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Abstract—The ring network is a popular network topology for im-
plementation in local area networks and other configurations. But it has
a disadvantage of high diameter and large communication delay. So loop
networks were introduced with fixed-jump links added over the ring. In
this paper, we characterize some values for the number of nodes for
which the lower bound on the diameter of loop networks is achieved., We
also give an O(0) time algorithm (where & is the diameter of the graph)
for finding a shortest path between any two nodes of a general loop net-
work. We also propose a scheme to find a near optimal path (not more
than one over the optimal) in case of a single node or link failure.

Index Terms—Diameter, link-fault, loop networks, network topology,
node-fault, routing.

I. INTRODUCTION

One very common network topology is the ring. The ring has
many attractive properties like simplicity of structure, incremental
extensibility, low valency, ease of implementation etc. But it has
some drawbacks as well. It is highly vulnerable to faults in the net-
work. Also the diameter of a ring of N processors (nodes), is I_%J

(x| denotes the maximum integer < x) which leads to large trans-
mission delay. There have been several approaches to bring down the
diameter of a ring by adding some more links to it. One such idea,
chordal ring, was proposed by Arden and Lee [1], where there is one
chord from every node of the ring. This is a three-regular graph with

diameter Ol \/14\7 . Another approach is to use two chords from eve;
Pp ry

node. We define the length of a chord as the distance (along the ring)
between the nodes that are joined by the chord. Using this metric,
chords are made to be of fixed length. These graphs are four-regular,
provided that the chords are not of length &, These structures are
called double-loop networks or simply loop networks.

Loop networks are special cases of an important class of graphs,
called circulants. Circulants have been known in graph theory for a
long time. According to Davis [2], they were [irst introduced by
Catalan in 1846. A circulant Cy(s,, s,) is a graph with N nodes num-
bered from O to N — 1 and node | is connected to nodes (i £ 5;) mod N
and (i + s;) mod N. There have been several works on their properties
[2], [31, [4].

We consider a set of NV nodes labeled Vy, Vq, -+, Vy.;. Each node
V; is adjacent to four other nodes, Vi), Vi, Vi and Vi, where s is
the length of a chord. Using standard notations [5], let us call this
graph G(N; 1, 5). Let d(N; 1, 5) denote the diameter of G(¥; 1, 5) and
A(N) = minimum, {d(N; 1, 5)}. Wong and Coppersmith [6] gave a
lower bound of @ for d(N). Boesch and Wang {4] made the

bound tighter to b(N) = [———‘2’\2""!1, where [ x| denotes the minimum

integer =z x. However, the lower bound [/b(N) may not be achievable

for all values of N. For example, Du, Hsu, Li, and Xu {5] showed that
for N = 24, d(24) = 4 with 5 = 7, but {b(24) = 3. The graphs whose
diameters are equal to d(IV) are optimal for the given value of N, and
those whose diameters are equal to [b(N) are called tight optimal.
Thus, a graph G(¥; 1, s) may be optimal for some s, but may not be
tight optimal if d(N) > Ib(N). Du et al. gave some classes of values of
N, for which the lower bound [h(N) can be achieved. They also gave
some other classes, for which the lower bound cannot be achieved;
but an optimal choice was given for such graphs. Tzvieli [7] and
Bermond and Tzvieli [8] bave classified many more values of N for
the optimal design of loop networks. A directed variation of the loop
network is the FLBH (forward ]dop backward hop) network. There
are arcs from node i to nodes (i + 1) mod N and (i ~ 5) mod N. Some
results are available in the literature [9], [10] on the different proper-
ties and optimal and quasi-optimal routing in such networks.

About the classification, we suggest some classes of values for N,
which achieve the lower bound on the diameter. These classes cover
a large class of values of N. They also.include many Ns not classified
by Du et al. Ther, we focus our attention on the problem of routing.
Given & (the diameter of the network), we propose an O(8) time al-
gorithm to find a shortest path between any two nodes. We also pro-
pose how to find a near optimal path (not more than one over the
optimal) in case of a single node or link failure. '

I_I. OPTIMAL DESIGN CRITERIA

Let Cy(s, ) represent the graph on N nodes labeled Vi, V), Vs, -+,
V.1 such that node V; is connected to Vi, Vi Vi, and Vi Boesch
and Wang [4] have found out that for N > 6, d(N; [(b(N), IB(N) + 1) =
IB(N). We try to use the above result, when it is given that one of the
jumps is 1 and we have to minimize the diameter over the other jump
of [ength 1. ‘

We shall refer to a link between V; and V., as an x-jump, x =5 o .
LEMMA 1. If gcd(N, 5) = 1, then in Cy(s, ) there is a Hamiltonian

cycle using only s-jumps.

PROOF. See[11}. O

LEMMA 2. If gcd(N, IB{N)) = 1 then Cy(Ib(N), Ib(N) + 1) is et:;uiva-
lent to G(N; 1, 5) for some s.

PROOF. See [11]. ]

LEMMA 3. If ged(N, [B(N) + 1) = 1 then Cy(lb(N), Ib(N) + 1) is
equivalent to G(N; 1, s) for some s. . ‘

PROOF, See [111. 0

If we combine Lemmas 2 and 3 with Theorem 5 of Boesch and
Wang [4], we have the following result.

THEOREM 1. For N > &, if gcd(N, Ib(N)) = 1 or gcd(N, Ib(N) +1)
=1, then d(N) = Ib(N). O

EXAMPLE 1. Consider the case of N = 14 nodes. Here we see that
Ib(14) = 3, ie, ged(N, [b(N)) = 1. So, by Theorem 1, G(14; 3, 4)
has diameter 3 and it can be redrawn as G(14; 1, ) for s = 6.

In Fig. 1a, we see G(14; 3, 4) with the 4-jumps shown in broken
lines. Here nodes 0, 3, 6,9, 12, 1,4, 7, 10, 13,2, 5,8, 11, 0 form a
Hamiltonian cycle. In Fig. 1b these have been relabeled as 0, 1, 2, ...,
13, 0, respectively. The 4-jumps are converted into 6-jumps.
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Using Theorem I, we get an excellent coverage over the possible
values of N, the number of nodes in the network. We have exhaus-
tively searched the optimal designs upto N = 16,000 and found that
the tight optimal designs can be obtained for more than 80% of the
values of N by following the scheme of Theorem . For 7 < N
< 5,305, the classes given by Du et al. [5] cover only about 13% of
the values of N, whereas Theorem | covers about 88.6%; nearly 10%
of the values remain unclassified by either scheme. As N increases,
the classes defined by Du et al. give lesser coverage.

Fig. 1b. The loop network G (14, 1, 6).

III. SHORTEST-PATH ROUTING

For two nodes with a link connecting them, communication is
carried out through that link. In absence of a direct link, the message
is transmitted through some intermediate nodes. The number of links
traversed in such a path represents the transmission delay. So for any
two nodes, it is important to find a path with minimum number of
links. Such a path is called a shortest path. Note that shortest path
between two nodes may not be unique. Here we consider the problem
of finding a shortest path from V; to any arbitrary node V. We note
that because of the symmetry in the underlying topology it is enough
to consider the problem of finding a shortest path from Vj, to an arbi-
trary node V.

For our convenience we shall differentiate between two s-links from
V.. depending on whether they are used to go to V,,,; or V,,, by using a
+ or — sign, respectively. Similarly, we define +1 and —1 links. Consider
a path involving w, x, y, and z (all non-negative integers} number of
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[+s], {~sl, [+1], and [-1] links, respectively. Let the endpoints of the
path be V; and V. Then, the relation j = (w.s ~ x.s + y — z) mod N holds
irrespective of the order in which the links appear in the path. Since we
are interested only in the lengths of the paths, we shall denote such a
path by (w)f+s] + (x)[=s] + () [+1] + (2)[-1].

LEMMA 4. Ler (w)[+s] + (x)[=s] + ()[+1] + (2)[-1] be a shortest
path from V; to V;. Then at most one of w and x and at most one of
y and z is nonzero.

PROOF. Let both w and x be nonzero. Without loss of generality, let
w 2 x. Consider the path (w — x)[+s] + (0)[=s] + O)[+1] + ()[-1].
As (w)[+s] + (x)[=s] + (y)[+1] + (2)[-1] was a path from V; to V),
(i +ws—xs+y—z)mod N =j. Hence, (w— x)[+s] + (®)[-s] +
(O1+1] + (2)[-1] is also a path from V; to V; and it is shorter than
(W)[+s] + ()[=s] + WI[+1] + (z) [-1], which contradicts the hy-
pothesis that (w)[+s] + (x)[=s] + ([+1] + (z}[-1] is a shortest
path. Similarly, at most one of y and z may be nonzero. O
In view of Lemma 4, at most two of w, x, y, and z can be nonzero.

From now on, we shall drop the terms with zero coefficient.

As a consequence of Lemma 4, we note that a shortest path from V,

to V, would be using either (+s, +1) or (+s, —1) or (=s, +1) or (~s, —1)

links. So, if we find the shortest of the paths of each combination of

links, that path will be the required shortest path. We shall discuss in
details a method for finding a shortest path using +s and +1 links. The
case of +5 and —1 links would be very similar. The other two cases

would be the same as finding a shortest path from Vj, to Vi, using (+s, —1)

and (+s, +1) links. From now on, by a (+s, +1)-shortest path we shall

mean a shortest path among the paths using +s and +1 links only.

LEMMA 5. Let (w)[+s] + (x)[+1] be a (+s, +1)-shortest path from V,
to V,. Then x <s.

PROOF. If x 2 s then (w + 1)[+s] + (x — s)[+1] is a shorter (+s, +1)-
path from V, to V... O

LEMMA 6. A (+5, +1)-shortest path from Vy to V, has at least L%J
number of +s-links.

PROOF. If we use less than I_i:-J number of +s-links, then we have to
use more than s number of +1-links. But a group of s number of
+1-links can always be replaced by one +s-link. O

Let §; = s and W, be the cost of reaching the node at S; from V,
using +s-links only. That is W, = 1. For u > s, we can use Lemma 6
and reduce it to a problem of reaching V,, from V,, with u < §,.
LEMMA 7. For u < s, the number of +s-links in a (+s, +1)-shortest

path is either zero or at least W, = I_#J+]

PROOF. Let (w)[+s] + (x)[+1] be a shortest path from V;, to V, for some
w,0<w<W,= L%Jﬁ- 1. Then s < w.s £ N. The length of this path

is w + (u + N — w.s) > u. But (O)[+s] + (w)[+1] is a (+s, +1)-path
between V;, and V, and its length is u. Contradiction! O

REMARK. W, is the cost of reaching the node at

S, = (Wy.5) mod N = &-(I_ﬂj-ﬁ l)— N, from V; by using +s-links

only. Clearly, S =s-Nmods<s=3§,.

Now, if §; > u 2 5,, and W, < 5,, then we may use W, +s-links
from V,, to reach the node number S, We may use groups of W +s-
links repeatedly, until we would reduce the problem to one of routing
to a node within S; distance. If, however, W, > §,, then (+s, +1)-
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shortest path will not have any +s-link at all. Because, if a (+s, +1)-
shortest path has any +s-link, in view of Lemma 7, it will have at
least W, +s-links. But we can replace a group of W, +s-links by a
group of §; +1-links and get a shorter path. So we may refine our
Lemma 7 as follows.

LEMMA 8. For u < s, the number of +s-links in a (+s, +1)-shortest
path is

[if W, > 5,]

[if Wy < 85] O

REMARK. If W, = 55, then (+s, +1)-shortest path may be found in the

same way as for Wy < §,, with the only exception that any group of
W, +s-links may very well be replaced by Ws (= S;) +1-links.

1) zero,
or, 2) at least |_-§;-JW2 ,

EXAMPLE 2. Consider G(258; 1, 100). Suppose we have to find a
shortest path from V; and V. So N = 258, S, = s = 100 and
u=70. By Lemma 8, we may use W, = 3 +s-links to reach node
number $; = 3 x 100 — 258 = 42, If we take W, +s-links once
more, we shall reach Vi, crossing our destination. Since we can-
not use —1-links, reaching V5 from Vg4 using +1-links would not
generate a shortest path. What we can do is, we canuse 3 X3 =9
+s-links from Vi, to Vg and use one —s-link (i.e., use 9 — 1 =8
+s-links from Vi) to reach Vig.

Now we proceed to generalize the results in Lemmas 6-8. In order
to do that, we define some terms:

D S =N, 5 =5 S =S (2] +1) -5,

Sk-1

- W= S -
2) Wy =0, W =1, Wy = Wy | 22 +1) - Wi
" We now describe some properties of the sequences {5;} and {W,}.
LEMMA 9. The sequence (S} satisfies the following properties.
1y S =0
) Sz5285 2z
3) If Si=8;y, for some i 20, then Si, = S for all k2 0.

PrOOFR.
1) As Sk_l.([‘;’ffJ + 1) 2 8,_, the result follows from the definition
of Sk-

2) Again the result follows from the definition and the observation
Sia |
that §_,.(| 32|+ 1) < S, — Sicr.

3 I for some & Se = Sei, then Sy =S..(| %2 ]+1)-5,

=2.8, =S =S, and so on. O
LEMMA 10. Wy < W, < W, < -

PROOQF. From definition, W, < W,. Let Wy < W, < --- < W,. As S
2 Skrl (Lemma 9)? Wk 22 Wk—l - Wk—2 = Wf(—l- (]

LEMMA 11. (W;. 5) mod N = 5, for i =0, 1, 2, -

PROOF. The result is easily verified to hold for i = 0 and 1. Let the
result be true for { = k, for some k> Q.

Then, (W, ,.s) mod N
= [(w‘(tsg—klﬁ 1] - Wk_]].:}mod N [From definition of Wy,,]

= (SL(L%-J+ 1)— Sk(,]mod N

= Sk+1 0

[By induction hypothesis]
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THEOREM 2. For 1<p<W,psmod NzS,,i=2,3,--

PROOF. For i =2, W, :]_-‘;",—JHA Take p such that, 1< p< L%J So, _
s<ps<Niie,psmodN2s=S§,.
Let the result be true for 2 </ < k. We shall show that the result
holds fori=k+ 1. _
Let 1< p< Wy, =| %2 [W,+(W,~W,.,) . From induction hy-

pothesis, the result is true for 1 < p < W Forp = Wy, p.s mod N =
Si (Lemma 11). So we have to consider only Wy, < p < Wy,,. Sup- .
pose the result is not true. Then there exists Wy < p < Wy, such

that ps mod N =v for'some 0 < v < S,
Case I: p=x. W, +y, where xI|_S§_;IJ andy < W,. So,

[p.s+ (W,—y)s] mod N
=[{x.Wy+y+ (W, —3y) sl mod N
:(x+ I)Sk ’

[(W~y) sl mod N
=[x+ 1)S5; — ps] mod N
=(x+1)S—v

x5, < Sk_l[as x< l_%fLJ]

But this contradicts the induction hypothesis, as W; -y < W,
Case [1: p=xW, +y, where x = I_%%J andy < W, - W,_,.
[(xWy +y+ W) s] mod N

=[v+ Sl mod N
=[v+ 25 + (S — Sp)] mod N

[y + Wi_))s mod N
=v+ (S~ Si.1)

[From definition of Sg,,]

Asy+ Wi < W, by induction hypothesis, v + (S; — S¢. ) = Sp, 16,

V= Sh_[. -

Now, [(p + W, —y)sl mod N= (x + 1) S,

[(We—wslmod N=(x+ 1S, —v < (x+ DS, — Sy = Siy

[From definition of Si,;] '

But this contradicts the induction hypothesis, as W, -y < W,. O
THEOREM 3. For u < S, the number of +s-links in a (+s, +1)-

shortest path is

1) zero
2) at least [_ 5:-1

[if W.’+l 2 SH—I]
[if Wiﬂ = SiH]

W,
3) LW, 0025 | B Wiy =S

PROOF. Let (p){+s] + (g)[+1] be a (+s, +1)-shortest path from V; to V..
Since (O)[+s] + (w)[+1] is a (+s, +1)-path from Vyto-V, p+ g <u. In
particular, ¢ <u < S;. So, if p > 0, 0 < p.s mod N < S;. By Theorem
2, we must have p =2 Wy,,. ’

If Wiey > Siay, then (45, +1)-shortest path will not have any +s-link
at all, because instead of using Wi, +s-links, we can use Sy, +1-
links to reach the node at .., by a shorter path. If the distance of
V,, from Vy is suntil greater than or equal to Sy, we can repeat the
replacement of Wi,y +s-links by S;,; +1-links and, repeating this,
we can reach a node within Sy, distance from V,, by using +1-
links only. As iy < S;, again by Theorem 2, the number of +s-
links is either zero or at least Wy ; but a direct +1-path has length
U= S < Wiyl

Now consider the case when S;,; > W,,. If we do not use any
+s-link, the length of the path is «. By Theorem 2, if we use any
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+s-link, we must use at least W, +s-links. If u > 5;,, then we may
use W, +s-links and reach S,,,. Even if we take all the remaining
links as +1-links, we have path of length W, + (4 — Sy} < u.
Again, if the distance of V; from S, is more than S;,;, we may
further reduce the path length by taking groups of W;,, +s-links
repeatedly until we reach within a distance of Sj,, from V. So, in

this process, we take L~;—JMH

+

+ s-links. We note that in order to

reach V; we may take some more +s-links. But the number of +s-
links is at least lﬁJWH, ;

If W, = S.,, then we can treat the case similar to case 2, but we
can replace a group of W, +s-links by a group of W, (= Si1)
+1-links. We also note that we shall have W,,, > §;,», and hence,
after reaching within a distance of W, from V,, we must take only
+]1-links. O

By repeated application of Theorem 3, we can get a (+s, +1)-
shortest path as follows.

Algorithm (+s, +1)-shortest path :

Step i p=0,i:=0,

Step 2: i =i+ 1, If W; > §; then goto step 5;

Step 3: If u < §; then goto step 2;

Step4: p:= P+|_SL;JW;" u:=u mod §;; goto step 2;

Step 5: g := u; output ((p){+5] + (g@)[+1]); stop.

Similarly, we can find the (+s, —1)-shortest path from Vj, to V. We
can also find the (—s, +1) and (=s, —1)-shortest paths from V, to V, by
finding the (+s, —1) and (+s, +1)-shortest path, respectively, from Vj,
to V.. So, we can find the shortest paths of all the four types and the
shortest of the four will give us a global shortest path between V, and
V,. But, such a technique may take O(N) computational steps in the
worst case. In order to reduce the time complexity, we change the
Step 2 of the above algorithm to :

Step 2: i ;=7 + 1; if i > S then goto step 5; if W; > §; then goto step 5;
iLet us call this modified algorithm A, ,.

THEOREM 4. If the (+s, +1)-shortest path vields the global shortest
path, the algorithm A, , outputs a global shortest path.

PROOF. We note that W, > &, But, since the (+s, +1)-shortest path is a
global shortest path the length of the path is at most 8. So we need
not consider including a bunch of more than & +s-links. O

Since, one of the shorlest paths has to be the global shortest path,
we can stop each of the algorithms after at most & executions of the
loop and take the shortest of the four paths and yet guarantee that we
shall get the global shortest path.

IV. ROUTING UNDER FAULT

In this section, we consider the problem of routing when one of
the nodes (or links) is faulty. We note that the paths as we have de-
fined, specifies only the number of links used for different types of
links. It says nothing about the order in which they are traversed. The
question is: Can we always bypass the faulty node (link) by some
ordering of the links traversed? In some cases, we can bypass the
faulty node (link). The result is stated in the following theorem.

THEOREM 3. The links of any shortest path (p)[+s] + (g)[+1] with
P, q@ >0, can always be ordered in a way such that it does not pass
through a specified node.

PROOF. Without loss of generality, let the path be (p)[+s] + (@)[+11].
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We also assume that one of the endpoints of the path is V. First
we consider the following realization R of the path, where we tra-
verse all the p +s-links and then the g +1-links. If the faulty node
Vyis not on R, then R gives us the path bypassing the faulty node.
Suppose V;is a node on R.

Case I; f=zs mod N, 0 < z < p. We consider another realization R
of the path (p)[+s] + (g)[+1], where we first traverse a +1-link,
then p +s-links and lastly the remaining (g — 1) +1-links. We claim
that V; is not a node on R’. Suppose Vyis a node on R’. The seg-
ments of R and R * from V, to V; must have equal length. Other-
wise, we can replace the longer segment by the shorter one to get a
shorter path. Note that a typical node on R ’ is V;, where
i=(ts+])modN,0O<t<p,ori=(ps+jimodN,2<j<gq.
Subcase [a: f=(ts+ 1) mod N,0<t1<p.

From the equality of path lengths from V; to V;, we have,z =1+ L.
So,f=(t+ 1)s mod N.

(ts+1)ymod N=(t+1)smod N=(ts +5s) mod N

(s~ 1) mod N =0, Contradiction!

Subcase Ib: f=(ps+j)modN,2<j<q. ;
Again, from the equality of path lengths from Vj, to Vj, we have z =
p +j. But we know that z < p and j 2 2. Contradiction!

Case II: f=(ps+jymod N, 1 <j<g— 1. Here we take R to be the
realization of the path where first we traverse (j + 1) +1-links, then
the p +s-links and then the rest of the (¢ —j + 1) +1-links. A typical
nodeon R is V;, wherei=¢,0<t<j+ l,ori={(ts+j+ 1) mod N,
1<t<pori=(ps+HmodN,j+25t<gq.

Subcase Ila: f=1r,0<t<j+ 1.

Again, from the equality of path lengths from V;, to V,, we have p +j
=t.So,p+j=({p.s+j) mod N(s—1)mod N=0, Contradiction!

Subcase ITb: f=(t.s+j+ D)mod N, 1 St <p:

From the equality of path lengths from Vj to V, we have, p + j
=t+j+1.80,(p-Ds+j+1)mod N=(p.s+jymod N. (s - 1)
mod N =0, Contradiction!

Subcase llc: f=(ps+HmodN,j+2<t<gq.

From the equality of path lengths from Vj, to V;, we have,p +j=p
+ tor j = t. Contradiction! O

For nodes which do not have a mixed (using both types of links)
shortest path, length of a shortest path in faulty situation will be at
least one more than that in the fault-free case. We may, however, add
one each of + and — links of the type of link not used in the fault-free
shortest path and this path may be at most one link longer than a
shortest path in the faulty case.

V. CONCLUSION

In this paper, we have classified many values of N for which tight
loop networks exist. Though this gives a much wider coverage than
the classes defined by Du et al., some values of N remain yet to be
classified. Some further works on the classification have also been
reported in the literature [71, [8]. We also give an algorithm to find a
shortest path between any pair of nodes and a near optimal routing in
the presence of single node or link failure.

For improvement over the ring we have considered the addition two
chords from every node. One may consider a further generalization
where there are 2k chords from every node. Let G(N; 1, 5|, 8, ..., 5)
denote the supergraph of ring where from each node V; there are links
to the nodes Vi, Vi, Vi, ==, Vi, Below, we list some of the

" problems which remain to be solved.
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(1

(2l
(31

%]

[10]

(]

1) Deriving an analytical formula for the diameter of G(W; 1, 5),
2) Design of optimal loop networks for all values of N,

3) Optimal routing under single as well as multiple faults,

4) Analysis of generalized loop networks G(N; 1, sy, 82, ..., 8, etc.
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Modular Asynchronous Arbiter
Insensitive to Metastability

M. Valencia, M.J. Bellido, J.L. Huertas,
A.J. Acosta, and S. Sdnchez-Solano

Abstract—The purpose of this paper is to present a novel modular N-
user asynchronous arbiter circuit which is insensitive to metastable op-
eration (i.e., the new arbiter cannof fail because of metastability), operat-
ing asynchronously and incorporating a modular architecture. A 1.5[Lm
CMOS prototype arbiter has been designed and tested. Laboratory tests
dermonstrate the arbiter operates correctly.

Index Terms—Asynchronous circuils, arbitration, metastability,
modular design, Q-flop resolver.

I. INTRODUCTION

An N-user arbiter is a module designed to control access to a sin-
gle common resource through the arbitration of contending request
signals coming from N systems. This is a circuit component which
has received a lot of attention for many years. Its key role in the con-
trol mechanism of asynchronous computer interactions has justified
the proposal of many solutions for the problem of designing efficient
arbiter implementations. This problem is still open for new ideas.
Many different aspects have been addressed by the reported arbiters:
programmability, priority schemes, hardware simplicity, modularity,

resource granting speed. They have been some of the topics covered

by researches [11, [2], [3]. One of the most relevant problems in arbi-
ters is caused by the indetermination due to metastability [4], [5], [6].

The nondeterministic evolution of metastability may provoke diverse
arbitration failures (the resource is not granted to any requesting deviee,
the priority scheme is violated, the resource is granted to more than one
user simultaneously, etc). Arbitration failures due to metastability have
been reported {(VMEbus controller and Multibus II [7]). Arbiters design
must include, at least, a previous analysis of failure probability when
entering 1o its metastable stale. When the N users operate asynchro-
nously (i.e., without a common clock), the metastable operation brings,
as a consequence, indetermination in both output logic levels and time
elapsed to reach a stable and correct state. However, there are some
circuits (such those presented in [8]) which detect metastable operation
and generate well-defined outputs at a logic level, even during metas-
tability. This means that using circuit techniques, indetermination due
to metastabilify is restricted to resolution time to the stable state, and
arbitration failures (in a logical sense) can be avoided. .

The purpose of this paper is to present a novel arbiter circuit in-
sensitive to metastable operation, in the sense that it does not pro-
voke any arbitration failure (i.e., the arbiter grants the resource ac-
cording to the priority scheme and it guarantees mutually-exclusive
access). Furthermore, the proposed arbiter incorporates a N-user
modular architecture, operating asynchronously. The arbiter samples
the request lines even if no request is present and grants the resource
on a fix priority policy. -

The paper is organized into five more sections. Section II deals with
the overall structure of the new arbiter formed by interconnecting a few
basic modules; Section ITI discusses the hardware implementation of
these modules, while Section IV considers the essential issue of control
signals and timing. In Section V, we give practical results validating the
approach. Finally, we draw some conclusiens in Section V1.
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