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SUMMARY. Tn this paper we have doveloped a formula measuring multicollinearity
which takes different values for different coeffici i and/or for different i It
takes the correct value of zero for an orthogonal model and a non zero value for a nonorthogonal
or multicollinear model. Applying this measure of multicollincarity to a fow empirical examples,
we have found that if one forces a biased regression estimator to satisfy the minimax conditions,
then the other goal of reducing multicollinearity may not be realized. We favor choosing from
the near mini i one that minimizes tho absolute value of the estimate of multi-
collinearity.

1. INTRODUCTION

The multicollinearity problem may arise when some or all of the explana-
tory variables in a regression are highly correlated with one another. At
least a brief discussion of this problem is,.of course, included in every econo-
metrics textbook. In addition, an extensive di ion of the methods of
diagnosing multicollinearity (ill conditioning) makes up the empirical core
of Belsley, Kuh and Welsch’s (1980) book. In this book, Belsley et al.
propose a method for ing multicollinearity and compare their method
with other methods proposed in the numerical analysis literature; see also
Belsley (1984) and comments by Cook, Gunst, Snee and Marquardt, and
Wood followed by Belsley’s reply. To this list of diagnostics, the method
employed by Theil (1971, p. 179) should be added. While all these methods
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including Theil’s may provide misleading information about multicollinearity,
Theil’s method is superior to the other methods, as shown by Swamy and
Mehta (1985). This paper proposes a modified Theil’s method which retains
all the advantages of Theil’s method, but is devoid of its disadvantages.

Exact multicollinearity is a special case of multicollinearity : the one
in which the exact linear dependencies among the explanatory variables
exist. In this case, the individual regression coefficients are not identified;
see Goldberger (1968, pp. 22-23). The present paper focuses on multicolli-
nearity, to the neglect of exact multicollinearity, since tools for handling the
latter are given in Chipman (1964). Another reason for this focus is that
exact multicollinearity may be rare, but some degree of multicollinearity is
very common in economic data.

In Section 2 we suggest a new measure of multicollinearity suited to
biased estimation by extending Theil’'s measure. Section 3 is devoted to
applying this measure to the Rotterdam demand model. Concluding remarks
are given in Section 4.

2. A REGRESSION MODEL AND THE MULTICOLLINEARITY EFFECT
2.1 The model. The regression model with which we will be concerned
in this section is
y = Xp+u, o (1)
where y = (nXx 1) vector of observations on the dependent variable,
X = (nx K) “fixed” matrix of rank K of observations on the
explanatory variables
B = (K X 1) vector of coefficients, and
u = (nx 1) vector of disturbances.
We assume further that Fu = 0 and Buu’ = o*].

2.2 The necessity of prior information for multicollinearity. Associated
with model (1), there can be a multicollinearity problem. As indicated in
econometrics texts (see, e.g., Goldberger, 1968, p. 80), the formal definition
of near exact multicollinearity is :

3Since X is known, we can use one of the ilabl ically stable
to P the ical rank of X. If the numerical rank of X is less than K, we
may decide not to assume that X has full column rank. We are aware of the fact that the nume-
rical rank of X is only suggestive of its theoretical rank. The former is not even a unique pro-
perty of X but dopends on factors, such as the details of the computational algorithm, the values
of tol used in the p ion, and the effects of machine round-off errors,
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Definition 1 (Multicollinearity) : Multicollinearity is the situation which
arises when some or all of the explanatory variables are so highly correlated
one with another that it becomes very difficult, if not impossible, to disen-
tangle their influences and obtain a reasonably precise estimate of their
separate effects. Multicollinearity is a matter of degree rather than of all
or nothing.

To clarify the implications of this definition, we briefly review what
multicollinearity means for the least squares estimation. When the matrix
X'X is nearly singular, some or all of the explanatory variables will be highly
correlated one with another and near exact multicollinearity may arise. By
definition, the least squares estimating equation X'Xb = X'y with the
solution vector b = (X'X)*X'y is ill conditioned if small relative changes
in the givens (the X'X’s and the X'y’s) result in large relative changes in
the solution b. The cause of such sensitivity is the near singularity of X'X
or, equivalently, some high auxiliary coefficients of determination resulting
from the least squares fit of each explanatory variable on the remaining
explanatory variables. Statistically, the near singularity of X’'X is manifest
in large variances of the elements of b (large diagonal elements of o(X'X)™").
These variances give confidence intervals for the elements of B which are too
wide to be of any practical value; we will be very uncertain of the population
value of B. Numerically, the near singularity of X'X means that inconse-
quential relative shifts in the observed data can produce consequential
relative shifts in the coefficient estimates, a situation that is prima facie
troublesome. We demonstrate now that the near singularity of X'X is
necessary but not sufficient for the presence of real multicollinearity or for
the presence of real statistical and numerical problems related to multi-
collinearity.

The near singularity of X’X means that some or all of the columns of
X are nonorthogonal. In practice, it is possible that the regression coeffi-
cients corresponding to the nonorthogonal columns of X are indeed zero and
the investigator includes these columns in X not knowing a priori that the
corresponding coefficients are zero. In this case, the multicollinearity
problem and the consequent numerical and statistical problems are not real.
To distinguish real multicollinearity from apparent multicollinearity, we
need the following definition of an orthogonal model :

Definition 2 (Orthogonal Model) : When X'X is diagonal, model (1) is
orthogonal if the prior covariance matrix of B is also diagonal. When X'X
is nondiagonal and the prior covariance matrix of B is diagonal, model (1)
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can still be orthogonal, provided the elements of @ corresponding to the non-
orthogonal columns of X are all zero.

Model (1) is nonorthogonal if it is not orthogonal. Definition 2 clarifies
Definition 1 further. Real multicollinearity cannot arise if model (1) is
orthogonal. It cannot also arise in some nonorthogonal models. For
example, if the prior covariance matrix of @ is nondiagonal, then model (1)
is nonorthogonal. In this case, according to Definition 1 model (1) does not
suffer from multicollinearity if either X'X is diagonal or X'X is nondiagonal
and the elements of @ corresponding to the nonorthogonal columns of X are
all zero. Whether or not the prior covariance matrix of @ is diagonal, real
multicollinearity arises if X’'X is nondiagonal and the elements of @ corres-
ponding to the nonorthogonal columns of X are not all zero. Multicollinearity
that arises when X'X is nondiagonal and the elements of B corresponding to
the nonorthogonal columns of X are all zero, is only apparent. This shows
that the nondiagonality of X'X is necessary but not sufficient for the presence
of real multicollinearity. In other words, without utilizing any prior beliefs
about the plausible values of B, it is not possible to detect the presence of
real multicollinearity on the basis of X'X alone.

One should at least be prepared to assume, as some non-Bayesians may
be willing to do, that the population values of the elements of B corresponding
to the nonorthogonal columns of X are not all zero before concluding from
an analysis of a nondiagonal X'X matrix that real multicollinearity exists.?
But then one should also allow for the possibility of this assumption being
wrong. Any method which does not use prior information about B may not
be successful at diagnosing the presence of real multicollinearity. For
example, Theil (1971, pages. 169 and 179) has attempted to measure multi-
collinearity without any reference to the prior information about B. His
measure uses X'X and the sample information about @ in the form of the
t-ratios which are routinely used to test the hypothesis on the elements of 8.
Therefore, the ability of Theil’s measure to give reliable estimates of the
degree of real multicollinearity depends on the power of the tests of hypotheses
on @ based on the Student ¢-statistics and on the form of X’'X. If this power
is low because of the near singularity of X’'X, then the absolute value of
Theil’s measure may either underestimate the degree of real multicollinearity
or provide misleading information about multicollinearity, as shown by
Swamy and Mehta (1985). These authors also show that while Theil’s

3At the simplest level of analysis, t.ha pmcbmaner believes (has priors, therefore) that at
loast some of the in an ionship may have nonzero explanatory powers
for the regressand.
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measure gives misleading information about multicollinearity with probability
less than 1, any measure which even ignores the sample information about g
and concentrates only on the form of X’'X gives misleading information about
multicollinearity with probability 1. In short, not to use the prior informa-
tion about @ is bad enough in diagnosing multicollinearity. Ignoring even
the sample information about @ is likely to be disastrous to any attempts to
detect and assess real multicollinearity. For this reason, we take the depen-
dence on X'X as well as on the prior and sample information about P as a
primary characteristic a measure of multicollinearity should possess. In
what follows we develop a measure with such a characteristic.

Before we do so, it is important to sound Goldberger’s warning. Faced
with the problem of fitting model (1) when some columns of X are nearly
linearly dependent, one might be tempted to “‘eliminate” or ‘‘reduce” the
multicollinearity by a transformation of X. Goldberger (1968, p. 87) warns
us to resist this temptation. While the transformed regression could yield a
reliable estimate for a coefficient vector, it is not the parameter of interest,
i, B. The reduced impression is obtained not by transforming X but by
transforming the problem being answered. For this reason, we try to assess
multicollinearity without changing model (1). Everytime we change the
dependent variable or the set of explanatory variables in (1), we face a new
multicollinearity problem.

Prior information about B is needed not only to detect multicollinearity
but also to solve the multicollinearity problem, as pointed out by Goldberger
(1968, p. 82). We, therefore, consider two types of prior information :
(i) the non-Bayesian type, and (ii) the Bayesian type. The former is of the

form W@ lying on or within the ellipsoid (B—B)'W'AT'W(B—B) = * with known
W, B, A, and 7, and the latter is of the form W distributed a priori with
mean W and covariance matrix WAW’, where W is a known rectangular

matrix with full row rank. Here B and A may be unknown.?

2.3 A class of biased estimators. To incorporate the non-Bayesian type
prior information the method of constrained least squares is proposed. Based

3It would be more usual to write the moro commonly known R here in place of W, but the
former is used to denoto the multiple correlation coefficient later in this paper. The exact cons-
traints which Goldberger (1968, 82-83) considers are tho limiting cases of Bayesian type prior
information when WAW’ for some 1V goes to a null matrix. A good examplo of where we have
prior information about W@, and not about B, is given by a distributed lag model which employs
Shiller's (1873) smoothness priors.

B3-14



406 P.A.V.B. SWANY, J. 8. MEHTA, 8. S. THURMAN AND N. 8, IYENGAR
on this method, the constrained least squares estimator of @ subject to
(B—PWATWE—B) = r* is

b = (X' X+ 0uWAT'W)- (X y+ oW AT'WB), )
where z is chosen such that (b;—E)’l‘l"’A['W(b.;—-E) =% sce Swamy and
Mehta (1983, p. 367). For the practical situation where »* is unknown,
Thurman, Swamy and Mehta (1984) develop an approximation to (2), in which

a value determined by a statistic replaces . The estimator (2) with this
value of x is nearly minimax.

In the case where the Bayesian prior distribution of W@ is available,
Thurman, Swamy and Mehta (1984) and Kashyap, Swamy, Mehta and Porter
(1984) prove that the prior covariance matrix of B implied by the prior co-
variance matrix of W need not be nonsingular. 1f it is singular, then the
posterior probability density function (pdf) for B exists only on a subspace.
Any analysis of this posterior p.d.f should take into account the information
about the sibspace However, Chipman’s (1976, 603-617) or Rao’s (1973,
305-306) method of deriving the posterior mean works whether or not the
prior covariance matrix of @ is singular. Using this method, we can show
that the posterior mean of B is

b = EB-+cov(B)[o*(X' X)'+cov(B)](b—EB), e (3)
where E and cov(B) are respectively the prior mean and the prior covariance
matrix of B; for a derivation of the estimator (3). see Thurman, Swamy and
Mehta (1984) and Kashyap et al. (1984). After showing that the estimator
(3) satisfies all the exact restrictions on @ implied by the singular matrix,

cov(R), Kashyap et al. (1984) discuss an operational version of (3) which is
nearly minimax.

The estimators (2) and (3) are not algebraically equivalent if cov(B) is
singular. In any event, it should be remembered that both of these esti-
mators use some type of prior information about B and both are biased.

Hence they are appropriate for developing a multicollinearity measure with
the desired characteristic.

2.4 The modified coefficient of determination. We begin with the following
specific member of the class of biased estimators introduced in Section 2.3 :

b* = (X' X+ AW'A'W)-1Xy, e (4

where s* = (y— Xb)'(y—Xb)/(n—K) and g is the value of ¢ selected accord-

ing to the Thurman, Swamy and Mehta (1984) empirical rule : f is equal to

4Shiller’s (1973) analyais, for ono, ovorlooks this information.
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gero if the value of the quadratic form b'W’'[22-'A,+s*W(X'X)'W']-'Wb
at f=0 is greater than 1, § is equal to the numerical solution to
the cquation b'W'[247'A,+*W(X'X)'W']-'Wb =1 if the quadratic
form b'W'[2(-'A,+s*IW(X'X)'W']"'Wb incrcases monotonically from 0 to
(' W' [W(X'X)'W']-'Wb/s?) > 1 as 2 increases from 0 to oo, and -1 is equal
to 0 if the quadratic form O'W’[24-'A,+s*W(X'X)'W']"'Wb increases
monotonically from 0 to (b'W'[W(X'X)-'W’'|-'Wb/s*) < 1 as fi increases from
0toco. Usually, & determined by this rule will be a finite, positive quantity.

The discrepancy vector implied by the estimator (4) is
= y—Xb", )
Premultiplying each side of the equation y = Xb*+#* by its own transpose
gives
¥y = bV X'Xb* 426" X'+t it e (6)
We define the modified coefficient of multiple determination as

5°d . U el
R'z = b,‘_x, X,‘,L;";,b xl‘__ i (7)

u'n’
Yy

The derivations of R*? using the members of the biased class other than
b* are straightforward and hence they are ignored. A simple geometric
illustration of the modified coefficient of multiple determination given by (7)
for the case n = 3 and K = 2 is shown in Figure 1. The mental extension of
Figure 1 to higher dimensions is straightforward.

Clearly, 1—-R*" =

(8)

Figure 1. G i ion of modified
of multiple determination (n = 3, K = 2).
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Figure 1 shows the sample space when n = 3, the coordinate axes being
labelled 1, 2 and 3 to correspond to the three observations on the dependent
and two independent variables; see Draper and Smith (1981, p. 493). The
two columns of X define two points X, and X,, and the vectors OX, and 0X,
define the two-dimensional plane 0X,X,. The vectors y, Xb, y—xb and
Xb* define the lines 0Y, OP, YP and OP* respectively. YP is perpendicular
to the plane OX,Xj representing the orthogonal projection of ¥ onto 0X,X,.
The nonorthogonal projection involved in biased estimation is evidenced by

the nonperpendicular line YP*.  Further, both P and P°* are the points in
the same OX,X,-plane. For these reasons, YP is perpendicular to PP*.
These results show that 1— R*2 defined in (8) is simply the ratio of the squared
distance from Y to P* to the squared distance from O to Y. That is,
. _ (YP)
—R* =
1=4 (OY)
_ (YPRH (PP
- (ory

(by the Pythagorean theorem)

_ (0Pp—(PP?
)

or R

(PP

== Gy e (9

where R? is the square of the multiple correlation coefficient (or the coeflicient
of multiple determination) defined in Theil (1971, 164-165). 1t can be seen
from (9) that R** < R%. By introducing bias into the coefficient estimates
we do not increase R%. TFurther, unlike R?, R** may be negative; in that
case the square root of R*? is not computed.

2.5 The modified incr tal  contributi of ecxplanalory variables.
Following Theil (1971, 168-169) we measure the contribution of ecach
explanatory variable to the explanation of the variation in the dependent
variable by measuring the increase in the square of the multiple correlation
coefficient due to adding the %-th explanatory variable to the model when
K—1 other explanatory variables are already included. To measurc this
increase in the case of biased estimation, we consider the truncated model
y = X_aB_n+uy in which the h-th independent variable is not included but
the X—1 other variables are included. Let the biased estimates of the
coefficients of the truncated model be

bl = (XX a+sR(W AT W), a1 X 5y, . (10)
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where X_j is obtained by deleting the X-th col from X, (W'A;'W)_s_a
is obtained by deleting the A-th row and /-th column from WAT'W. The
corresponding modified coefficient of determination is determined from

(1—R%y'y = @}, . (1)
where it} = y—X_ab’,. The modified incremental contribution of the k-th
variable is then

R**—R%, . (12)

‘This contribution cannot be negative as long as the same /i and s* are employed
in both (4) and (10), and (W'A7'W)_p_n instead of some other matrix is
employed in (10). This is because the biased estimation pr imi

wu or maximizes —u'e subject to the restriction that B'WAT'WE = r2.
Similarly, the estimate b*_j is determined by maximizing —u'n subject to
the same constraint that B'W'AT'WP =r? and the additional constraint
that the h-th element of @ is zero. Constrained maximization with one addi-
tional constraint cannot yield a higher modified coefficient of determination
than the same constrained maximization without the additional canstraint.

It is shown in the appendix to the paper that the sum of the modified
incremental contributions of the K explanatory variables is exactly equal to
their total contribution R*2 if and only if (iff) both X'X and W'AT'W are
diagonal. The values of the modified incremental contributions should
supplement the partial-regression leverage plots described in Belsley, Kuh
and Welsch (1980, p. 30).

2.6 A madlicollinearity measure. The measure of multicollinearity we
propose here is

K
W= R 3 (R%—R). .. (13)
-l

The derivation as well as the properties of the multicollinearity measure
using other biased estimators of @ introduced in Section 2.3 are exactly similar
to those of (13) and thus will not be presented here. Now it follows from
the definitions of R** and R that

ny'y = y'(4,—B.)y, e (14)
where

A, = (R—1)X(X'X+s7W A7 W)X X (X' X+ A )W-1X!
— 2AB—1)X(X' X+ AW A W)X
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and
K o
B, ="5.1l X_ (XX a+s%u(W AT W), )X, X p

X (X_p X a+sR(WAT'W)_p_a)" Xy
X -
—2 2 X n(X_3X o+ (WA W) ) X
h=1

From (14) we sec that

Pr(—o < iy < M<K mg <o) =1, e (15)
where 7ig and 7, are the smallest and the largest eigenvalues of 4,—B,
respectively. The derivation of the distribution function of i is facilitated
by the fact that

Pr(m < m) = Pr[y'(4.—B;—mI)y < 0] .. (16)
which depends (as it should) on the conditional distribution of y given X,
B. and 0%, and the prior moments of B.

We show in the Appendix to the paper that 7 is degenerate at 0 iff both
X'X and WA['W are diagonal and is degencrate taking any particular
value with probability 0 otherwise. This means that the case where model
(1) is orthogonal is readily discovered by the measure (13). Since the measure
(13) depends on both X’X and the prior information about B, a nondegenerate

distribution of m may accurately assign probabilities to different intervals
of values the degree of real multicollinearity can take when X'X is non-
diagonal. However, different biased estimators of @ utilizing different prior
information yield different nondegenerate distributions of i for the same
model with nonorthogonal explanatory variables. This is reasonable because
the degree of real multicollinearity depends not only on the form of X'X but
also on the plausible values of B. We do not look at the value of m if X'X
is diagonal and W'A;'W is nondiagonal, since there is no multicollinearity
in this case. Prior information can reduce the multicollinearity in the data
—for example, W'AT'W is diagonal and dominates the near-singular X'X.
Indeed, the measure (13) shows whether the procedure of combining a prior
information with the data via a biased estimator red the multicollinearity
in the data. However, it should be noted that just as the R¥s of equations
with different dependent variables are not directly comparable (Goldberger,
1968, p. 130), so the values of i for different ti
cither. We only compare the values of n given by different coefficient esti-
mators for the same equation.

are not bl

P
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In Swamy and Mechta (1985), Theil's (1971, p. 179) measure of multi-
collinearity is shown to be superior to the multicollinearity measures considered
in the numerical analysis literature. The measure (13) is an improvement over
Theil's measure because the former is based on both the sample and prior infor-
mation and the latter is based on only the sample information. If the sample
information is weak, as it is whenever X“X is near singular, & nondegenerate
distribution of Theil's measure may not accurately assign probabilities to
different intervals of values the degree of real multicollincarity can take.

The range (mg, My) of M may cover both negative and positive values.
Since the degenerate distribution of M at 0 represents the absence of multi-
collinearity, we measure the degree of multicollincarity present in (1) by the
absolute value of #. In other words, the distance of a value of % from zero
measures the departure of model (1) from orthogonality when X'X is non-
diagonal and model (1) is defined broadly to include the data as well as the
prior information about B.  We may avoid the difficult problem of computing
the probabilities in (16) by adopting the rule :  In model (1), multicollinearity

is serious if the value of (13) is closer to the value of g, or my than to zero

and X" Xisnondiagonal. The computationally simpler bounds for i are given by

my, = R*—K[ Az (R**—R3)]

and
my = R*—K[ min (R*—RX)] < R* e (1)
1ShSK

2.7 Further analysis. Further insights can be gained by looking into
the relationships among the partial correlation coefficients and the measures
in (12) and (13). These relationships can be derived geometrically as follows.
Consider equation (1) with X = 2. The points ¥, X; and X, shown in
Figure 2 are defined by the vector y and the two columns 2, and @, of X
respectively, see, e.g., Wonnacott and Wonnacott (1970, p. 306).

o a PYoP X2

Figure 2. Geomaotrical interpretation of modified partial and multiple correlations (K = 2)
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In Figm the line YI’l is the perpendicular from ¥ onto OX, repre-
ting the orthogonal projection of ¥ onto OX, and the point P, represents
the fitted value when y is reg 1 on &, Therefore Y P, is the least squares
residual vector ubtained from a least squares fit of y on @;. Tho lines OX,
and 0X, define o plane. Suppose X,Q, is the perpendicular from X, onto
0X,. That is, X,Q, is obtained from the orthogonal projection of ®, onto
0X,. Then @, represents the fitted value when x, is regressed on &, and
X,Q, is the least squares residual veetor obtained from a least squares fit of
&, on &, Since P is parallel to X;@,, ¢ is the angle between the lines
YP, and X,@,. The square of the cosine of the angle ¢, denoted 73, is®
2P \2 Py
1} = (cos ¢b)* = :I)Tll’l,))-' = l—(()).f;:)): . (18)

where use is made of the faet that Y27 is perpendicular to the plane X X,
Now let YP* represent a nonorthogonal projection of ) onto OX X;—plane
and let Y P} represent a nonorthogonal projection of ¥ onto OX,. Then,
from (18) we have

g = PRHOTY

1T (YPFOTR

_ [(YPR—(P"PRJJOY)
T YPP=(AP R0

1—R=—[(P*P}/(OY)]

= =RE-[(PPOYY - 19
It is clear from Theil (1971, p. 174) that
[
- = (1+ —E ) e (20)

where [, is the usual {-ratio or the ratio of the first clement of b to the square
root of the first diagonal element of s*(X'X)-'. Equating the righthand
sides of equations (19) and (20) gives

1R (Pp0Yy) = (14+ B Jn—re—prp0nm

trom which it follows that

Ro-R% = B (1R (P PYOY )4 f"’&(w.

It may he noted that the cos ¢ is equal to a partial correlation coefliciont lr;r, ia avector of
unit elementsor wlien ; is not a veetor of unit clemnents if y, @, and @ are expressed as doviations
from their reapective means. This point is not cloar from Theil (1071, 172-173).
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More generally, for h=1,2,..., K > 2

R®—R%

= B (1= Ry (OBl XX by —bT,)— (D—D") X' X(b—b")]
= -1 { ¥y

e K) (1—R%)+[(R2,— R%)—(R*—R*¥)] .. (21)

where b_p = (X_,X_»)"*X_,y is the least squares estimate of coefficients in
the truncated model y = X_nB_p+up, b2, is asin (10) and R? and R2, are the
same as the square of the multiple correlation coefficient and R} defined in
Theil (1971, pp. 164 and 169) respectively. The result in (9) implies that
(B2,—RZ) > 0 and (R*—R*) > 0.

It has been shown by Theil (1971, p. 175, Problem 3.3) that the first
term on the right-hand side of equation (21) is equal to the incremental con-
tribution of the h-th independent variable implied by the unbiased least
squares estimator b. Therefore, it follows from (21) that when we arrange
the independent variables in descending order of their incremental contribu-
tions (R*2—A%%) or the corresponding squared ¢-ratios (1), we do not get the
same arrangement unless the second term on the right-hand side of (21) is
zero. This second term is zero in the case of unbiased estimation.

The difference between the incremental contribution (12) and the corres-
ponding incremental contribution implied by b (or the first term on the
right-hand side of (21)) is equal to the second term on the right-hand side of
(21). A change of procedure from that dictated by the minimum variance
linear unbiasedness criterion can increase or decrease the incremental contribu-
tion of the k-th variable according as this second term is positive or negative.
Since the second term cannot always be positive for every h, we cannot say
that a biased estimation will always push the absolute value of the multi-
collinearity measure (13) toward zero regardless of the values of ii., W and A,

even though R? in Theil’s (1971, pp. 175 and 179) measure, R*— E (R*R’,‘),

of multicollinearity based on the estimator b is always bigger tha.n R*, as
shown in (9).

It is found by Theil’s (1971, p. 175, (3.12)) result that equation (21)
can be written alternatively as

R™—R%, = f(1—R%)+H{(B2,—RS)—(R*—R3)]. .. (22)
B 3-15
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The first term on the right-hand side of this equation shows that when an
unbiased method of estimation is employed, the incremental contribution of
the k-th explanatory variable is equal to r; times a factor which is at most
equal to 1. This factor states that in the case of unbised estimation, given
1, the larger the proportion of the variation in the dependent variable
accounted for by the K—1 other explanatory variables, the smaller the
incremental contribution of the X-th variable. In this instance, the h-th
independent variable may be a minor variable of little consequence. If we
change to a biased estimation method this minor variable may become a
variable of major contributing significance depending on the sign of the
second term on the right-hand side of (22). In view of the importance of
this second term, let us study it further.

Subtracting (10) from b_, gives
b_p—b%, = (X1, X n) ' —[X_, X a+sR(WAT'W)_n "} X,y
= (XLX ) M= [ XX a4+ s*p(WAT'W)_p _n
— SR DT W) p [ XpXat-SSRW ATIW) 4]y X sy
= S\ X (WW'AT W) b
Therefore,
(b_a—b",) X, X_5(b_p—b",)

= Y% (W AT W)_nn(X_pX_p) (W AT'W)_p, b5 .. (23)
Similar algebraic operations give
(b—b*)X'X(b—b") = a2 WA 'W(X'X)'W' AT 'Wb*. . (29)

Notice that (23) minus (24) is not always positive for every k. The second
term on the right hand-side of (21) cannot take substantial values if  is very
small. In other words the incremental contribution of the A-th variable
implied by the biased estimator (4) cannot be very different from that implied
by the unbiased estimator b if i takes a tiny value.

It should be noted that when we use the estimator (2) or (3) in place of
the estimator (4) used in (12), the result (22) shows that the use of certain
values of @ (or EB) and AW'A'W (or cov(R)) may result in implausible values
for the incremental contributions. From this we infer that sufficient caution
should be exercised in choosing the values of E and cov(B). We should
choose among these values by reflecting on their operating characteristics.
The operating characteristic of an estimator of B can be taken to consist of
the absolute value of the estimate of multicollinearity based on that estimator.
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In many complex settings such as those of econometric estimation, any
operating characteristic that is sensible for the treatment of optimality or
admissibility requires considerations additional to the multicollinearity effect
and iner tal contributions, e.g., reflecting the mean square error of an
estimator. We suggest choosing from the estimators, (2), (3) and their opera-
tional versions like (4), one that has desirable operating characteristics. The
relative risk properties of these estimators are discussed in Thurman, Swamy
and Mehta (1984).

However, any attempt to find an estimator with desirable operating
characteristics cannot succeed if it failed to take note of the conflict between
minimaxity and the conditioning problem pointed out by Casella (1980).
That is, there is an incompatibility between the criterion of reducing the risk
of the estimator (2) or (3) below that of b for every possible value of B and
the criterion of lowering the condition number of the basic data matrix X
(a measure equal to the square root of the ratio of the largest to the smallest
eigenvalues) by augumenting the rows of X by some other rows. As empha-
sized by Casella (1980, p. 1052), some compromise between the two criteria
is needed, and the empirical examples of Section 3 are aimed at illustrating
such a compromise. In view of this conflict, not every kind of prior informa-
tion about @ which solves the numerical problem will also solve the statistical
problem. For example, the prior values 1", (.-i and x#~'A, may be such that
the condition number of the matrix (X'X+o2%W'AT'W) inverted in (2) is
much smaller than the condition number of X’X but the risk of the estimator
(2) based on these values is larger than that of b. Thus, caution should be
exercised in formulating and using prior information.

3. APPLICATION OF MEASURES TO THE ROTTERDAM MODEL
How the compromise advanced by Casella (1980, p. 1052) works in
practice can be conveyed by presentation of some illustrative examples with
the various estimates of incremental contributions and multicollinearity
provided. In this section we work with the Rotterdam model in absolute
prices which for fourteen commodity groups takes the following form :

_ 13
wyDgu = yiDQi+ ’2] miy(Dpp—Dpyar)+usn

(t=12,..,13;t=1,2,..,31) .. (25)
where the dependent variables are the (annual) quantity log-changes of the
individual commodity groups multiplied by the corresponding value share
averages of the years (—1 and ¢, y; is the marginal value share of the i-th
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commodity group, D@Q; is the sum of the dependent variables of all 14 demand
equations, the #'s are the price coefficients, Dpj; is the (annual) price log-
change of the j-th commodity group and wy is a disturbance term; see Theil
(1975, pp. 24, 39-42, 48-49). We estimate the model (25) using the Dutch
data for the years from 1922-23 through 1938-39 and 1949-50 through 1962-63
given in Theil (1975, 264-265). Asin Theil (1975, 41-42), we assume that

wy fs=t;
Euy = 0 for every i and ¢ and Buguy = .. (26)
0 if s #¢L.

Since we have illustrative purposes in mind, we estimate each equation in
(25) separately ignoring the symmetry constraints my=my for i #j
=1,2,...,13. [A ridge procedure which®utilizes such symmetry constraints
is developed in Swamy and Mehta, 1983]. We can combine the 31 observa-
tions for each 4 in the form

Y= XBit+w (i =1,2,...,13) . (27)

where y; and w; are 31-element column vectors having wiDgy and ug as their
respective {-th elements, By = (i, iy, ..., 7iyy)" and X is the 31x14 matrix
of observations on the independent variables in (25). Now we apply the
formulas in Section 2 to each equation in (27). Since (25) does not necessarily
represent a distributed lag model, we set W = 1. [For an application of the
estimator (4) with W s I to a distributed lag model, see Thurman, et al.
(1984) and Kashyap et al. (1984). The following coefficient estimators are
applied to each equation in (27) to compute the incrememtal contribution
and multicollinearity.

1. The least squares (LS) estimator : b.

2. The SMR estimator : The Swamy, Mehta and Rappoport (1978)
estimator (4) with W = any orthogonal matrix and A, = I.

3. Casella’s (1980) estimalor : The estimator (2) wth W@ =0, W = an
orthogonal matrix which diagonalizes X'X,0*=sand yA7' = D, a diagonal
matrix whose i-th diagonal elememt is

2AK—2A;L (n—K)
(n—K12)(6' X' Xb+gs*+0)

(28)

where K = 14, n = 31, A; is the i-th eigenvalue of X'X, Ay, is the lurgest
eigenvalue of X'X, § = 2(n—K)(K—2)(n—K+2)~! or 0 and ¢ = 0.
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4. The HEB estimator : The Hoerl, Kennard and Baldwin (1975)

estimator which is the same as the estimator (2) with Wé =0, W = any
orthogonal matrix, A, = I, 0 = s* and
K
r= Db’ . (29)
where D, is the diagonal matrix having the same diagonal elements as the
matrix X'[I—1(UN)" W] X withl = (1, 1, ..., 1)’,an X 1 vector of I's.

As we have argued in Section 2.2, real multicollinearity cannot arise
unless the coefficients corresponding to the nonorthogonal columns of X are
nonzero. The Swamy and Mehta (1983) ridge estimates show that of 182
estimates of the coefficients in (25) only 37 are significantly different from
zero. Therefore, the measure (13) can precisely measure real multicollinearity
if it is based on the prior information which precisely represents the popula-
tion values of the coefficients in (25).

The values of s? and the measures (7), (12) and (13) when the LS estimator
b is used in place of b* used in defining these measures, are given in Table 1
for all the 13 equations in (27). The figures in parentheses below each esti-
mated value of the multicollinearity are the values of (m%, m;) defined in
(17). As expected, our measure (13) indicates different degrees of multi-
collinearity for different equations in (27). The value of the Thisted (1980)
measure for estimation is 1-745 which gives the impression that there is no
high degree of collinearity in Theil's (1975) data on the variables in (25). This
impression has been contradicted by the value of the measure (13) for the

10th equation in (27). For this equation the 7 value of (18) is 0.6 which is
closer to the value of 0.84 of m, than to zero.

The rankings of independent variables by the values of themincremetal
contributions are also given in Table 1. The figures in parentheses next to
each estimated value of the incremental contribution are the ranks of indepen-
dent variables when they are ordered according to decreasing values of the
incremental contributions. It can be seen from these ranks that the contribu-
tion to explanation provided by either the income or the relative own price
term is not the largest in 5 of the 13 equati In 8 equati the incre-
mental contribution of the independent variable with the first rank is even
smaller than the fraction of the variation in the dependent variable not
accounted for by all the included explanatory variables. The 6-th equation
in (27) does not fit the data well. Much of the variation in the dependent
variable of the 6-th i i d for.
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Table 2 reports the estimates of (7), (12) and (13) for the SMR estimator.
The values of s? times f are also reported in this table. The estimated incre-

tal contributions, Iticollinearity and R*? arc of the same order of
magnitude in Tables 1 and 2, the margins of difference being generally
ligible. This is b the values of s%2 employed in (4) are very small.

e

It is clear from the simulation study of Hoerl, Kennard and Baldwin (1975)
that the optimal values of the ridge parameter will be close to zero when the
error variance is small. Since the error variance estimates given in Table 1
are tiny, the values of z given in Table 2 may be optimal. Still, the LS
estimator and the SMR estimator yield different rankings for the independent
variables of the 6-th equation in (27). A comparison of the values in the rows
labelled ‘“Multicollinearity” in Tables 1 and 2 shows that a small increase

in the value of s%% in (4) from zero can resut in a detectable increase or decrease
in the absolute value of the multicollinearity measure (13). Specifically for
the 6-th equation in (25), the multicollinearity estimate decreased from
0-097 to 0-080 as we increased the value of % from 0 to 0-0355 whereas for
the 3-rd equation the multicollinearity estimate increased from 0-221 to
0-230 as we increased the value of s%2 from 0 to 0-0015. More importantly,
for the 10-th equation where there is a high degree of multicollinearity the
biased SMR estimator leaves us with about the same measure of multi-
collinearity as the unbiased LS estimator. The change in the multicollinearity
estimates using the SMR estimator is generally “‘minuscule” for this example.

Tables 3 and 4 set out the estimates of (7), (12) and (13) implied by
Casella’s estimates of coefficients. The differences between the estimates
given in these two tables are entirely attributable to the differences in the
value of g used. Table 3 is based on the value § = 2(K—2)(n—K)(n—K+-2)?
and Table 4 is based on the value g = 0. The estimates of (7), (12) and (13)
implied by the HKB estimates of coefficients are given in Table 5. The range
of the diagonal elements of s2D in (28) and the value of s times (29) are alse
given in these tables. The figures in parentheses next to each estimate of
the incremental contribution and also below each estimate of the multi-
collinearity have the same interpretation as those in Tables 1 and 2. Estimates
of incr tal contributi Iticollinearity and R*2, implied by the LS,
SMR, and Casella coefficient estimates, may be compared by referring to
Tables 1, 2, 3 and 4. There are cases in which the choice of coefficient esti-
mator or g-value makes a detectable difference in the estimates of (7), (12)
and (13). The operating characteristics of Casella’s estimator depend on
the value of 7 used. Our interpretation of Tables 1, 2, 3 and 4, then is that
in terms of multicollinearity there is no demonstrable payoff to the use of
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Casella’s estimator. For 7 (or 8) of the 13 cquations considered, the SMR
estimator rates higher in terms of low multicollinearity than the LS (or
Casella) estimator. This shows that the measure (13) gives results which
are consistent with Casella’s (1980) analytical result that there is a conflict
between minimaxity and the multicollinearity problem. The additional
information utilized by minimax (or ncar minimax) estimators can increase
(or decrease) the multicollincarity in the data.

This conclusion is further strengthened by the values in Table 5.
The reductions in R*2 and multicollinearity, and the changes in incremental
contributions through the use of the HKB estimator are clearly and
dramatically reflected in the values of this table. These reductions and
changes are the consequences of the fact that the value of (29) is much
larger than fi. That is, by using a sufficiently large value for s in the
HKB estimator we may be able to push the estimate of multicollincarity
toward zero. Unfortunately, the HKB estimator with a large value of g
may be iuferior to the LS estimator by the criterion of smaller mean
square error. This follows from the fact that §* times (20) far exceeds the
smallest diagonal clement of s2D in (28) given in Tables 3 and 4 for all
the 13 equations and the HKB estimator is not (near) minimax with respect
to the quadratic loss functions. These results point out to econometricians
that there exist possible dangers involved in applying the standard approach
to the problem of multicollincarity. Use of additional information as an
aid in estimation to reduce multicollincarity may result in inefficient
estimates. This should dissuade us from velying on the criterion of reducing
multicollinearity exclusively.

"On the other hand, the SMR and Casella estimators are nearly minimax
and minimax respectively, with respect to the quadratic loss functions but
do not lead to impressive reductions in the multicollinearity. The HKB
estimator rates higher in terms of low multicollinearity than the other esti-
mators considered, but does so with the sacrifice of a minimax condition.
The biased estimators which are not minimax or nearly minimax appear to
cope easily with multicollinearity that an unbiased and (near) minimax biased
estimators find difficult. Therefore, we may not be able to reduce the multi-
collinearity in the data by using a minimax estimator of B.

The problem of multicollinearity is difficult to solve if minimaxity is an
absolutely essential property for an estimator. Berger (1982, p. 81) points
out that any minimax estimator having uniformly smaller risk than the LS
estimator (b) will have substantially smaller risk only in a fairly small region
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of the parameter space. Ideally, we hepe to_find & minimax éstivator’ that
has substantially smaller risk than & in a small region which covers the
“true” value of B. Since such a region is not known, we, like Berger (1982,
p- 83), feel that minimaxity is not an absolutely essential property for an
estimator, particularly when minimaxity is dependent, as it usually is, on
the mathematically convenient loss structure assumed. Tor this reason, we
solve the multicollinearity problem by choosing & “near’ minimax estimator
which leads to a smaller mecasure of multicollinearity (13) than the LS
estimator. Thus our formula (13) can play an important role in the choice
of estimators.

We consider it less important in every way to determine the value of z
for which the multicollinearity estimate is smallest in absolute value rather
than the value of 2 which yields a near minimax biased estimator of 8. The
value of £ in (4) leads to such an estimator in most circumstances. By using
the SMR estimator, we may both improve upon the squared error loss of the
LS estimator (Swamy, Mehta and Rappoport, 1978) and not worsen the
multicollinearity problem. The suggestion advanced is that cvery problem
should be studied and if it is not known which loss function is acceptable
or which estimator is best, the SMR estimator which has bounded second-order
moments even in a highly collinear situation should be used.

4. (‘oNCLUSIONS

The question of whether any of the biased estimation methods suggested
in the statistics literature can cope with the multicollinearity problem better
than the unconstrained least squares method cannot be answered without
knowing the estimates of multicollinearity implied by both types of estimators.
In order to answer this question we have developed in this paper a formula
for measuring multicollinearity which takes different values for different
coefficient estimators andfor for different equations. It takes the correct
value of zero for an orthogonal model and a nonzero value for a multicollinear
or nonorthogonal model. Applying this measure of multicollincarity to a
few empirical examples, we have found that if onc forces a biased regression
estimator to satisfy the minimax conditions, then the other goal of reducing
multicollinearity will not be realized. The principle for estimation emphati-
cally rejected by us is that of minimizing the single measure, viz., the absolute
valuc of the estimate of multicollincarity. We favor instead choosing from
the near timators one that minimizes the ahsolute value of the

timate of multicolli ity. The cstimator which is satisfactory from
this point of view is the SMR estimator (4) which nearly sutisfies Casella’s
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(1980, p. 1048) minimax conditions and does not worsen the multicollinearity
problem. Casella’s (1980, p. 1049) and HKB’s (1975) estimators are not
satisfactory because the former does not solve the multicollinearity problem
and the latter may lead to inefficient estimates.

Appendix
Pr ition : The e (13) is degenerate at 0 iff X'X and W'AT'W

P

are both diagonal.
Proof : Recall (14) which is
y'ym = y'(4.—B,)y. . (A)

It is now convenient to distinguish between the cases where Ay!= 0 and
At #£0.

Case 1. Ap'=0. The quadratic form (A.l1) is a continuous random
variable with its matrix equal to A,— B, which is fixed. Therefore (A.1) =0
with probability 0 if A,— B, is not null and = 0 with probability 1 if 4,—B,
is null. From (A.1) it follows that 4,—B, = 0 iff

K
X(X' X)X — hZ [X(X'X)'X'—X_p( XX 5)' Xl =0 ... (A2)
=1
or, equivalently, iff
K
X(X'X)'X'— 2 M_pxp(x,M_yx,)x,M_ =0 .. (A3)
n=1

where M_p = I—X_5(X_,X_3)"'X, and @y is the A-th column of X and use
is made of the matrix identity given in Theil (1971, p. 682, (B.23)).
Recognizing that both matrices in (A.3) reduce to the same matrix,
él @n(x;xp) '), when X'X is diagonal, we see that condition (A.3) is true
if X'X is diagonal; m = 0 with probability 1 in this case.
To prove the necessity, suppose that condition (A.3) is true, so that
M takes the value 0 with probability 1. Then the matrix

K
[X(X' X)X — ’2 M _yaon(aenM_paen) M _p] X
=1

K
XX[X(X'X)1X'— »E M_pap(xyM_pan)2xyM_p] w (Ad)
-1
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must be null. This matrix simplifies to
2“ A A
& Ty, ... (A.5)

where & = X_a(X_,X_ )X s, which involves only sums of squares and
products. The fact that (A.5) is a null matrix implies that &, = 0 for b = 1,
2, ..., K which, in turn, implies that X'X is diagonal. Hence 7 cannot take
the value zero with positive probability if X’'X is not diagonal. However,
can take the value 0 for a specific value of y when A,—B, is not null. In
the cases in which X'X is not diagonal, % # 0 for all values of y, except
possibly in certain points, of which any finite interval contains at most a
finite number.

Case 2. Ap' # 0. TFirst, the value of y = 0 (a vector of zeros) occurs
with probability zero. In that event, s% = 0, 4,— B, is fixed and null or
nonnull as in Case 1 and the variable (A.1) takes the value zero with proba-
bility zero. Next, y can take an interval of values with positive probability.
If this interval does not contain zero, then the matrix 4,—B, is random and
has a constant rank over the entire interval. This rank depends only on the
ranks of X'X and W'AT'W. Consequently y cannot be an eigenvector of
A,—B,_ corresponding to its zero eigenvalue. (If it were, then (A.1) would
be equal to zero with probability 1.) The variable (A.1) takes the value zero
with positive probability iff the matrix A,— B, is null for an interval of values

of y not containing 0. We see from (14) that for the values of js? correspond-
ing to these values of y, 4,—B, = 0 iff

24,—A,, =0 .. (A8)
where

K
A, = X(X'X+3WADW) X' — T [X(X' X+ AW A7 W)X
h=1

— X _w( XX W AT W) _p _n) X5 .o (AT)
and

4,, = X(X'X+s%W AT W)X X( X X+ s2hW' AT W)L X!
K
— 2 X(X'X+sW AW X X(X' X+ W AT W)X
h=1

B
+n21 X (XX gt (W ATW) _n,_n) X X a(X 5 X )

+8UW AW _p, )2 XL, ... (A8)
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Since the matrices in (A.8) are obtained by squaring each matrix in (A.7),
any matrix in (A.7) cannot cancel with any matrix in (A.8) and A4,—B, is
null iff 4;, = 0 and 4,, = 0.

Defining
X
X=[L0] _ = JX, .. (A9)
sV EDTEW
we can rewrite (A.7) as
E
A= JX,(X;X,)—‘X;J’—")Z [IX( X. X)X, J'
=1

— X, MXe 1 Xe 1) Xeond') - (A0

where X, _j is formed from X, by removing its k-th column, &, 4, and similarly
we can rewrite (A.8) as
Ay, = JXA X, Xe) ' XTI X (X X)X

K
— B [IXAX, X)X IXAX X)X T
h=1
S ) AIND A SRR (0 5 b AINS NS AUV o U}
(A1)

Again using the matrix identity in Theil (1971, p. 682, (B.23)), we can show
that (A.10) is equivalent to.

K
Au = J[X.-(X;X,)“X,‘,—-,El Nlr,_n-'l'e,h(-'l’:_I:N]t,-ha'e,h)_lw:,-l‘Me,_h]J' ... (A12)
=

where M, _p =I—X, n(X._,Xe _»)'X;_;. By an argument parallel to
that underlying (A.3)-(A.5), we see that the matrix

K
X,(X;X,)~'X;—h§l Mz,_nme,h(w:',l:lua.—ha'c,h)_lz;,hMa,—h . (A1)

is null iff X, X, is diagonal. The matrix (A.12) is null iff (A.13) is null. Hence
A, is null iff X X, is diagonal.

First adding and subtracting the matrix

K
2 IX e (Ko Xo )X i IR XXX . (A9
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to (A.11) and then applying the matrix identity in Theil (1971, p. 682, (B.23)),
we have

K
Ay = JX(X, X)X — 5 Mo_1Ten
(@, s Mo, ne,0) 0, Mo, _p ) J X (X X)X H'
R
=2 I n(Xe -1 X)X T T M 1T

(@, 1Mo, 1, 1) X0 s Mo, _peJ. ... (A.15)
To rewrite this matrix in a convenient form, it is useful to add and subtract
the matrix

hi_l.lx.(x;x,)—xxJ'JM,,_,z,,h (@ My o )T M. ... (A16)
Doing so, we find that (A.15) changes to
Ay = JE(XXS X £ M, a2,
(%, AM g, 4, 1)1, s M _p ] I[ Xo(X X)X,

):4

= nzl M, e,—hmn,h(a';,th,—hzs, n)'lz;, hMe,_n]J i
ES , g

—"21 IM,_n%o, w5 1Mo, _ne, 5) " X2, neM,_nd’

K .
'hze% IJMG.—hme,h'(m;,h’Me_—hwc. W) v Mo w1 - (A7)

The right-hand side matrices in this equation do not cancel one with another
when either X'X or W’'A7'W is nondiagonal.

Finally, we verify from (A.6), (A.12) and (A.17) that

A4, B, = ALK XX K= 3 My 0op(@iaM xto) M 210
—IX(XX )X ff_lm,.4mc.r.(z;_nM.,Jz.,»)—lz.'m.,.n]J'
XIE(KEN o B My 003 s ) g M 2
B TMy @0p(@y s My rep) T s M, o' .j- IMym

X (o s Mo /0, nt) 0 My, _nr'. . (A18)
B 3-17
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In conjunction with the results in (A.13) and (A.17), this equation suffices
to show that 4,—B, is null iff X,X, is diagonal.
Proposition 1 also implies that the sum of the modified incremental

contributions of the K explanatory variables is exactly equal to their total
contribution R*2 iff X,X, is diagonal.
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