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The relationship between the physical properties of metal is often very complex
in nature with its chemistry and several other rolling parameters in operation.
Non-linear regression models play a very important role in modelling the
underlying mechanism, provided it is known. Artificial neural networks provide
a wide class of general-purpose and flexible non-linear regression models. The
most commonly used neural networks, called multi-layered perceptrons, can vary
the complexity of the model from a simple parametric model to a highly flexible
nonparametric model. In this particular work, an industry-based data set is
used for learning and optimizing the neural network architecture using some
well-known algorithms for prediction under neural-net systems. The outcome of
the analysis is compared with the results achieved through empirical statistical
modelling from its prediction error level and the knowledge of materials science.

Keywords: Artificial neural network; Steel; Regression models; Learning;
Backpropagation algorithm

1. Introduction

An artificial neural network (ANN) is an information processing paradigm that
is inspired by the way that biological nervous systems, such as the brain, process the
information. It is composed of a large number of highly interconnected processing
elements, known as neurons, working in unison to solve specific problems. ANN
is configured for a specific problem such as pattern recognition, data classification
or prediction through a learning process. Learning in biological systems involves
adjustment to the synaptic connections that exist between the neurons. All neural
networks have some set of processing units that receive inputs from the outside
world, which can be referred to appropriately as the ‘input units’ or ‘input nodes’.
It does have one or more layers of ‘hidden’ processing units that receive inputs only
from the other processing units. The set of processing units that represent the
final result of the neural network computation is designed as the ‘output units’.
The process, which the ANN uses for learning, has a lot of similarities with the



700 P. Das and S. Datta

process of statistical estimation. Neural networks are nothing more than function
approximation tools which learn the relationship between independent and
dependent variables, much like regression analysis or other traditional approaches.

Concrete applications of neural networks to real problems started from the end
of the 1980s when the backpropagation algorithm was introduced for the
computation of the network parameters. In the last decade many statisticians
have investigated the properties of neural networks and it appears that there exists
a considerable overlap between statistical and neural network modelling. Neural
network can be seen as a general way to parameterize data through arbitrary
non-linear functions from the space of explanatory (casual, factor) variables to the
space of explained (response, dependent) variables. The most commonly used
artificial neural networks, called multilayer perceptrons, are nothing more than the
nonlinear regression and discriminate analysis (Sarle 1994). Along with some
relevant statistical techniques, ANN provides better treatments to some common
problems of modelling and inference (Cheng and Titterington 1994). There are
similarities of terminologies between statistics and neural network like (variables,
features), (estimation, learning), (estimates, weights), (interpolation, generalization);
(observations, patterns) and many others (Sarle 1994). Some neural network models
are similar or almost identical to statistical techniques. For example, feed-forward
nets with no hidden layers are the generalized linear model, probabilistic neural nets
are identical to kernel discriminate analysis, Kohonen learning for adoptive vector
quantization is very similar to K-means cluster analysis, etc. The principal difference
between neural networks and statistical approaches is that neural network makes
no assumptions about the statistical distribution or properties of the data, and
therefore tends to be more useful in business and practical situations.

Neural network can also be applied very effectively and efficiently to those areas
where developing a physical model is very difficult. Several attempts have already
been made in semiconductor processing, but those were mostly confined to the
plasma etching process of the wafers (Himmel and May 1993, Kim and May 1994).
Jeong et al. (2005) obtained NNPLS-based prediction model and optimized the
relationship between critical process parameters of photo-etching process and the
defect quality of shadow mask using a genetic algorithm. Jiao et al. (2005) modeled
the dimensional error in turning operations using a fuzzy adaptive neural network
considering the complexity of machine tool structure and the cutting process.
In another work, a multi-layered fuzzy neural network is used to improve the
performance of conventional automatic landing systems (Juang and Chio 2005).
Pacella et al. (2004) compared the performance of adaptive resonance theory-based
neural network and the conventional control charts to detect the abnormal patterns
observed during control of manufacturing processes. There are several such
applications in the steel-processing sector, like steel plate rolling process where
predicting the properties of steel products such as yield, tensile strength and
elongation are very important. Gorni (1997) described the performance of neural
networks developed under different process conditions at COSIPA industrial rolling
mills, Brazil. The models show better precision than the already developed intensive
statistical counterparts. Singh et al. (1998) developed neural network models for
estimating the yield and tensile strength as a function of steel composition and rolling
parameters. The predictions are reasonable in the context of metallurgical principles
and other data published in the literature. Datta and Banerjee (2004) optimized
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a NN model with 4 layers and 48 hidden nodes for studying the input-output
relationship of high-strength low-alloy (HSLA) steels using the hyperbolic tangent
transfer function.

This paper includes a comparative study of statistical process of prediction
and that of a neural network for a highly complicated system in steel. The data used
in the context are generated in the metallurgical laboratory. Dual phase (DP) steel,
one of the prospective members of the family of HSLA steels, has been considered
for this study. This steel possesses composite microstructure comprising hard
martensite particles dispersed in the soft ferrite matrix. C, Mn, Si, Cu, Ti and B,
cold deformation, cooling rate, aging time and aging temperature have been taken as
input parameters, whereas hardness is designated as the output variable.

The paper contains the general discussion on the basis of prediction tools
like linear regression, stepwise regression, generalized linear model (GLM), and
projection pursuit regression (PPR) along with the backpropagation algorithm used
by ANN for learning, generalized regression neural network (GRNN) are discussed
in section 2. The implementations and results are given in section 3 followed by
comparison of results. A brief discussion on the results and conclusions are stated in
sections 4 and 5, respectively.

2. Materials and methods

2.1 Linear regression analysis

Regression analysis is a statistical technique for investing and modelling the
relationship between variables. The simple linear regression model can be written as

y=p +Bixi+Bxat -+ Bpx, +¢ (1)

where y is the response variable, x;, x»,...,x, are predictors and error is defined
by e. The term linear signifies that (1) is a linear function of the unknown parameters
Bo. - - -, By. These are known as regression coefficients. The parameter f; indicates the
unit change in the response y per unit change in the x; when all other predictors,
x; (i#]), are held constant. In some situations we may get a more complex relation
with quadratic or higher-order polynomials.

P p
y=PBo+ Y Bxi+ Y Bixi+ Y Bixix; 2)
i=1 i=1

Jj>i

The linear regression model is based on the basic assumption that the errors are
random and independently normally distributed with mean E(e;)=0 and variance
Var(e;) =o°. If the assumption holds true then the parameters B; can be estimated
by the least-squares method.

One of the important parameters for regression analysis is residual mean
square error (MSE). The lower the value of MSE, the higher is the adequacy of the
model. Instead of MSE, there are two major parameters, by which we can assess
the overall adequacy of the model—R? and adjusted R*. These give an idea about
the proportion of the overall variability in response as expressed by the model
(Montgomery et al. 2001).
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2.2 Stepwise regression

Evaluating all possible regressions can be burdensome computationally; various
methods have been developed for evaluating only a small number of subset
regression models by either adding or deleting regressors one at a time. These
methods are generally referred to as stepwise type procedures. These are forward
selection, backward elimination and stepwise regression. The last one is a popular
combination of procedures of the first two. It is a process in which at each step
all regressors, entered into the model previously, are reassessed via their
partial F-statistic and considered as current members in the model (Montgomery
et al. 2001).

2.3 Generalised linear model (GLM)

A generalized linear model provides a way to estimate a function (called the link
function) of the mean response as linear function of the values of some set of
predictors. This is written as

4
g(E(Y/X)=g(u) = o+ Y BiXi = n(X) 3)
i=1

where g is the link function. The linear function of the predictors, n(X), is the linear
predictor. For GLM, the variance of Y may be a function of the mean response u,
ie. Var(Y)=q Var(u).

A very fundamental idea is that there are two components to a GLM: the
response distribution (also called the error distribution) and the link function.
Another concept underlying GLM is the exponential family of distributions, which
includes the Normal, Poisson, Binomial, Exponential and Gamma distributions
as members. Since, the normal error in linear model is just a special case of GLM,
it can, therefore, be thought of as a unifying approach to many aspects to empirical
modelling and data analysis.

The estimates of the regression parameter in GLM are maximum likelihood
estimates, produced by iteratively reweighted least squares (IRLS) (Myers et al.
2002).

2.4 Projection pursuit regression (PPR)

Let Y; (response) be the observation corresponding to X; = (X;,...,X, ip)T
Vi=1,...,n. Let, aj,a,...,denote p-dimensional “unit vectors’ known as ‘direction’
vectors.

To find M,, direction vector a;,as,...,ay, and the nonlinear transformations

@1, 92, . ..., such that
= MO
Y Y+ BubmlanX) )
m=1

provide a ‘good’ model for the data (Y, X;), Vi=1,...,n The ‘projection’ part of the
PPR is that the carrier vector X is projected onto the direction vectors ay, az, . . ., dp,
to get the lengths al X, Vi=1,...,n of the projections, and the ‘pursuit’ part
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indicates that an optimization technique is used to find ‘good’ direction vectors
ap, az,...,dy,.

More formally, Y and X are presumed to satisfy the conditional expectation
model

M
E[Y/X],...,Xp] = MY"‘Zﬂm(pm(alz;X) (5)

m=1

where puy=E(Y), and ¢,, have been standardized to have mean zero and unity
variance:

Elom(@iX)] =0, E[gpalX)]=0, m=1,...,M,

The true model parameters B, ¢, @, m=1,..., M in equation (5) minimize the
mean square error

M, 2
E[Y— y — Zﬁmm(am] (6)

m=1

over all possible values of 8,,, ¢,,, and a,,.

In order to determine a ‘good’ model for PPR, the value of M, should be
optimized. First, it has to be started with M,,;,=1 and set M at a value large
enough for the data analysis problem in hand. For a relatively small number of
variables p, say p <4, one can choose M > p. But for large p, it is preferred to choose
M < p. For each order m, 1 <m > M, PPR will evaluate the fraction of unexplained
variance

SSR(m)
S owlYi— 7T

A plot of ¢*(m) versus m which is decreasing in m may suggest a good choice
of m=M,. Often ¢*(m) will decrease more rapidly when m is smaller than a good
model of order M, and then tend to flatten out and decrease more slowly for m larger
than M, (Friedman and Stuetzle 1981).

(m) = ()

2.5 Human brain and artificial neural network

In the human brain, a typical neuron collects a signal from others through a host
of fine structures called ‘dendrites’ (figure 1). Then it sends the spikes of electrical
activity through an ‘axon’ into thousands of branches. At the end of each branch, the
‘synapse (link)’ converts these activities into excitation of other connected neurons.

The magnitude of the signal received by a neuron depends on the efficiency of the
synaptic transmission. A neuron will fire (i.e. send an output impulse) if its net
excitation exceeds its inhabitation by a critical amount (threshold). Firing is followed
by refractory period during which the neuron will stay inactive.

2.5.1 Backpropagation. Generalizing the Widrow—Hoff learning rule to multiple-
layer networks and non-linear differentiable transfer functions created back-
propagation. Input vectors and the corresponding target vectors are used to train
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Figure 1. Human nervous system.

a network until it can approximate a function, associate input vectors with specific
output vectors, or classify input vectors in an appropriate way as defined by users.
Standard backpropagation is a gradient descent algorithm in which the network
weights are moved along the negative of the gradient of the performance function.
The term backpropagation refers to the manner in which the gradient is computed
for non-linear multilayer networks. There are a number of variations on the basic
algorithms that are based on other standard optimization techniques, but scale
conjugate gradient and Levenberg—Merquardt algorithms are the most effective and
appreciable.

2.5.1.1 Scaled conjugate gradient (SCG). The basic backpropagation algorithm
adjusts the weights in the steepest descent direction (negative of the gradient).
In the conjugate gradient algorithms a search is performed along conjugate
directions, which produces generally faster convergence than steepest descent
directions. In the case of quadratic functions, exact answers are obtainable without
calculating second-order derivatives.

Given a symmetric matrix Q, two vectors d; and d, are said to be conjugate
with respect to Q if lede = 0. An important result is that when the matrix Q is
positive-definite, a set of non-zero conjugate vectors is also linearly independent.
The conjugate gradient algorithm for a quadratic problem is defined as follows:

1. Let dy=—Vf (x9) =b — Ox,, where xo€ R" is an arbitrary starting point.
2. For k=0,1,...,(n—1), define Vf (x;)=0x; — b, and do

(VAx)) d,
(@)  Xk41 = Xk + ardy, where q; = —% 8)
vica)NT dy
(®)  dir1 = =Vxkt1) + Bl B = M )
d; Qdy.
Commonly used stopping criteria are:
|ﬂxk+1) _ﬂxk) <Eg and ’xk+1 — xk| <8 (10)

2.5.1.2 Levenberg—Marquardt (LM). The Levenberg—Marquardt algorithm was
designed to approach second-order training speed without having to compute the
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Figure 2. Feed forward architecture (single hidden layer).

Hessian matrix. When the performance function has the form of a sum of squares
(as is typical in training feedforward networks), then the Hessian matrix can be
approximated as M =J”J and the gradient can be computed as g=J"e, where J is
the Jacobian matrix that contains first derivatives of the network errors with respect
to the weights and biases, and e is a vector of network errors. The Jacobian matrix
can be computed through a standard backpropagation technique that is much less
complex than computing the Hessian matrix. The LM algorithm wuses this
approximation to the Hessian matrix in the following update:

Xietl = Xg — [JTJ—i— ,uI]_lJTe (11)

w is decreased after each successful step (reduction in performance function) and
is increased only when a tentative step would increase the performance function.
In this way, the performance function will always be reduced at each iteration
of the algorithm.

The network architecture that is most commonly used with the backpropagation
algorithm is multilayer feed-forward network (Rumelhart er al. 1986). Figure 2
shows a fully connected feed-forward network architecture.

Here

e the hidden nodes are arranged in a series of layers;

e the only permissible connection between nodes is in consecutive layers; and

e weights are specified for all connections. Biases and transfer functions are
proposed for each of the hidden and output nodes.

2.5.2 Generalized regression neural network. A generalized regression neural
network (GRNN) is often used for function approximation. It has a radial basis
layer and a special linear layer. The architecture for the GRNN contains a hidden
layer with radial basis neurons, and a special linear layer for the output layer.

The input to the radial basis transfer function is the vector distance between
its weight vector W and the input vector P, multiplied by the bias ». The transfer
function for a radial basis neuron is radbas(n) = e~ . The plot of the radbas transfer
function looks like a Gaussian distribution. So, it is clear from the plot that as
the distance between W and P decreases, the output increases. The bias b allows the
sensitivity of radbas neuron to be adjusted. The network will tend to respond
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with the target vector associated with the nearest design input vector. As spread gets
larger the radial basis function’s slope gets smoother and several neurons may
respond to an input vector (Specht 1991).

3. Implementation and results

3.1 Data background

Development of high-strength steels combined with adequate ductility, formability
and fracture toughness has drawn the interest of several metallurgists. The demand
of such steel is mainly in the sectors like automobile, defense and naval applications.
Dual phase (DP) steel provides the option for achieving judicious balance among
the desired mechanical properties. The microstructural constitution of DP offers the
opportunity of configuring the same in a flexible manner by varying the volume
fraction, morphology and distribution of the constituent phases.

In this regard, copper (Cu), being an element known to strengthen through solid
solution in ferrite as well as through precipitation hardening, a Ti-B micro alloyed
steel has been alloyed with Cu to utilize the individual effect of Ti, B, and Cu as well
as their synergistic combined effect. The purpose is to improve the hardenability
of austenite which in turn is expected to give rise a DP microstructure depending
on the finish rolling condition and cooling rate.

The alloy chemistry (C, Mn, Si, Cu, Ti and B), cold deformation, cooling rate,
aging time and aging temperature have been taken as input parameters, whereas
hardness is designated as the output variable. The data used for the present exercise
have been generated in the laboratories. The chemical analyses are done in atomic
spectrometer. Rolling has been carried in a laboratory scale two-high rolling mill.
The hardness testing has been carried out in Vicker’s hardness testing machine.

The ranges of the variables used in the present work are listed in table 1. Each
variable is normalized within the range of 0 to 1 for ANN modelling by the operation
given below and used in the same form for other statistical techniques as well.

X - Xmin

Ay=—"F"-""-"T"— 12
N Xmax_Xnill ( )

Table 1. The minimum and maximum limits of the parameters.

Parameter Maximum Minimum
C (wt%) 0.055 0.035
Mn (Wt%) 1.72 1.47
Si (Wwt%) 0.569 0.336
Ti (Wt%) 0.047 0

B (wt%) 0.0025 0

Cu (Wt%) 2.17 0
Cooling rate (CoolRt) (°C/s) 90 3
Cold deformation (ColdDf) (%) 70 0
Aging time (AgTime) (mins) 600 200
Aging temperature (AgTmp) (°C) 600 15

Hardness (VHN) 405 132
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where X is the normalized value of the variable X, and X, and X, are the
maximum and the minimum values of X, respectively.

3.2 Results

The results of modelling as found using different statistical techniques along with
neural network models are presented below.

3.2.1 Linear model. The simple linear regression model for the data considered is:

Hardness = 0.1381 — 0.1221(C) + 0.1248(Mn) — 0.1972(Si) + 0.1544(Ti) — 0.0227(B)
+0.4271(Cu) 4 0.1769(CoolRi) + 0.359(ColdDf) — 0.1236(Ag Tmp)
—0.0355(AgTime) (13)

The ANOVA table for the above model in given in table 2. The MSE and Multiple-
R? found for this model were 0.00472 and 89.95%, respectively.

3.2.2 Stepwise regression. The best-fitted second-order linear model found through
stepwise regression analysis is

Hardness = —1.2146 4 4.3838(C) + 6.9557(Mn) — 4.2404(Si) — 0.1474(Ti) + 1.6710(B)
+0.9606(Cu) +0.3151(CoolR1) 4 0.6309(ColdDf) 4 0.2289(Ag Timp)
—0.0772(Ag Time) — 5.1646(C?) — 3.3686(Mn?) — 0.1292(ColdDf?)
—0.2453(AgTmp*) —0.0564(Mn)(ColdDf)

—0.0708(Si)(CoolRt) — 0.1402(CoolRt)(ColdDf) — 0.0974(CoolRt)(Ag Tmp)
—0.2114(ColdDf)(Ag Tmp) +0.5662(ColdDf)(Ag Time) (14)

The ANOVA table for the model is shown in table 3. The MSE and Multiple-R>
found for this model were 0.00349 and 92.89%, respectively.

Table 2. The ANOVA table for simple linear model.

Source df Sum of squares Mean sqr F-value P-value
C 1 0.0370 0.03709 7.8572 0.0054
Mn 1 0.0096 0.00961 2.0358 0.1549
Si 1 1.4389 1.43891 304.79 0

Ti 1 0.8742 0.87426 185.19 0

B 1 0.0548 0.05487 11.621 0.0007
Cu 1 2.3189 2.31894 491.20 0
CoolRt 1 1.9215 1.92153 407.02 0
Cold.Df. 1 2.9005 2.90055 614.41 0
AgTmp. 1 0.1940 0.19403 41.100 0
AgTime 1 0.0127 0.01279 2.7092 0.1011
Residuals 231 1.0905 0.00472
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Table 3. The ANOVA table for the stepwise regression model.

Source df Sum of squares Mean square F-value P-value
C 1 0.037 0.037 10.62 0.001
Mn 1 0.009 0.009 2.75 0.09

Si 1 1.438 1.438 412.3 0

Ti 1 0.874 0.874 250.5 0

B 1 0.054 0.054 15572 9.9E—05
Cu 1 2.318 2.31 664.5 0

CR 1 1.921 1.921 550.6 0

CD 1 29 29 831.1 0
AgTemp 1 0.194 0.194 55.59 0
AgTime 1 0.012 0.012 3.66 0.056
C? 1 0.0002 0.0002 0.072 0.787
Mn? 1 0.079 0.079 22.85 3.2E—06
CD? 1 0.015 0.015 4.27 0.039
AgTemp? 1 0.009 0.009 2.66 0.103
Mn:CD 1 0.006 0.006 1.84 0.175
Si:CR 1 0.019 0.019 5.67 0.018
CR:CD 1 0.076 0.076 217 5.5E—06
CR:AgTemp 1 0.031 0.031 9.15 0.002
CD:AgTemp 1 0.042 0.042 12.22 0.0005
CD:AgTime 1 0.038 0.038 11.03 0.001
Residuals 221 0.771 0.003

3.2.3 Generalized linear model. The generalized linear model (considering the
second-order polynomial) is given below:

Hardness = —1.179 + 4.262(C) + 6.706(Mn) — 4.105(Si) — 0.155(Ti) + 1.622(B)
-+ 0.969(Cu) + 0.34(CoolRt) + 0.628(ColdDf) + 0.207(Ag Tmp)
—0.056(Ag Time) — 4.981(C?) — 3.259(Mn*) — 0.128(ColdDf*)
—0.240(AgTmp?) + 0.011(Ag Time*) — 0.066(C)(CoolRt)
—0.033(C)(AgTime) + 0.016(Mn)(CoolRt) — 0.048(Mn)(ColdDf)
+0.021(Mn)(AgTmp) — 0.022(Mn)(AgTime) — 0.080(Si)(CoolRt)
+ 0.112(Si)(AgTime) 4+ 0.032(Ti)(CoolRt) — 0.012(Ti)(AgTime)
— 0.013(B)(CoolRt) — 0.008(B)(AgTme) — 0.021(Cu)(CoolRt)
— 0.102(Cu)(A4gTime) — 0.154(CoolRt)(ColdDf) — 0.095(CoolRt)(AgTmp)
— 0.051(CoolRt)(AgTime) — 0.204(ColdDf ) (AgTmp)
— 0.589(ColdDf)(AgTime) 4+ 0.0197(Ag Tmp)(Ag Time) (15)
The MSE for this model was found as 0.00362.
3.2.4 Projection pursuit regression. The value of u, was found as 0.5182. Also,

the value of m was selected as m =5 from the plot of ésq(m) versus m. The estimates
for B,,, ¢,, and a,, were obtained. The MSE for this model was found as 0.00122.
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Figure 3. GRNN architecture.
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Figure 4. Training and test error vs. hidden nodes using SCG.

3.2.5 Backpropagation. The ANN used in the present case happens to be a
supervised multilayered feed-forward network, trained with standard gradient
descent backpropagation algorithms. The input variables, namely, six compositional
and four process variables are defined as input nodes and one property variable is
described as output variable. A total of 242 observations were considered for analysis
of which train and test data were divided randomly in the 70:30 ratio.

Similar operations are repeated for varying numbers of hidden layers and nodes
within layers in order to find out suitable network architecture. In the process of
learning, the error of the calculated or predicted output in relation to the actual
output is backpropagated to adjust all the weights and bias values, using both SCG
and LM algorithms. For choosing the type of transfer function to be used, it has
been described by the previous workers that owing to the attainable flexibility,
hyperbolic tangent function is most suitable for modelling metallurgical problems.

From figure 4, the decision regarding the number of hidden layers and hidden
units to be used can be taken. It shows that the training error is minimum when five
hidden layers are used, however the test error is minimum for a six-layered network.
But there is not much deviation between the minimum test errors estimated for
five- and six-layered networks.

But in the case of the LM algorithm it is very clear from figure 5 that the
minimum values of both train and test errors are obtained when four hidden layers



710 P. Das and S. Datta

1.02000E-04 9.0E+00 5
e ? hidden layers
=== 3 hidden layers
5 9.90000E-05 5 6.0E+00 4 hidden layers
5 5
c e
E 9.60000E-05 g 3.0E+00
= . -05 1= 1 hidden layer = 3.0E+00
——— 2 hidden layers \_/
3 hidden layers —_—
9.30000E-05 T T T 0.0E+00 T T T
0 20 40 60 80 0 20 40 60 80
Hidden nodes Hidden nodes
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Figure 6. Predicted vs. measured values after training with SCG and LM.

are used. Also the learning algorithm LM has produced much better predictions than
that of the SCG, but still it is not convenient to choose LM as the better-optimized
learning algorithm. It was further observed that training through LM takes much
smaller number of epochs to reach the goal; however, computational time is also very
important where LM takes much higher time per epoch because of its complicated
algorithm than with SCG. The following figure shows the scatter diagram for
predicted versus measured values under normalized condition for the networks
trained with SCG and LM.

Now, it is clear from figure 6 that both the algorithms have reasonably good
capability to train the network for this specific problem, but the network trained by
SCG has slightly better prediction ability. Finally, the two optimized architecture
were selected as (10-35-28-21-14-8-1) and (10-20-16-11-17-1) when SCG and LM
algorithms, respectively, were used for training.

The individual effects of different alloying elements and processing parameters
as predicted by the trained ANN with optimized architecture are shown in figure 7.
The training was done using the SCG algorithm. During prediction, when one
parameter is varied the others are fixed in the mean value of the range of variables
used for training.

3.2.6 Generalized regression neural network. It has already been discussed that
in GRNN, the spread of the radial basis function is the most important criteria of
optimization. As the spread changes, the test and training error changes significantly.
In this study, this was observed as below.
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Figure 7. Continued.
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Figure 7. Continued.

It can be seen that the train error increases as the spread increases, but it is just
the opposite for test error, which initially falls very rapidly, stabilizes and then
starts increasing. The optimized network is chosen with spread 0.11. The magnitude
of training error and testing error were 0.0012 and 0.0396, respectively.

4. Discussion

The previous section shows the approaches adopted by different statistical tools and
neural network models to function approximation problem and their results
considering the given data set. The comparative study reveals that the neural
network with backpropagation algorithm (specifically SCG) exhibits the better
prediction capability. The comparative performance of the techniques used is done
based on the commonly used characteristic, i.e. mean squared error (MSE). Other
means of comparison could be with respect to mean absolute percentage error
(MAPE), root mean square deviation (RMSD), etc.

It is very clear from the overall discussion that in industry, where fitting a
physical model is very difficult, ANN can be applied efficiently with significant
prediction capability. ANN does not make any assumption on the distribution and
the properties of the data and therefore tends to be more useful in practical scenarios,
not only in the manufacturing industry, but also in the nonmanufacturing business
sector.
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Figure 8. Train error and test error versus spread.

Table 4. Comparative study of prediction errors.

Techniques used Mean squared error
Linear regression 0.00472
Stepwise regression 0.00349
Generalised linear model 0.00362
Projection pursuit regression 0.00122
Backpropagation 9.97985E—05
GRNN 0.0012

Although one aspect of a satisfactory model is to reach a sufficiently low
prediction error level, another aspect of the model that can draw some interest to
the workers is the validation of the model from the point of prior knowledge of the
system being modeled. In this case the effects of the different parameters on the final
output could be analysed from statistical as well as ANN models. In the case of the
linear regression model, it shows that carbon has a negative effect on the hardness
of the final product, which is against the prior understanding of any kind of steel.
Similarly, both aging time and aging temperature have a negative effect on the
hardness, which is also difficult to agree in copper-added steel. As copper precipitates
in the steel during aging, the hardness of the steel increases. The P-value of
manganese in the ANOVA table suggests lesser significance of this element in the
hardness, which is absolutely not in any steel. It is quite apparent from the above
observations that a linear regression model does not represent the complexity and
non-linearity of the system, which is quite common for any modern steel. On the
other hand, in the case of stepwise regression analysis, effects of individual variables
are described in a fashion more in conformance with the metallurgical under-
standing, if higher-order terms are not considered. In case of interaction between the
variables, interaction effect of the amount of cold deformation and the aging
parameters are well recognized in physical metallurgy, as prior cold deformation
increases precipitation sites, and the aging effect is enhanced considerably. In the
stepwise regression model the presence of these terms are quite significant. But the
other terms of interaction between the variables shown in the model cannot be
explained from metallurgical concepts, particularly the interaction between
manganese and cold deformation, although the significance of this term seem to
be quite low as depicted in the ANOVA table. The above factors are almost the same
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in the case of generalized regression analysis and similar comments can be made
for this model also. When trained ANN is used to study the individual effect of
different variables, carbon and manganese have almost linear relationships
with hardness, and the influence of carbon is higher than that of manganese
in increasing the hardness of steel, which is generally true from the materials science
point of view. It can be noted here that stepwise and generalized regression model
show a reverse role for these elements. In the case of silicon, all the regression
models demonstrate that it has a detrimental effect on the hardness of the steel.
But in the neural network model the hardness value initially decreases with increase
in silicon content, but after it reaches a value near to 0.5 wt% the hardness increases
again. This trend may be explained from the fact that silicon has the role of
hardening the ferrite as well as suppressing the formation of pearlite in steel.
But from the hardness point of view the first phenomenon increases the hardness
and the second produces the opposite result. In this particular system the effect of
initial softening of the steel due to addition of silicon may be due to suppression
of pearlite formation, which is overcome by the ferrite strengthening at higher
level of copper addition. This non-linearity in the behavior of silicon could not be
incorporated in the regression model. Lower amounts of titanium decrease the
hardness of the steel by depleting carbon from the ferrite matrix through formation
of titanium carbides. But at higher titanium content, precipitation hardening of
titanium carbide are significant. In the ANN prediction of the effect of titanium
in the steel under investigation, it is seen that though the formation of precipitates at
higher titanium content could not increase the hardness, but at least it has stopped
the softening trend. Similar phenomenon could be observed in case of boron.
The effect of copper, as described by the ANN, cannot be justified totally. The
only justification is that copper has an austenite hardening effect, which delays
the formation of low temperature transformation products, which has decreased
the overall hardness of the steel. Copper is also a ferrite strengthener, but that effect
is not seen in this case. At higher copper content the strengthening effect should
be more pronounced due to the precipitation of copper. In our case only the rate
of softening has decreased at that level of copper addition. An increase in cooling
rate after hot rolling increases the hardness due to the formation of low temperature
transformation products such as bainite and/or martensite. In the present case
ANN prediction shows the trend up to a certain extent of cooling rate, but the trend
of softening at a much higher cooling rate is beyond explanation from the materials
point of view. Cold deformation percentage and aging temperature have increasing
effect on the hardness, but to a certain extent. In the present steel it is seen from
the ANN prediction that all the hardening effects due to both of the variables
are completed in the initial stages, and then the hardness reaches a saturation level.
In the present steel the age hardening effect is purely due to precipitation of copper,
which is known to precipitate in a short aging time at elevated temperature.
The ANN prediction seems to suggest the insignificance of this variable in the
final output.

From the above discussion it is quite evident that ANN has the superiority in
reflecting the prior knowledge of the system in its prediction than the statistical
methods in case of a highly complicated steel system used in this case. Although the
comparisons were made based on only one system, still it seems that ANN can
accommodate the complexity and non-linearity of a system better than the regression
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models, keeping the peculiarity of the system used in this work in mind. Hence from
the above experience it can be predicted here that ANN models could produce better
results compared to the statistical methods when used in other systems.

5. Conclusion

Among the statistical methods, the projection pursuit regression model is found to
have better capacity for predicting the property of the steel modeled in the present
case. Among the neural networks, the network using the SCG algorithm for error
optimization was found to be superior to the other most common (LM) algorithm.
It was also found that the neural network with backpropagation algorithm exhibits
much better prediction capability than the generalized regression neural network.
As the present work is carried out on a highly complex steel system it can be
concluded, in general, that the neural network is able to explain such systems in
a better way than using statistical methods. The ANN models can also be validated
from the system’s point of view in a superior manner.
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