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Abstract

Given a finite graph G = (V, E), and any proper subset D of the vertex set V := V (G)

of G, we associate a nonnegative integral matrix AD(G) = (aij) of order |D| × |D| with

D so that the ith diagonal entry in the matrix counts precisely the number of edges that

join the ith vertex of D with vertices in V −D so that these partial degrees of the vertices

in D are precisely the eigenvalues of AD(G) whence their sum may be conceived as the

energy εD(G) of the given set D. Invoking the underlying notion of incidence matrix of D,

we introduce in this paper the notion of robust domination energy (or, rd-energy) and shear

domination energy (or, sd-energy) of G as the maximum (minimum, respectively) energy of

a minimal dominating set in G. We raise several interesting open problems and connections

of these notions with other well known ones in graph theory.
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1. Preamble

The strength of a social group D in a society depends not only on how tightly its
members are bound (or, ‘knit’) amongst themselves but also on how well connected they
are by relations to individuals outside the group. While the in-group relations in D
account for the amount of cohesion (or, ‘solidarity’) amongst the members of the group,
the out-group relations of D indicate how well the group is ‘embedded’ in the larger social
system; the latter accounts for the effect of the ‘environment’ or the ‘external system’ in
the casuality of the very in-group interactions and relations (Cartwright and Harary [4];
Everett and Nieminen [3]; Seidman [8]-[11]). While in-group cohesion appears to be a
well-studied socio-psychological phenomenon, the study of a group’s connections to its
external system seems to have been relatively limited. A pertinent remark in this context
is by Reis et al. [7]:

The individualistic perspective that seeks the cause of behavior within the properties of
the single individual must be augmented, and in some cases replaced, by the methods for
seeking the cause of behavior within the interconnections of individuals and their relation-
ship as well as the interconnections between those relationships and the larger systems
within which they are embedded.

If we are allowed to extrapolate this view in the social context, it appears quite plausible
to us to replace the term ‘individual’ in the above view of Reis et al. [7] by the term ‘social
group’ towards extending its validity to have a systematic approach to study the dynamics
of group behavior. These considerations have motivated us to think of a network approach
and introduce application of the well known notion of domination in graphs to define
what we shall refer to as energy of a dominating set (or, ‘domset’ in short) in a given
graph. Since interaction between members of a dyad generally occurs on several issues or
attributes of common concern between them, often simultaneously, each of the multiple
edges standing for one of the issues/attributes of their common concern, multigraphs are
useful in such cases (e.g., see Peay [5],[6]; Acharya and Acharya,[1]; Acharya [2]).

2. Introduction

In this paper, unless mentioned otherwise, the terminology and notions in graph theory
will be as in West [12] and by a graph we shall mean a finite simple graph without loops
and multiple edges.

Given a graph G = (V,E) of order n and a nonempty proper subset D ⊂ V, say
D = {u1, u2, . . . , ut}, we define the boundary matrix BD(G) = (bij)t×(n−t) of D by

letting bij to be the number of edges that join the ith vertex ui of D to the jth vertex
vj of V − D. Clearly then, the ith row sum of BD(G) yields the number of edges that
join ui to the vertices of V − D, so called partial degree dD(ui) of ui with respect to
the given set D, and the sum

∑t
i=1 dD(ui) gives precisely the number m(D,V − D)

of boundary edges of D, viz., the edges that join the vertices of D with those of its
complement D = V −D.
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Given a graph G = (V,E), a subset D ⊆ V is called a dominating set (or, simply a
domset) of G if every vertex in G is either in D or is adjacent to a vertex in D. The
set of all domsets in G is denoted by D(G). A domset is minimal if no proper subset of
it is a domset of G and minimum if it has the least number γ(G) of vertices amongst all
the domsets in G ; accordingly, the set of all minimal (minimum, respectively) domsets in
G is denoted Dm(G)(D0(G)).

Proposition 2.1. If D is a proper domset of a graph G = (V,E) then every column of
BD(G) has a nonzero entry. Further, if D ∈ Dm(G) then every row of BD(G) contains
a nonzero entry too.

Proof. The first statement follows by the very definition of domset in G. The second
statement in the proposition follows from the well known fact that if D is a minimal
dominating set of G then V −D is a domset too. (e.g., see Haynes et al, 1997).

Now, consider the matrix product

AD(G) = BD(G) ·BD(G)T = (aij)t×t

where “ · ” means usual matrix multiplication and BD(G)T denotes the transpose of the
boundary matrix BD(G). Then the energy of D, denoted εG(D), is defined as the sum∑|D|

i=1 |µi|, where µi are the eigenvalues of AD(G) and |µi| is the usual modulus (called
the magnitude) of the number µi.

Note that D is a proper subset of V (G) by choice in this definition of εG(D). The
definition of energy εG of G, defined similarly as the sum of the absolute values of the
eigenvalues of the adjacency matrix A(G) of G, which originally comes from molecular
chemistry, corresponds to taking D = V (G) in the above definition of εG(D). This
mathematical extension of the meaning of εG(D) with that of εG when D = V (G)
needs appropriate understanding in terms of molecular chemistry.

The robust domination energy (rd-energy, in short) of the graph G, denoted εrd(G), is
defined as the quantity max{εG(D) : D ∈ Dm(G)}, and the shear domination energy (sd-
energy, in short) of the graph G, denoted εsd(G), is defined as the quantity min{εG(D) :
D ∈ Dm(G)}.

At this stage, it is important to observe that εsd(G) may be attained by a mini-
mal domset which is not a minimum domset; for example, take the graph G denoted
2MK6, which is obtained as follows: Take the complete graph K6 on the vertex set
V = {1′

, x, 2
′
, 3

′
, y, 4

′}, take four new vertices 1, 2, 3, 4 and join them to the vertices
in V by the new edges 11

′
, 22

′
, 33

′
, 44

′
, 1x, 2x, 3y, 4y. This graph has D1 = {x, y} as

the unique minimum domset and for which εG(D1) = 12, whereas D = {1, 2, 3, 4} is a
minimal dominating set for which εG(D) = 8, so that

εsd(G) ≤ εG(D) = 8 < 12 = εG(D1).
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Hence for any integer n ≥ 2, if Gn(d) denotes the set of all graphs of order
n with domination number d, then we let ε0

rd(n, d) = min{εrd(G) : G ∈ Gn(d)},
ε1
rd(n, d) = max{εrd(G) : G ∈ Gn(d)}, ε0

sd(n, d) = min{εsd(G) : G ∈ Gn(d)} and
ε1
sd(n, d) = max{εsd(G) : G ∈ Gn(d)}. Also, define ε1∗

rd(n, d) = max{εD(G) : G ∈
Gn(d), D ∈ D0(G)}. Similarly, ε0∗

rd(n, d), ε1∗
sd(n, d) and ε0∗

sd(n, d) are defined. It will be
of fundamental importance to find tight bounds for, if not exact values of, these invari-
ants.

3. Results

The following lemma is basic and gives us an easy method to calculate the domination
energies.

Lemma 3.1. Let D be any minimal domset of any graph G of order n ≥ 2 and let
D = {u1, u2, . . . , ut}. Then

(i) AD(G) is a nonnegative semidefinite symmetric matrix of order t ; and

(ii) εG(D) = m(D,V −D).

Proof. (i) AD(G) is a symmetric matrix, as

AD(G)T = (BD(G)T )T ·BD(G)T = AD(G).

Further, AD(G) is a nonnegative semidefinite quadratic form and hence the eigenvalues
of AD(G) are all nonnegative. (Let X be a real row vector of length t ; then

X ·AD(G) ·XT = X ·BD(G) ·BD(G)T ·XT = Y · Y T =
n−t∑
i=1

y2
i ≥ 0

where Y = X · BD(G)). Note, that X · BD(G) is a row vector of length (n − t) and
BD(G)T · XT is a column vector of length (n − t). Hence, all the eigenvalues of AD(G)
are nonnegative.

(ii) Further, the ith diagonal entry of the matrix AD(G) counts precisely the number
of edges that join the ith vertex of D with vertices of V − D whence their sum is the
energy εD(G) of the given domset D of G. Hence,

εD(G) =
|D|∑
i=1

|µi| =
|D|∑
i=1

µi

which, by (i), is equal to the trace of the matrix AD(G). Therefore, εG(D) is equal to the
sum of the partial degrees of the vertices of D in the spanning bipartite graph G(D,V −D)
consisting of the boundary edges of D ; in other words εG(D) = m(D,V −D).
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Problem 3.2. Let P be an invariant property of graphs; for example:

• P is a tree,

• P is a planar graph,

• Pk : chromatic number ≤ k,

Find the values of ε0
rd(P, n), ε1

rd(P, n), ε0
sd(P, n) and ε1

sd(P, n), as well as the
ε1∗
rd(P, n), ε0∗

rd(P, n), ε1∗
sd(P, n) and ε0∗

sd(P, n) restricted over all simple graphs of order n
with the property P.

Problem 3.3. Find the values of ε0
rd(P, n, d), ε1

rd(P, n, d), ε0
sd(P, n, d) and ε1

sd(P, n, d),
as well as ε1∗

rd(P, n, d), ε0∗
rd(P, n, d), ε1∗

sd(P, n, d) and ε0∗
sd(P, n, d) restricted over graphs with

γ(G) = d, of order n with the property P. Characterise all the extremal graphs in each
case for each property P.

Lemma 3.4. For any simple graph G = (V,E) having size q, εrd(G) = q if and only
if G is bipartite.

Proof. Suppose εsd(G) = q. Then there exists D ∈ Dm(G) such that εG(D) =
m(D,V − D) = εrd(G) = q. This implies that both D and V − D are independent
whence it is easy to see that G = G(D,V −D) is bipartite.

Conversely, if G = G(V1, V2) is a bipartite graph with |V1| ≤ |V2|, then m(V1, V2) =
q ≤ εrd(G). Since εrd(G) ≤ q obviously, the result follows.

Theorem 3.5. The minimum energy of a minimal domset in a connected simple graph
G of order n ≥ 2 is dn

2 e and the bound is sharp.

Proof. Let G be a graph of order n ≥ 2 and D be a minimal domset of G with
cardinality d. Then every vertex of V − D is adjacent to a vertex in D and therefore,
the number of edges between V − D and D is at least n − d. Therefore, the energy of
D is at least n− d.

On the other hand if x is the number of vertices in D each of which has a private
neighbor in V − D, then each of the remaining d − x vertices is an isolate in D, and
as G is connected each of these d − x vertices is adjacent to a vertex in V − D and
therefore, there are at least d edges from D to V −D. Thus, the energy of D is at least
d. Therefore, the energy of D is at least the maximum of d and n − d, and hence the
energy of G is at least as much as asserted.

To prove the bound is the best possible, we consider the following two cases:

Case 1. n is even and n = 2s.

Let G be the graph consisting of a connected graph H on s vertices and exactly one
pendant new edge attached at each of its vertices of H. This graph has the minimum
(shear) domination energy equal to s.
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Case 2. n = 2s + 1.

Then we take the above graph on 2s vertices and add a new edge at one of the vertices
of H above to get a graph whose minimum domination energy is s + 1.

Theorem 3.6. The maximum energy of a simple graph G of order n is bn2

4 c and the
bound is sharp.

Proof. Let D be a minimal domset of cardinality d. Then the energy of G with respect
to this D is at most d(n− d) which is at most the number given in the statement of this
theorem as d+(n−d) = n is a constant. This bound is attained by the complete bipartite
graph on n vertices where both parts of the bipartition have almost equal cardinality.
This is true as both parts of the bipartition are minimal domsets or by the fact that in
a bipartite graph with m edges, the maximum domination energy is m. This completes
the proof.

Theorem 3.7. Let n and d be positive integers with d ≥ 3 and n ≥ d(d − 1) + 1.
Then ε1∗

rd(n, d) = d(n− 2d + 2)− 1.

Proof. Let f(n, d) = d(n− 2d +2)− 1 and g(n, d) = d(n− d), where n ≥ d(d− 1) +1,
with fixed integer d ≥ 3. Let G∗(n, d) = {G∗ = G(n, d)} be the set of all graphs with
vertex set A∗ ∪B∗ ∪C∗, where A∗ = {u∗1, u∗2, . . . , u∗d}, B∗ = {v∗1, v∗2, . . . , v∗d−1} and C∗ =
{x∗1, x∗2, . . . , x∗t }, where t = n−2d+1 ; and edges are (u∗i , v

∗
i ), 1 ≤ i ≤ d−1, (u∗j , x

∗
k), 1 ≤

j ≤ d and 1 ≤ k ≤ t, and optional edges are (u∗i , u
∗
l ), 1 ≤ i < l ≤ d− 1 and (x∗j , x

∗
r), 1 ≤

j < r ≤ t. It is easy to see that domination number of G∗ ∈ G∗(n, d) is d with A∗ as
minimum dominating set, and εD(G∗) = d(n−2d+1)+(d−1) = d(n−2d+2)−1 = f(n, d).
Thus,

f(n, d) ≤ ε1∗
rd(n, d) ≤ d(n− d) = g(n, d). (1)

Let G be a graph of order n with γ(G) = d, and D = {u1, u2, . . . , ud} be a minimum
dominating set and D = {u1, u2, . . . , ud} with εD(G) > f(n, d), if possible. Then the
number of edges in G, the complement of G, between D and V (G)−D is at most

g(n, d)− f(n, d)− 1 = d(d− 2). (2)

As n ≥ d(d − 1) + 1, |V − D| ≥ d(d − 2) + 1, and hence by (2) there exists a vertex
v∗ in V −D such that v∗ is adjacent to all the vertices in D. Fix such a vertex v∗.

Let now {v1, v2, . . . , vt} be the set of all vertices in V −D, each of which is nonadjacent
to a fixed vertex u1 (say) of D. If t ≤ d − 3, then {u1, v1, v2, . . . , vt, v

∗} is a domset of
G of cardinality at most d− 1. As γ(G) = d, it follows that t ≥ d− 2. Thus, each ui of
D is nonadjacent to at least d− 2 vertices of V −D.

By (2), it follows that each ui is nonadjacent to exactly d− 2 vertices of V −D. (3)
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Without loss of generality, let v1, v2, . . . , vd−2 be the vertices nonadjacent in G to the
vertex u1 of D. As D is a domset of G, each of the vertices vi, 1 ≤ i ≤ d−2, is adjacent
to some vertex ui of D. If now vi, vl, 1 ≤ i < l ≤ d − 2 are adjacent to the same uj in
D, then {v∗, u1, uj , v1, . . . , vd−2} − {vi, vl} is a domset of G of cardinality d− 1, which
is a contradiction.

Thus, in G each vi is adjacent to exactly one vertex in D and distinct vi, 1 ≤ i ≤ d−2,
are adjacent in G to distinct vertices in D. Without loss of generality, let vi be adjacent
to ui+1, 1 ≤ i ≤ d− 2, in G.

From above it is clear that each ui, 2 ≤ i ≤ d− 1, is nonadjacent in G to exactly one
vertex of V − D outside {v1, v2, . . . , vd−2} = B (say). Then D∗ = {u2, u3, . . . , ud−1, v

∗}
is a domset of G of cardinality d− 1, unless u2, u3, . . . , ud−1 are all nonadjacent to the
same vertex v∗∗ of V −D, not in B. Notice that u1 is adjacent in G to v∗∗, as v∗∗ is
not in B.

If (ud, vi), 1 ≤ i ≤ d − 2 for some i is an edge of G, then A ∪ {vi} − {ui+1, ud}
is a domset of G of cardinality d − 1. Similarly, if (ud, v

∗∗) is an edge of G, then
A ∪ {v∗∗} − {u1, ud} is a domset of G of cardinality d − 1. If (ui, ud) is an edge of G
for some i, 1 ≤ i ≤ d− 1, then {u1, u2, . . . , ud−1} is a domset of G of cardinality d− 1.
Thus, ud is not adjacent to any vertex of B ∪ {v∗∗}, contradicting (3). This completes
the proof of the theorem.

Problem 3.8. Find the values of ε0
rd(n, d), ε1

rd(n, d), ε0
sd(n, d), ε1

sd(n, d) and also
ε1∗
rd(n, d), ε0∗

rd(n, d), ε1∗
sd(n, d), ε0∗

sd(n, d), for all admissible values of n, and also characterise
the extremal graphs in each case.
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