries of the extracted objects
are found to be satisfactory even for very low values of SNR,
establishing the noise immunity of the proposed technique.
Results also show that the rate of learning affects the output,
especially when the noise level is very high. The outputs
are better for lower learning rates (indices of fuzziness) and
deteriorate with increase of rate of learning (entropy measures
with ¢ > 2). Thus when the noise level is low, methods with
higher learning rates are preferred, but when the noise level is
high, lower learning rate will be suitable.

Generalization of this type of self-organizing multilayer neu-
ral network for clustering problems raises two issues: sow to
define the neighborhood system for higher dimensional feature
space and how to take into account the multidimensional input
vectors. Solution to the first problem is not difficult to achieve,
but the second one needs to be investigated.
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