Fast Parallel Algorithm for
Polynomial Interpolation

P. K. JANA

Department of Computer Engineering
Birla Institute of Technology
Mesra, Ranchi—835 215, India

B. P. SINHA*

Electronics Unit
Indian Statistical Institute
203, Barrackpore Trunk Road
Calcutta—700 035, India

{Received and accepted August 1998)

Abstract—This paper presents a parallel algorithm for polynomial interpolation implemented on
a mesh of trees. The algorithm is based on the Lagrange’s interpolation formula. It requires O(logn)
time using n? processors where n is the number of input data points at which the values of the
function will be specified. We have also shown how the algorithm can be extended to the case when
only p? processors (p < n) will be available. The algorithm mapped on p? processors has a time
complexity of O{(n2/p?) logn).

Keywords—lnterpolation, Lagrange’s interpolation formula, Mesh of trees.

1. INTRODUCTION

In many real-time applications involving numerical techniques, we need fast evaluation of a
function, say f(z), at some given value of z, just from the knowledge of the values of f(x) at
some finite number of discrete points around z. Conversely, from the given set of values of the
function f(z) at some discrete values of z, it may also be necessary to know the value of x
corresponding to a given value of the function f(z). The former is well known as interpolation,
while the latter is known as inverse interpolation. Both of these can be performed by Lagrange’s
interpolation technique [1].

In recent years, different parallel algorithms [2-4] have been developed for the polynomial
interpolation. Schroeder, Murthy and Krishnamurthy [2] have developed a systolic algorithm
for polynomial interpolation based on Newton’s divided difference scheme which has O(n) time
complexity, where n is the number of input data points at which the values of the function
f(z) are specified. Murthy, Krishnamurthy and Chen [3] have developed a parallel algorithm for
rational interpolation based on Thiele’s differences and continued fraction approximation which
has the time complexity of O(n + 1) using (n + 1) processors. The parallel algorithm described
in [4] has the time complexity of O(log®n) on the EREW-PRAM model.

In this paper, we propose a parallel algorithm for polynomial interpolation based on Lagrange’s
interpolation technique on a mesh of trees. The algorithm has been implemented on n? processors

85

86 P. K. JANA AND B. P. SINHA

with O(logn) time complexity. We have next shown how the algorithm can be mapped on p?
processors, where n = kp, k being an integer, greater than 1. The algorithm on p? processors
requires O((n?/p?)logn) time for interpolation.

The paper is organized as follows. In Section 2, we discuss the sequential algorithm for poly-
nomial interpolation. In Section 3, the proposed parallel algorithm using n? processors has been
discussed. Section 4 describes an example. In Section 5, we have extended the basic idea to
develop the interpolation algorithm on p? processors, (p < n). Throughout the later discussions,
we will assume the base of logarithm as 2.

2. SEQUENTIAL ALGORITHM FOR INTERPOLATION

The n point Lagrange’s interpolation formula is as follows [3]:

P(z) = x(z)) [ﬁ%ﬁ] ‘

where y; = f(x;),

m(z) = (x — zo)(x — T1)(xT — T2) - -+ (T — Tn_1),
' (x;) = (x; = 2o)(z; = 21)(2i — T2) -+ (s — Ti-1H{Ti — Tig1) -+ (T — Tp—1)-

ALGORITHM.
Input: z, zo, X1, T2, ..., Tn-1, Yo, Y1, Y2, - -+ Yn—1
Output : P(z)
1. P(z) « 0;
2, fori=0ton—-1do
begin
prod « 1;
forj=0ton—1do
begin
if i# j then
prod « prod - (z — z;)/(zi ~ z;)
end,
P(z) — P(z) + prod - yi;
end.

3. PARALLEL ALGORITHM

In this section, we describe the parallel algorithm for polynomial interpolation using n? proces-
sors. The computational model used for this purpose is described below.

MODEL DESCRIPTION. We use n? processors which are interconnected as follows.

1. n? processors are organized in a square array consisting of n rows and n columns; P(i, j)
denotes the processor placed in the it row and j*® column.

2. The processors in row i, 1 <4 < n, are interconnected in the form of a binary tree rooted
at P(i, 1). That is, for j = 1 to |n/2], processor P(i, j) is directly linked to processor
P(i, 2j) and P(i, 2j+1), whenever they exist. Similarly, all the processors in column j,
1 < j < n, are interconnected to form a binary tree rooted at P(1, j).

3. Every processor P(i, j) has three local registers A(i, j), B(i, j} and D(i, j). Registers A(i, j)'s
are used for data communication along the rows and the B(i, j)'s for data communication
along the columns.

4. Data inputting / outputting can be done only through the processors P(i, 1)’s and
P(1,j)s, Vi,j,1<i,j<n

The parallel algorithm is now described below, assuming that n is a power of 2.

Polynomial Interpolation 87

Algorithm A:

Step 1:
L. Vi, 1 <i< n,P(i, 1) receives z (in parallel) and stores it in
A(, 1).
1.2 Vi, 1 <1i < n,the data in A(i, 1) is broadcast to A(i, j)’s of all
the processors in row i, 1 < j < n.
1.3 Vi, 1<i<n,D(,i) « A(, i).
Step 2: Do the steps 2.1 and 2.2 in parallel.
2.1 Vi, 1 <i<n, P(i, 1) receives ;1 which is stored in A(i, 1).
2.2 Vi, 1<j<mn, P(1,]) receives x;_; which is stored in B(1, j).
Step 3: Do the steps 3.1 and 3.2 in parallel.
31 Vi, 1 <i < n, broadcast the value of A(i, 1) to A(i, j)’s of all the
processors inrow i, 1 <j < n.
3.2 ¥ j, 1 <j < n, broadcast the value of B(1, j} to B(i, j)’s of all the
processors in column j, 1 <1 < n.
3.3 Vi, 1<1i<n,doin parallel A(i, i) « D(i, i).
[Note: The code that can be used for broadcasting has been shown in the Appendix.]
Step 4:
begin

Vij1<ij<n,do in parallel
Vi 1<i<n,do in parallel
B(i, i) «— A(, i);

end.
Step 5:
5.1 Do the steps 5.1.1 and 5.1.2 in parallel.
51.1 Vi, 1<i<n, compute the product of the contents of
A, j)’s1<j<nandputitinA(i,1),1<i<n
5.1.2 Vj, 1< j<n, move the contents of B(j, j) to B(1, j).
5.2 Compute the product of the contents of B(1, j)’s,Vj, 1<j<mn,
and put the result in B(1, 1).
5.3 D(1, 1) « B(1, 1).
[Note: The code that can be used for the steps 5.1.1 and 5.1.2 has been shown in the Appendix.]
Step 6:
begin
Vi,1<i<n,do in parallel
begin .
B(i, 1) « A(i, 1);
AL, 1) « yiey;
B(i, 1) «— A(i, 1) / B(, 1)
end;
end.

Step 7: /* sum up all B(i, 1)’s and store the result in B(1, 1) */
begin
for k = logn downto 1 do
begin
fori=2%"1t02* —1do in parallel

88 P. K. JANA AND B. P. SINHA

begin
if 2i < n then
begin
Afi, 1) «— B(j, 1);
B(i, 1) — B(2i, 1);
B(i, 1) «— A(i, 1) + B(i, 1);
end;
if (2i+1) < n then
begin
A(i, 1) « B(i, 1);
B(i, 1) «— B(2i+1, 1);
B(i, 1) « A(i, 1) + B(i, 1);
end,
end;
end;
end.

Step 8: /* Compute the interpolated value at z and store it in B(1,1) */

B(1, 1) — B(1, 1) - D(1, 1).
COMPLEXITY OF ALGORITHM A. Each of the steps 1.2, 3, 5.1, 5.2 and 7 in Algorithm A requires
logn time. All the remaining steps require a constant amount of time. Hence, Algorithm A

requires 5logn + O(1) time.

B B
A | ----c---- A
D D
Py P
| I

| |

| i
B B
A | ... A
D D
P41 P44

Figure 1. Arrangement of processors for n = 4.

4. AN EXAMPLE

We illustrate the above algorithm with an example for n = 4. The arrangement of the 16
processors without the interconnections has been shown in Figure 1. The A, B and D registers
of the processors have also been shown in the figure.

After executing step 3, we get the situation as shown in the Figure 2, where the values at any
processor position correspond to the contents of the registers B, A and D in order from top to
bottom, and a ‘dash’ (-) entry means a don’t care value. The situation after executing the step 4

is shown in Figure 3.

Polynomial Interpolation 89

X, X, X, X
X xﬂ xg xﬂ
x _ - 5
_xo x} xz x-‘
xl' X X 1 xI
- x - -
X, X, X, X,
;\’.‘2 xz X xz
& - X -
%o X, X, Xy
X, X, X, X
_ _ - X

X-X, X, X, X,
x-xa xa-xl xa—xz xo-x3
x - - -
%o X=X %, *3
XLIE %) x-x, X, - X, X, =X,
- x - -
) X X~ X X
X,-X, X, - X, x-X, X, - X,
- - x -
X, X, X, X-X,
X, - X, X, - X, X,-X, X-x,
2 - - x

Figure 3. The contents of B, A and D registers after step 4 of Algorithm A.

At the end of step 5 of the algorithm, we get the contents of B, A and D registers as shown in
Figure 4.

5. PARALLEL ALGORITHM ON P2 PROCESSORS

We would now modify Algorithm A for the case when only p? processors are available, p < n.
We will assume, for the sake of simplicity, that n = kp, where k is an integer. The basic idea is
as follows.

The n input values are grouped in k£ = n/p sets: {To,Z1,...,Zp—1} {Tp,Tp+1s--+1T2p—1} -+ s
{sc(k_l)p,.r(k_l)pH, . _..r;cp_l}. For a given input set to the p rows, the columns are successively
fed with possible input sets and each time the required product terms are evaluated. Then the
input sets to the rows are successively changed and the above procedure is repeated to generate
the final interpolated value at some result register R(1, 1) of the processor P(1, 1). The algorithm

90 P. K. JANA AND B, P. SINHA

(x-x)(x,- xi)(;ca -x)(x,-x) - - -
(x-x)(x-x)(x-x)(x-x) - . -

(x, - x)(x - X {x, - x,)(x, - X)) -l - -

(x, - x)(x, - x)(x - x,)(x,- %)) - . .

(x, - x,)x, - xl)-(xj -x,)(x-x,) . i)

Figure 4. The contents of B, A and D registers after step 5 of Algorithm A.

is described below stepwise. We use two additional temporary registers TEMP1 and TEMP2,
along with a result register R per processor for the description of the algorithm,

ALGORITHM B.
Step 1: Initialize TEMP1(1, 1) to 0.
Step 2: The value of z is given as input to all the rows and stored in the
D register of only the diagonal processors.
Step 3:
3.1 Do the steps 3.1.1 and 3.1.2 in parallel.
3.1.1 The inputs x¢,x1,...,Zp—1 are given to the rows
1, 2, ..., p, respectively.
3.1.2 The inputs zo,21,...,Tp—1 are given to the columns
1,2,...,p, respectively.

3.2 Do the steps 3.2.1 and 3.2.2 in parallel.

3.2.1 Proceeding in the same way as in Algorithm A, the
product (z — 2¢){x — z1)--- (— zp—1) is computed and
stored in the register R(1, 1) of P(1, 1).

3.2.2 The products (x — z;)(z; — zo)(Ti — 1) - (T4 ~ i1)(Ti—
Tit1) - (T — Tp-1), 0 <1 < p — 1, are computed
and stored in the temporary registers TEMP2 (i+1, 1) of
the processors P(i+1, 1).

Step 4: Now the input set to the columns 1, 2, ..., p is changed to

{Zp,Tpt1,... ,Z2p—1} to do the steps 4.1 and 4.2 in parallel.

4.1 Generate the product (z — zp)(z — Tp41) - (T — Tp-1) and then
multiply it by R(1, 1) to store the result in R(1, 1). R(1, 1) now
contains (x — zo)(z — 1) - - (£ — T2p—1).

4.2 The products (z; — Tp)(x; — Tpg1) - (Ti — Top—y) for 0 < i <
p — 1, are computed to multiply the contents of TEMP2(i+1,

1). Thus, TEMP2(i+1, 1) now contains (z — z;)(z; — To)(z; —
1) (@ — Tic1) (® = Tig1) - (T — Top_1).

Polynomial Interpolation 91

Step 5: Step 4 is now repeated (k — 2) times with the successive input
sets {Egp,$2p+1, - ,Igp_l}, {.‘ng, T3pt1see- ,.'L'.;p_l},. .., to the
columns 1, 2, ..., p. After this, R(1, 1} will contain the value of
(z — zo)(z — 1) -+ - (x —) and TEMP2(i+1, 1) will contain the
value of (x — £:)(%i — Zo) -+ (Ti — Ti—1)(Ti ~ Tig1) -+ (Ti — Tn1),
for0<i<p-1.

Step 6: The values y; = f(x;), 0 <i < p — 1, of the function are
now given as inputs to the (i+1)*" row. y; is then divided by
TEMP2(i+1, 1) and the result is stored in B(i+1, 1}. The values
of all B(i+1, 1),0 <i < p — 1, are then summed up to store the
result in B(1, 1). B(1, 1) is then added to the temporary register

TEMP1(1, 1).
Step T: Steps 3.1.2 through 6 are repeated for the successive input sets
{.’Ep, Tp4+ly:-- ,Igpfl}, {ﬂﬂgp, T2p41s: - ,ngp_l}, ey
{Zk-1)pr T(k=1)p+1:- -+ »Thp—1}, given to the rows 1, 2, ..., p.
Step 8: Multiply R(1, 1) by TEMP1(1, 1) to produce the final

interpolated value at R(1, 1) and then stop.
The detailed codes for the above steps can very easily be developed. To find the time complexity

of this algorithm, we proceed as follows.

Step 1 requires constant time. Step 2 requires log p time. Each of steps 3 and 4 requires 2logp
time. Step 5 requires (k—2}-2logp time. Step 6 requires constant time. Hence, steps 1 through 6
require (2k -+ 1)logp + O(1) time. Step 7 needs (k — 1)[2k logp + O(1)] time. Step 8 requires
constant time. Hence, the total time required by Algorithm B is (2k* + 1)logp + O(k) =
O((n?/p*) logn).

6. CONCLUSION

A parallel algorithm for polynomial interpolation has been developed on a mesh of trees with
n? processors and O(logn) time complexity, where n is the number of data points at which the
values of the function will be specified. It has also been shown how the underlying idea can be
adapted to the situation when only p? processors (p < n) will be available. The corresponding
implementation has been shown to have O((n?/p?)logn) time complexity.

APPENDIX

We would present here the detailed code for some of the steps in Algorithm A. We can use the
following code to broadcast the value in A(i, 1) to all the processors in row i in log n time.

begin
for k=1 tologn do
begin
for j = 271 to 2 — 1 do in parallel
begin

if 2j < n then A(i, 2j) — A(i, j);
if (2j + 1) < n then A(j, 2j+1) — A(i, j);
end;
end;
end.
The code for broadcasting the value in B(L, j) can similarly be developed. We can use the
following code for the step 5.1.1 in Algorithm A.
begin
for k = logn downto 1 do
begin
for j = 2¢"! t0 2¥ —1 do in parallel

92 P. K. JANA aND B. P. SiNHA

begin
if 2j < n then
begin
D(i, §) + A, j);
A(l, j) < A(i, 2j);
A(ia .]) = A(ia .]) : D(i! J),
end;
if (2j + 1) < n then
begin
D(i, j) < A(i, j);
AL, J) — A(L, 25+1);
A, §) «+ A(1, J) - DG, j);
end;
end;
end;
end. .
The following code can be used for the step 5.1.2 in Algorithm A.
begin
for j =2 tonde in parallel
begin
i e=J;
repeat
B(/2],) — B(, i)
fe—i/2);
until (i = 0);
end;
end.

REFERENCES

1. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, (1956).

2. H. Schroeder, V.K. Murthy and E.V. Krishnamurthy, Systolic algorithm for polynomial interpolation and
related problems, Parallel Computing, 493-503 (July 1991).

3. V.K. Murthy, E.V. Krishnamurthy and P. Chen, Systolic algorithm for rational interpolation and Pade
approximation, Parallel Computing, 75-83 (January 1992).

4. J. J& J4, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Company, Reading, MA,
(1992).

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf

