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Extraction of Features Using M-Band Wavelet
Packet Frame and Their Neuro-Fuzzy
Evaluation for Multitexture Segmentation

Mausumi Acharyya, Rajat K. De, Member, IEEE,
and Malay K. Kundu, Senior Member, IEEE

Abstract—In this paper, we propose a scheme for segmentation of multitexture
images. The methodology involves extraction of texture features using an
overcomplete wavelet decomposition scheme called discrete M-band wavelet
packet frame (DMbWPF). This is followed by the selection of important features
using a neuro-fuzzy algorithm under unsupervised learning. A computationally
efficient search procedure is developed for finding the optimal basis based on
some maximum criterion of textural measures derived from the statistical
parameters for each of the subbands. The superior discriminating capability of the
extracted features for segmentation of various texture images over those obtained
by several existing methods is established.

Index Terms—Texture segmentation, M-band wavelet packet frames, feature
selection, fuzzy feature evaluation index, neural networks.
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1 INTRODUCTION

SEGMENTATION of multitexture image is an important problem in
image analysis [1], [2]. In this regard, some applications of octave
band wavelet decomposition scheme for texture analysis have been
attempted [3], [4]. The main difficulty in octave band wavelet
decomposition is that it can provide only a logarithmic frequency
resolution which is not suitable for the analysis of high-frequency
signals with relatively narrow bandwidth. The investigations of
Chang and Kuo [5] and Laine and Fan [6] indicate that the texture
features are more prevalent in the intermediate frequency band and
showed promising results using wavelet packet frames [7], [8].
Therefore, the main motivation of this work is to utilize the
decomposition scheme based on M-band (M > 2) wavelets, which,
unlike the standard wavelet, provides a mixture of logarithmic and
linear frequency resolution [9], [10]. The use of M-band wavelet
decomposition gives rise to a large number of features, most of
which are redundant for accurate and efficient recognition process.
Therefore, proper selection of the appropriate features using some
feature selection algorithms is necessary. Some recent attempts have
been made for multiscale basis and feature selection in the
framework of artificial neural networks (ANN) [11], [12]. In
this paper, we propose a method of multitexture segmentation
scheme based on discrete M-band wavelet packet frame analysis
(DMbW PF) in order to extract the most significant information of a
texture which often appears in the middle frequency channels. The
other motivation of frame analysis is to achieve the translational
invariance in texture analysis.

The proposed methodology has two parts: In the first part, we
develop a computationally efficient and adaptive technique for
finding out an appropriate tree-structured (less than the complete
tree) M-band wavelet packet basis, to avoid a full decomposition.
This selection of basis is based on some maximal criterion of
textural measures to locate dominant information in each
frequency channel (subband) and to decide whether information
from a particular subband is needed or not. With this transform,

o The authors are with the Machine Intelligence Unit, Indian Statistical
Institute, 203 B.T. Road, Kolkata - 700 108, India.
E-mail: mau_ach@yahoo.co.in, {rajat, malay)@isical.ac.in.
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Fig. 1. Experimental setup.

we are able to zoom into any desired frequency channels for
further decomposition. The textural measure derived from the
statistical parameters, e.g., energy, is then extracted from each of
the subbands. In order to reduce the number of bases (features)
further, we have used in the second part, a neuro-fuzzy approach
where a fuzzy feature evaluation index is defined and is used to
minimize the total number of features to have same quality of
output in a connectionist framework.

The article is organized as follows: In Section 2, we formulate
the methodology for extraction of features. Section 3 provides the
neuro-fuzzy feature selection algorithm. Section 4 analyzes
experimental results and the conclusion is in Section 5.

2 EXTRACTION OF MULTISCALE WAVELET FEATURES

In this section, we design a methodology of extracting multiscale
wavelet features of a texture image. The entire methodology is
depicted in Fig. 1.

2.1 M-band Wavelets

M-band (M > 2) wavelet decomposition is a direct generalization of
the classical (M = 2-band) wavelet [10], [9]. An M-band wavelet
system consists of a scaling function '(z) which is given by,

1i(@) = 30, MIPYH(MIx — k). Additionally, there are M — 1 wave-
let functions given by, ¢ (x) = Y=, M2y (M — k),r = 2,..., M.
Here, jand kare the scaling and translation parameters, respectively,
and r gives the index of the wavelet functions in the wavelet system.

Although the AM-band wavelet decomposition results in a
combination of linear and logarithmic frequency (scale) resolution,
we conjecture that a further recursive decomposition of the high-
frequency regions would characterize textures better. This results in
a tree structured multiband extension of the M-band wavelet
transform which is the discrete M-band wavelet packet transform
(DMbWPT). Thus, a finer and adjustable resolution at high
frequencies is allowed as compared to the case of 2-band wavelet
packet transform. In this work, we use a DA/bWPF which is similar
to DMbWPT, except that no downsampling occurs between scales
(levels of decomposition) to achieve translational invariance.

In the filtering stage, we make use of M (= 4)-band, orthogonal
and linear phase wavelet filter bank following [10]. The one-
dimensional (1D), M(= 4)-band scaling (lowpass) and wavelet
(bandpass) bases ¢" (r = 1,2,3,4) are given in [10]. Here, ¢! is the
scaling function and ¢, with r = 2,3, 4, are the wavelet functions.

The filter responses in the frequency domain Hj,(w) (for

Scale j = 0 corresponds to the highest resolution of the signal, i.e., the
original signal I(z) before decomposition. Let, I ir (w) be the Fourier
transform of the output of the wavelet packet b at decomposition
level j obtained from the corresponding signal at the j — 1th level
with the rth band of the M-band filters. Then, for 0 < b < 4/ — 1 and

r=1,2,3,4, we have [/ (w) = H ()], (w).

Ab+(r—1),q

From the filter bank theoretic point of view [13], this corresponds

to a filter bank with channel filters { filt; ,(w)|q = 1,...,4.}. filt] ,(w)
are given by the recursive relation, filtg‘q(_w) = Hy,(w) and
filtibﬂ(qfl)‘l(w) = Hj,(w) filty ,(w) :H“,(]\ijw)filté.q(w). Fig. 2 shows
a general tree structure of 1D discrete M-band wavelet packet frame

NP = NO.OF FEATURES : NS= NO.OF SELECTED FEATURES

decomposition. Module-A in Fig. 2 comprises of all the filters H,
withr =1,2,3,4.

For images, we simply use tensor product extension for which
) i,r[wxy] (wr, wy) = filt{)f[r]
(wys) filtéﬁq[y] (wy). At scale j = 0, the image is first decomposed into
M x M channels using all the filters H,, and H,, with
r,q=1,2,3,4, and without downsampling. The process is re-

the channel filters are written as filt

peated for each of the subbands in subsequent scales (j).

2.2 Adaptive Basis Selection
An M-band wavelet packet decomposition gives rise to M 2’ number
of bases, for a decomposition depth J. It is quite evident that an
exhaustive search technique to determine the optimal basis from this
large set is computationally expensive. In order to find out a suitable
basis without going for a full decomposition, we propose an adaptive
decomposition algorithm using a maximal criterion of textural
measures extracted from each of the subbands. Then, the significant
subbands are identified and it is decided whether further decom-
position of a particular channel would generate more information or
not. This computationally efficient search enables one to zoom into
any desired frequency channel for further decomposition [14].

For this purpose, the image is first decomposed into
M x M channels using the 2D M-band wavelet transform without
downsampling (oversampled). Energy for each subband is then
computed. Among various subbands, those for which energy values
exceed e; percent of the energy of the parent band, are considered
and decomposed further. We further decompose a subband if its
energy value is more than some e; percent of the total energy of all
the subbands at the current scale. The analysis is performed upto the
second level of decomposition and this results in a set of wavelet
packet bases. These bases corresponding to different resolutions are
assumed to capture and characterize effectively different scales of
texture of the input image. Empirically, we have seen that a value of
€ =2 —5 percent and e = 50 percent are good choices for the
images we have considered here. This simple top-down splitting
technique performs well for most images.

INPUT
Hy, Hy, Hys i=0
b=0 b=1 b=2 b=3
! MODULEA | | MODULEA | ! MODULEA | ! MODULE A .
i_b=0-3 1 ! b=47 . 'b=8I11__i 1b=12-15 |
-w:_L-n:_L‘-:J_T :_1‘-:_[-\:_177:_]_7
N/ N T
MODULE A MODULEA j= 2
b =32-47 b =48-63

Fig. 2. Tree structure of 1D DMbWPF transform and related indices.
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Fig. 3. Test images (a) Natbb, (b) Nat5v, and (c) Natl6c. The corresponding segmented outputs (d), (e), and (f), respectively, after neuro-fuzzy feature evaluation.

2.3 Local Estimator of Textural Measure

Raw wavelet coefficients only are insufficient as complete texture
cues. They are helpful in splitting the textured information into
different frequency channels but without local information (statis-
tics) around a pixel. A nonlinearity is needed in order to discriminate
texture pairs with identical mean brightness and second-order
statistics. To calculate local features of an image, we slide a fixed size
window on the wavelet coefficients of an image and compute the
local statistics of window in each individual position, associate these
values as feature values of the central pixel in each of these windows.
There exists a wide variety of textural measures but, in the current
study, energy measure that represents textural uniformity, i.e., pixel
pairs repetitions is considered as feature. We have used modulus
operator as the nonlinearity and Average Absolute Deviation (AAD)
from the mean is used as a generalized definition of energy to get
separation of features for different patterns.

For a subband image F}(z,y) where 0 <z <M —1,0<y <
N — 1and subband number b, the local energy Eng,(z, y) around the
(x,y)th pixel is expressed as

w w
Engle,y) =530 | Flmm) = o) |, (1)
m=1 n=1
where w is the window size and area R = w x w. The term Fj(z, )
is the mean around the (z,y)th pixel and Fy(z,y) = I(z,y), the
original image.
This step is followed by a smoothing stage using Gaussian low
pass filter h¢(z,y) to get a feature image Feat,(z,y) a function of
subband image Fj(x,y) and is given by

Featy(x,y) = Z T'(Fy(a,b)he(x —a,y — b)),
(a.b)eG,,

where I'() gives the energy measure and G, is a G x G window
centered around a pixel with coordinates (z,y). Use of a Gaussian
(weighting) window results in less sparse points (i.e., denser feature
distributions) as compared to when uniform weighting window is

used. The local AAD values from the mean (as shown in (1)) of a
Gaussian window is found to provide robust quality of features in
the feature space for all of test images used. Another issue in this
regard is the size of local window. From a number of experiments, it
is found that the choice of size of the local window is very crucial for
extracting proper features. In an image with patterns of different
texel sizes, the selection of window size suitable for various texel is a
difficult task. For larger texels, it is better to choose larger local
window size but this may introduce more uncertainty in detection of
the boundary regions. This problem can be solved if the effective
window size changes with the level of resolution. The window of
varying sizes will be able to capture textures with different texel
sizes. Likewise, the size G of the Gaussian averaging window is also
an important parameter. Reliable measurement of texture feature
demands larger window size but, on the other hand, more accurate
localization of region boundaries requires smaller window. After
extracting a set of feature images Feat;(z,y), a set of feature vectors
are derived from them. The oversampled wavelet transforms
introduce redundancy in filtered images that may be useful getting
for a reliable result in a recognition problem.

3 SELECTION OF WAVELET FEATURES USING A
NEURO-FUzzY METHOD AND SEGMENTATION

3.1 Fuzzy Feature Evaluation Index and Membership
Function

The wavelet features extracted as mentioned in the previous section
are evaluated and few of them are selected using a neuro-fuzzy
feature selection criterion under unsupervised learning. The process
begins with the clustering of the entire feature space using & — means
clustering algorithm for grouping the data points into different
clusters with their centers cen,’s, i.e., two sets of samples, namely,
S ={z,z2, - ,zx2} and S, = {cen;,ceny, -, cen.} are
formed. Based on this first hand knowledge about the cluster
centers, the neuro-fuzzy feature selection algorithm is developed.

s Lpy
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TABLE 1
Performance with Different Test Images

Test figure Steps
With feature Without feature With Post-
evaluation evaluation processing
Classification | Number of | Classification | Number of | Classification
features features

Nat5b 97.9% 5 94.6% 21 98.7%
Natbv 84.9% 5 84.4% 32 86.2%
Natl0a 79.5% 7 71.7% 19 84.0%
Natlée 79.0% 11 67.3% 29 80.4%
Patchd 89.9% 5 88.1% 12 92.2%

This method involves the formulation of a fuzzy feature
evaluation index followed by its minimization in connectionist
framework. The feature evaluation index for a set of transformed
features is defined as

-G L) v (-] o

where s is the number of samples in which the fuzzy feature
evaluation index is computed. /‘121 €10,1] and pgq € 10,1] are the
degree of similarity between the pth pattern and gth center in the
n-dimensional original feature space, and in the n’-dimensional
(n’ < n) transformed feature space, respectively (1, is the member-
ship value of a pair of patterns belonging to a fuzzy set “Similar”). £
decreases as the degree of similarity between z, and cen, in the
transformed feature space tends to either 0 (when p? < 0.5) or 1
(when p© > 0.5). Therefore, our objective is to select those features
for which the evaluation index becomes minimum; thereby
optimizing the degree of the similarity of a pair of patterns (i, in a
feature space, satisfying the characteristics of E in (2). This may be
defined as [15]

dy -
+ if dyy < D,
otherwise.

Hpg = 1=

. 3)

d,, is the distance between the pth pattern and gth cluster center in
the feature space and is defined as

[le? (Tpi — Cenqi)Q} 27
;
[Ziwfxﬂz,xl' =

where w; € [0, 1] represents weighting coefficient corresponding to
ith feature. The terms x,; and cen, are values of ith feature of
pth pattern and ¢th cluster center, respectively.

The term D in (3) is a parameter which indicates the minimum
separation between a pair of dissimilar patterns. When d,,, = 0 and
dy,, = D, we have y,, = 1 and 0, respectively. In our investigation,
we have chosen D = ad,q,, where d,,,, is the maximum separation
between a pair of patterns in the entire feature space,and 0 < oo < 1
is a user defined constant. a determines the degree of flattening of
the similarity function in (3). The higher the value of o, more will be
the degree, and vice versa. d,,,, is defined as

b = @

(xpi — ceng;),

1

dmaac = |:Z(-rma:m - xmi71i)2:| 27

i

()

where 7,,..i and x,,i,; are the maximum and minimum values of
the ith feature in the corresponding feature space.

The weight w; in (4) indicates the relative importance of the
feature z; in measuring the similarity of a pair of patterns. The

higher the value of w;, the more is the importance of z; in
characterizing a cluster.

The computation of u” requires (3), (4), and (5), while © needs
these equations with w; = 1, Vi. Therefore, the evaluation index E
in (2) is a function of w, i.e., E(w), if we consider ranking of
n features in a set. The problem of feature selection/ranking thus
reduces to finding a set of w;s for which E becomes minimum; w;s
indicating the relative importance of x;s. For the details concerning
the operation of the network, one may refer to [15].

3.2 Connectionist Model

The network consists of an input, a hidden, and an output layer [15].
The input layer consists of a pair of nodes corresponding to each
feature, i.e., 2n nodes, for n-dimensional (original) feature space. The
hidden layer consists of n number of nodes which compute the part
X? in (4) for each pair of patterns. The output layer consists of two
nodes. One of them computes ;” and the other u”. The feature
evaluation index E(w) in (2) is computed from these p-values of the
network. During learning, each pair of patterns are presented at the
input layer and the evaluation index is computed. The connection
weights W(= w;)s are updated in order to minimize the index
E(W). The task of minimization of (W) in (2) with respect to W is
performed using gradient-descent technique. £(W), after conver-
gence, attains a local minimum and then the weights (W; = w?) of

(©)

(d

Fig. 4. Test images (a) Nat10a and (c) patch5. The corresponding segmented
outputs (b) and (d), respectively, after neuro-fuzzy feature evaluation.
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(@) (b)

(©) (d)

Fig. 5. Test images (a) ROCK, (b) M B433, and their segmented outputs (c) and (d), respectively, after neuro-fuzzy feature evaluation.

the links connecting hidden nodes and the output node computing
uT-values, indicate the order of importance of the features.

As indicated in [15], for selecting an optimal set of features out of
the total s = N? (image of size N x N), the number of patterns to be
presented to the connectionist system in one epoch, during its
training, is S(bel) = m, which is a fairly large quantity. This
requires a very high computational cost. On the other hand, in the
proposed modified technique, the similarity between the patterns
and cluster centers are computed, instead of computing it for every
pair of patterns. These cluster centers may be considered as
prototypes for all points belonging to the respective clusters. Thus,
the number of patterns to be presented to the network in one epoch
becomes S(STA) w, where s = |S| and s, = |S,| << s.

The features thus selected are used for segmenting a texture
image. For this purpose, we have used a k-means clustering
algorithm.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the proposed
methodology on various multitexture and real life images for
segmentation. The superiority of this methodology over other
existing methods studied in [16], is also established.

Here, we have considered two 5-texture images Natbband Natbv
(each of 256 x 256), a 10-texture image Nat10a (256 x 512),and a 16-
texture image Natl6c (512 x 512) [16]. We have also worked on
another test image Patch5 (256 x 256) comprised of seven texture
classes. Moreover, we have considered two natural scenes ROCK
and M B433 (each of 512 x 512). Rock, a complicated image consists
of six classes, viz., dark rocks, light rocks, pebbles, dust, sky, and
horizon. This is an image taken from Sol-3 of the Mars Pathfinder
Mission [17]. M B433, consists of five classes, e.g., leavesl, leaves2,
grass, road, and miscellaneous [18]. Throughout the study, the
parameters are chosen to be, ¢, =2 — 5 percent, e, = 50 percent,
local window sizes (w X w) are 9 x 9, and 17 x 17 for the first and
second level of resolutions. The averaging window sizes are also
chosen in commensuration with the local windows.

4.1 Performance Evaluation of the Proposed
Methodology

To evaluate the performance of the proposed methodology, we have
experimented with energy as textural measure. The percentage of
correctly classified pixels is used as the segmentation quality
measure. In order to demonstrate the importance of neuro-fuzzy
feature evaluation, we present here the segmented outputs for all the
test images with and without feature evaluation. The results show
that the feature dimensionality is greatly reduced after feature
evaluation. Simple median filtering is applied to the class maps as a
postprocessing step to improve the segmentation results.

Fig. 3d shows the segmented image of Nat5b (Fig. 3a). The five
texture classes can easily be identified here. But, for Nat5v (Fig. 3b),
the classification error is more in the segmented output in Fig. 3e as
compared to Fig. 3d, due to wider within class variation. The
percentages of correctly classified pixels are found to be 97.9 percent

and 84.9 percent for Nat5b and Nat5v, respectively. Moreover, the
number of features have been greatly reduced from 21 to 5 for Nat5b
and 32 to 5 for Natbv, by using neuro-fuzzy feature evaluation
(Table 1).

The texture mosaic Natl6¢ (Fig. 3c) which is comprised of as
many as 16 Brodazt textures, also shows very complex boundaries
between various constituent textures. The segmented image (Fig. 3f)
shows 15 different classes, where two of the classes have been
merged which are also visually unidentifiable from the original
image. For texture mosaic Nat10a (Fig. 4a), the segmented output is
presented in Fig. 4b. Note that, although the image contains 10
different Brodazt textures, some of them are not distinctly identifi-
able visually. Interestingly, the proposed methodology is able to
identify more or less all the classes. In the case of Patch5 (Fig. 4c),
there are seven different texture classes. Here, a particular class is not
only confined to a specific region, but also mixed up with other
classes in various regions of the image. Moreover, the boundaries
between various classes, like other test images, are not easily
discriminable. Even then, the different classes in the segmented
image (Fig. 4d) are identified satisfactorily. Table 1 summarizes the
performance of segmentation for all test images of Figs. 3 and 4.

The real-life natural scene images contain natural objects like
roads, brick walls, etc., having uniform texture, and snow, leaves,
trees, etc., more of a fractal nature. Since ground truths about these
images are not always available, we have used a quantitative
performance measure 3 [19]. It is defined as the ratio of the total
variation and within class variation. The higher the value of 3, the
better the segmentation is. In the natural scene, Rock (Fig. 5a), there
are six different texture classes. Here, the boundaries between
various classes, like other images, are not easily discernable. Even
then the classes in the segmented image has been identified
satisfactorily. Similar observations are noted for the image M B433
(Fig. 5b). The segmented images with the neuro-fuzzy feature
evaluation are illustrated in Figs. 5¢ and 5d. Table 2 summarizes
the § values with and without the feature evaluation step and also
the number of features required for segmentation.

As a part of the investigation, an extensive comparison has been
made to show the superiority of the proposed methodology over a
number of existing related algorithms studied by Randen and
Husey in [16]. The results have been presented here for Nat5b,

TABLE 2
Performance with Different Scenes

Test figure Steps
With feature Without feature
evaluation evaluation
B Number of B Number of
features features
Rock 2.931870 3 3.559690 5
MB433 4.272661 1 6.2240 5
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Comparative Study of the Performance on Nat5b, Nat5v, Natl6c, and Natl0a
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Methods/filters Test image
Nat5b Nat5v Natlée Natl0a
% No. of % No. of % No. of % No. of
classfn. | features | classfn.| features | classfn. | features | classfn. | features
Proposed | Without feature
method evaluation 94.6 21 84.4 32 67.3 29 71.7 19
M-band With feature
wavelet evaluation 97.9 5 84.9 5 79.0 il 79.5 7
Gabor filter bank (d) [20] 91.8 40 81.1 40 63.6 40 67.7 20
Gabor filter [21] 92.8 10 70.6 10 65.3 16 64.1 15
f8a (d) [20] 92.8 40 81.1 40 63.6 40 60.3 40
f8a (d) [20] 90.6 40 79.5 40 60.9 40 57.7 13
Natbv, Natl0a, and Natl6c only. The comparison is made with [10] O. Alkin and H. Caglar, “Design of Efficient M-Band Coders with Linear
" &t 1o, the. riimaber 'of featiites tsed for fextin mentation Phase and Perfect Reconstruction Properties,” IEEE Trans. Signal Processing,
espect to the €r ol features used Ior texture segmentatio vol. 43, no. 7, pp. 1579-1590, 1995.
and the percentage of correctly classified pixels. Table 3 sum- [11] N. Saito and R.R. Coifman, “Local Discriminant Basis,” Proc. SPIE 2303,
marizes the comparative results and establishes the superiority of M‘ldth [maging: Wﬂvslff APP“WHO"SIM Signal and Image Processing, A.F. Laine
and M.A. Unser, eds., pp. 2-14, July 1994.
the proposed method compared to the methods tabulated. [12] K. Etemad and R. Chellapa, “Separability-Based Multiscale Basis Selection
and Feature Extraction for Signal and Image Classification,” IEEE Trans.
Image Processing, vol. 7, no. 10, pp. 1453-1465, Oct. 1998.
1 . Vetterelli an . Herley, avelets an ilter Banks: eory an
5 CONCLUSION [13] M. V 1li and C. Herley, “Wavel d Filter Banks: Theory and
. 5 p Design,” IEEE Trans. Signal Processing, vol. 40, pp. 2207-2232, 1992.
In this paper, we have described a feature extraction method based  [14) M. Acharyya and M.K. Kundu, “Adaptive Basis Selection for Multitexture
on M-band wavelet packet frames followed by neuro-fuzzy Segmentation by M-Band Wavelet Packet Frame,” Proc. 2001 Int’l Conf.
i & Image Processing, pp. 622-625, Oct. 2001.
evaluation of the extracted featu?e%s for texture segmentahon. .The [15] ]. Basak, RK. De, and SK. Pal, “Unsupervised Feature Selection Using
use of M-band wavelet decomposition of the texture image provides Neuro-Fuzzy Approach,” Pattern Recognition Letters, vol. 19, pp. 997-1006,
an efficient representation of the image in terms of frequencies in 1998.
different directions and orientations at different resolutions. This  [16] T. Randen and J.H. Husey, “Filtering for Texture Classification: A
i thus facilitat : d tati £ th Comparative Study,” IEEE Trans. Pattern Analysis and Machine Intelligence,
representation thus facilitates an improved segmentation of the vol. 21, no. 4, pp. 291-310, Apr. 1999.
different texture regions. The neuro-fuzzy feature evaluation [17] M.A.Ruzon, V.C. Gulick, R.L. Morris, and T.L. Roush, “Autonomous Scene
method helps in finding out important features efficiently from a Analysis of Digital Images for Mars Sample Return and Beyond,” Proc. 30th
texture image where the various texture cla are overlapping in ol o Mool i
exture 8¢ ere the ous te .e ¢ ssgs : € overlapping [18] MINERVA, http://www.project-minerva.ex.ac.uk. 2003.
nature. The methodology does not require a priori knowledge about  [19] SXK. Pal, A. Ghosh, and B. Uma Shankar, “Segmentation with Remotely
the spatial relationship of different classes in the test images. ?9“15‘;dRImagez with FUZIZyz1Thresllli>lding,zza(:;dzg)gaggégtive Evaluation,”
: : nt’l J. Remote Sensing, vol. 21, no. 11, pp. - I ;
The features obtained by the feature extraction method have been [0] T. Randen and J.H. Husoy, “Multichannel Filtering for Image Texture

able to segment various synthetic texture images and as well as real
life natural images satisfactorily with a greatly reduced number of
extracted features and with improved quality of segmentation
results.
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