
1

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

Forking GAs: GAs with Search Space Division Schemes

Abstract

In this article, we propose a new type of GA, the forking GA (fGA) which divides the whole

search space into sub-spaces depending on the convergence status of the population and the

solutions obtained so far. The fGA is intended to deal with multi-modal problems which are

difficult to be solved by the conventional GAs. We use a multi-population scheme, which includes

one parent population that explores one sub-space; and one or more child population(s) exploiting

the other subspace. We consider two types of fGAs depending on the way of dividing the search

space. One of them is the g-fGA (genotypic fGA) which defines the search sub-space for each

sub-population depending on the salient schema within the genotypic search space. The other is

the p-fGA (phenotypic fGA) which defines a search sub-space by a neighborhood hypercube

around the current best individual in the phenotypic feature space. Empirical results on complex

function optimization problems show that both the g-fGA and the p-fGA perform fairly well

over the conventional GAs. Two additional utilities of the p-fGA are also studied briefly.

Keywords

Forking GA, search space division, multi-population GA, genotypic forking, phenotypic forking,

salient schema, neighborhood hypercube

Shigeyoshi Tsutsui: Department of Management and Information Science, Hannan University, 5-4-

33 Amamihigashi, Matsubara, Osaka 580, JAPAN

 Phone: +81-723-32-1224, Fax: +81-723-36-2633, E-mail: tsutsui@hannan-u.ac.jp,

Yoshiji Fujimoto: Department of Applied Mathematics and Informatics, Faculty of Science and

Technology, Ryukoku University, 1-5 Yokoya, Seta Ooe, Ohtsu, Shiga 520-21, JAPAN

Phone: +81-775-43-7488, Fax: +81-775-43-7524, E-mail: fujimoto@math.ryukoku.ac.jp

Ashish Ghosh: Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700035,

INDIA

Phone: +91-33-552-8085 (ext 3110) Fax: +91-33-556-6680, E-mail: ash@isical.ernet.in

2

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

1. Introduction

There are many GA-hard problems that are difficult to be solved by the conventional GAs (Goldberg,

1989; Whitley,1991). Many kinds of modified GAs, such as CHC (Eshelman, 1991) which combines

a conservative selection strategy that always preserves the best individuals found so far with a radical

recombination operator that produces offspring that are maximally different from both of the parents;

mGA (Goldberg, Korb & Deb, 1989; Goldberg, Deb & Korb,1990) which processes variable-length

strings that may be either under or over-specified with respect to the problem being solved ; GENITOR

(Whitley, 1989) which is specifically designed to allocate reproductive trials according to rank; delta

coding (Mathias & Whitely, 1994a, 1994b) that dynamically changes the representation of the search

space in an attempt to exploit different problem representations; and niche methods (Deb & Goldberg,

1989; Beasley, Bull & Martin, 1993) which extend the application of GAs to domains that require the

location of multiple solutions, aimed to solve these problems are proposed in the literature.

 In this article we propose a new type of GA, the forking GA (fGA), which divides the whole

search space into sub-spaces depending on the status of convergence of the present population and the

solutions obtained so far. The fGA (Tsutsui & Fujimoto, 1993; Tsutsui & Fujimoto,1995) is also

intended to deal with multi-modal problems which are difficult to be solved by the conventional GAs.

We use a multi-population scheme, which includes one parent population with a blocking mode (or

exploration mode) and one or more child populations with a shrinking mode (or exploitation mode)

generated by population forking. Each of these populations takes a different role in the optimization

task; i. e., different population is responsible for searching non-overlapping sub-areas in the search

space.

 Depending on the type of the search space to be divided, we consider two types of fGAs. One is

the genotypic fGA (g-fGA) which divides the genotypic search space and the other is the phenotypic

fGA (p-fGA) which uses phenotypic parameter domain for space division. In the g-fGA, each population

searches in a sub-space defined by a salient schema in the genotypic search space. In the p-fGA, the

corresponding sub-space is defined by a neighborhood hypercube around the current best individual

in the phenotypic parameter space. Empirical results show that both the g-fGA and the p-fGA show

fairly good performance over the conventional GAs; and the p-fGA shows an upper edge over the g-

3

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

fGA. We also discuss two other utilities of the p-fGA. One of them is the variable resolution searching

scheme (vp-fGA) to solve multi-modal problems with high precision. The other is the niche formation

capability of the p-fGA.

 The rest of this articles is organized as follows. In Section 2, we describe the basic model of

evolution. Genotypic and phenotypic population forking schemes are then discussed in Sections 3. In

Section 4, we analyze the empirical results of the g-fGA and the p-fGA. Two utilities of the p-fGA are

described in Section 5. Finally, concluding remarks are made in Section 6.

2. Basic Model of Evolution

Although the basic principles of fGAs do not depend on any special evolution model, in this work we

used a modified evolution scheme which shows better performance compared to the conventional

ones. The scheme basically involves applying crossover & normal mutation or high mutation followed

by population elitist selection; and is shown in Figure 1. The scheme is described as follows. Let the

size of the population P(t-1) at generation (t-1) be N. First we copy this population to another pool

P'(t-1). We find out the canonical Hamming distance H
ij
 (= Hamming distance (S

i
, S

j
) /L; L: length of

an individual, S
i
: an individual) of a crossover

pair (S
i
, S

j
) in P(t-1). Crossover of this pair is

done with probability (H
ij
)α, where α (0 < α

≤1) is called the crossover Hamming power;

normal mutation with rate P
nm

 is applied after

crossover. Offspring thus generated is stored

in C(t-1). When a decision of not doing

crossover is made, high mutation with rate

P
hm

 (P
hm

>> P
nm

) is applied on the individual

with lower functional value so as to replace it

in P'(t-1). The best N individuals are then

selected from the population P'(t-1) and the

offspring population C(t-1). This selection

Figure 1. Basic model of evolution

A B : Crossover between A and B

 C' : High mutation of C

P'(t-1)

 A
 B

 C'
 D

AB
BA

 A
 B

 C
 D

P(t-1)

C(t-1)

Crossover
and

normal
mutation

Best N
selection

P(t)

High mutation

4

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

method is called population elitist selection

(Eshelman, 1991), since it guarantees that the best N

individuals, seen so far, are always survived.

 When the canonical Hamming distance H
ij

between two individuals becomes small, probability

(H
ij
)α for crossover of this pair decreases (please see

Fig. 2); and consequently high mutation is performed.

Thus an appropriate amount of diversity can be

maintained in the population by a proper choice of

α.

3. Population Forking

During the process of evolution, if the population is

converged to a smaller diversity or the best solution

obtained so far does not get updated for some

consecutive generations, the process may be forked

to allow searching concurrently in two different sub-

populations. Thus the whole search space is divided

into sub-spaces depending on the status of

convergence of the present population and the

solutions obtained so far; and search is continued

independently in these sub-spaces. We call this

method population forking (please see Figure 3).

These sub-populations are called parent population and child population. Two techniques can be

adopted for population forking. These are genotypic population forking and phenotypic population

forking. Since in the genotypic forking scheme provides a better insight of the forking strategies, we

describe it first; and it is then followed by the phenotypic population forking.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α=1
α=0.2
α=0.1
α=0.05

(Hij)
α

Hij

Hij : canonical Hamming distance between

 individuals i and j
α : crossover Hamming power

Figure 2. Relationship between Hij and (Hij)
αααα

A sub-space

Parent Population Child Population

Forking

Search space

Figure 3. Population forking

5

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

3.1 Genotypic Forking GA

In this subsection, we describe the genotypic forking GA (g-fGA) which uses genotypic population

forking for evolution. In the g-fGA, a search sub-space is defined depending on the salient schema in

the genotypic search space. So, let us first introduce its definition.

3.1.1 Salient Schema

Let us represent the population P(t) by the following matrix.

 P t p i N j Lij

t() ()= = =, , , , , , , , ;1 2 1 2L L (1)

where p ij

t is "0" or "1". Thus, each row vector represents the string of an individual of length L. To

define a salient schema, we first introduce a concept of temporal schema (TS(t)) as a string of length

L with elements "0", "1" & "*" as follows:

TS t ts ts ts ts

ts

p N K

p N K

t t
j
t

L
t

j
t

i j
t

i

N

TS

i j
t

i

N

TS

() , , , , , ,

()

* ;

= ()

=

≥ ×

− ≥ ×

=

=

∑

∑

1 2

1

1

1

0 1

L L

if

if

otherwise

 (2)

where K
TS

 is a temporal schema detection threshold (0.5 < K
TS

 ≤ 1.0). TS(t) shows the state of

convergence in each of the string positions. An example of a temporal schema is shown in Figure 4.

Then, the salient schema SS(t), a string of length L with elements "0", "1" & "*", is defined from the

temporal schemata as

SS t ss ss ss ss

ss

ts ts ts

ts ts ts

otherwise

t t
j
t

L
t

j
t

j
t

j
t

j
t K

j
t

j
t

j
t K

H

H

() , , , , , ,

* ;

()

()

= ()

=
= = = =
= = = =

− − −

− − −

1 2

1 1

1 1

1 1

0 0

L L

L

L

if

if (3)

6

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

where K
H
 is called a salient schema detection constant (K

H ≥1). SS(t) is basically formed by robust

building blocks in the temporal schema surviving through consecutive K
H
 generations. An example of

a salient schema is shown in Figure 5.

 The order of K
H
 can roughly be estimated from the takeover time t* (Goldberg, D. E. & Deb, K.

1991) which is the time to occupy the whole population by a single individual. For the selection

scheme described in Section 2, the takeover time can be calculated as * logt N= 2 when no other

operator except selection is applied. K
H
 should be typically much larger than t*.

3.1.2 Genotypic Population Forking

During execution of a GA, sometimes it so happens that the best solution obtained so far does not get

updated for some consecutive generations. The current best solution may be one of the local optima or

the global optimum, or close to them. At this stage (formally described in Section 3.1.3) we make the

initial population fork into a parent population PPt1(t) and a child population CPt1(t') covering the

sub-spaces as shown in Figure 6.

 After the population forking has occurred, individuals which are included in the salient schema,

except the best individual, will be deleted (as shown in Figure 7) from the parent population PPt1(t),

and N - |PPt1(t)| individuals are randomly regenerated outside the salient schema domain so as to keep

the population size fixed. Thus the diversity of PPt1(t) will be recovered, having less chance of being

trapped in the local optima. As some of the individuals are blocked to enter PPt1(t) in the evolution, we

sometimes call this blocking mode.

 In the population CPt1(t'), all the individuals have the same value in the fixed positions of the

salient schema SS(t1). Values of "*" positions in the salient schema are gathered in the shrunk strings

as shown in Figure 8 (shrinking mode). Consequently, the size of the search space of CPt1(t') is reduced

from 2L to 2L' where L' = L-o(SS(t1)); o(SS(t1)) is the order of the salient schema SS(t1). The sub-

space generated by the salient schema is then exploited with the shrunk strings to detect the best

solution in that area.

 Once again, detection of a new salient schema begins in the parent population. If the conditions

7

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

0 1 1 0 1 1 0 1 0 1 0 0 1 0 0

1 1 0 0 0 1 0 1 0 1 0 0 1 0 0

0 1 0 0 0 1 1 1 0 1 0 1 1 1 0

1 1 0 1 1 0 0 0 0 1 0 1 1 0 1

0 1 0 0 0 1 0 1 0 1 0 0 1 0 0

0 1 0 0 1 1 0 1 0 1 1 0 0 1 0

1 1 0 0 1 1 0 1 0 1 0 1 1 0 0

0 1 0 0 1 1 0 1 0 0 0 0 1 0 0

0 1 1 0 1 1 1 1 0 1 0 1 1 0 1

0 1 0 0 1 1 0 1 0 1 0 0 1 0 0

TS(t) = (* 1 0 0 * *1 1 0 01 1* * *)

Figure 4. An example of a temporal schema (KTS=0.85)

P(t) =

SS(t) = (* 1 0 0 * 1 * * 0 1 0 * 1 * *)

TS(t-4) = (

TS(t-3) = (

TS(t-2) = (

TS(t-1) = (

TS(t) = (

* * * * * *1 1 1 1 10 0 0 0

0 * 0 * 0 01 1 1 1 10 0 0 0

0 1 * 0 0 01 1 1 1 10 0 0 0

0 * 0 * 0 01 1 1 1 10 0 0 0

0 1 0 * * 01 1 * 1 10 0 0 0

)

)

)

)

)

 (KH=5)Figure 5. An example of a salient schema

8

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

for forking is satisfied, then the second child population is formed. A maximum of K
P
(K

P
≥1) child

populations are allowed. The parent population and the child populations are evolved in time sharing

mode. Sharing of computation time by the two populations is defined by the BS
ratio

 on the generation

counter. For example, the BS
ratio

 = p : q means we perform p generations for the parent population

followed by q generations for each of the child populations; and this sequence continues.

 Individuals are not exchanged between the child populations. But when an individual with the

new best value is found in a child population, it is copied to the parent population. As a result, the best

individual obtained so far is always included in the parent population. If the number of child populations

is more than K
P
, the oldest child population is discarded (please see Figure 6).

3.1.3 Conditions for Genotypic Forking

Following three conditions are required simultaneously for genotypic population forking:

(a) the best so far evolved value has not been updated for a specified number (K
H
 ≥1) of generation,

(b) the population converges to a smaller diversity, and

(c) the order of the salient schema is more than the specified constant L ×K
o
, K

o
 (0<K

o
<1) is the

salient schema order threshold constant.

The instants of population forking can be determined as:

tF = { t | (B(t)≥KB) ≥ × o(o(SSt) L K) }(f b(t−KH 1)= fb(t))+ ∧ ∧ (4)

where f
b
(t) is the best performance value up to generation t, B(t) is the bias of population P(t), K

B
 (0.5

< K
B
 ≤ 1.0) is the bias threshold constant, and the symbol ∧ means and. Here, bias B(t) (0.5 ≤ B(t) ≤

1.0) is a first-order convergence indicator showing the average percentage of the prominent value in

each position of the individuals, and is defined as (Grefenstette, Davis & Cerys,1991)

B t
N L

p
N

ij
t

i

N

j

L

() . .=
×

− +
==
∑∑1

2
0 5

11

 (5)

Large value of B(t) means low genotypic diversity and vice versa.

9

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

Blocking

Figure 7. Blocking mode in the g-fGA

Strings

1 1 1 * * 0 *

1 0 1 1 0 0 1 1 1 1 1 0 0 1

1 0 1 1 0 0 1

Salient schema

Figure 8. Shrinking mode in the g-fGA

Shrunk string

1 1 1 * * 0 *

A string

1 0 1

Shrinking

1 1 1 1 0 0 1

Salient schema

Allowed string

Search
space

Forking

Forking

Forking

Parent
Population
PPt1(t)

Figure 6. Genotypic population forking

Child Populations (max KP)

: Hyperplane of a salient schema SS(t1) SS(t1)

SS(t1)

SS(t1)
SS(t2)

Parent
Population
PPt2(t)

Child
Population
CPt1(t')

Child
Population
CPt1(t')

Child
Population
CPt2(t'')

10

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

3.1.4 Salient Schema Composition

When a population forking occurs salient schema corresponding to the child population is maintained

in a salient schemata pool. The new salient schema is tried to combine with one of the old salient

schemata maintained in the salient schemata pool so as to avoid duplicate sub-spaces in the child

populations or merge contiguous sub-spaces into a single sub-space as described in (a) and (b). In this

case the old salient schema and the corresponding child population are discarded.

(a) Composition by Covering Relations

If a new salient schema includes one of the existing salient schemata, the included old salient schema

is replaced by the new one. For example, the schema SS(ti) =1110*** is included in the schema SS(tj)

=111****. So, individuals blocked by schema SS(ti) =1110*** are also blocked by the schema SS(tj)

=111****. Thus, schema SS(ti) =1110*** is discarded when the schema 111**** is detected. This

avoids searching duplicate sub-spaces.

(b) Composition by Competitive Relation

If a new salient schema SS(tj) has the same order and differs in value only in one fixed position with

one of the existing salient schema, then these two schemata is composed to a representative schema by

replacing the different values of the fixed position with "*". Thus, the order of the schema is decreased

by one and two sub-spaces are merged to a single sub-space. For example, schemata 111**0* and

111**1* are replaced by the single schema 111****.

3. 2 Phenotypic Forking GA

Phenotypic forking GA (p-fGA) which uses phenotypic population forking is described in this subsection.

In the p-fGA, a subspace (child population) is defined by a neighborhood hypercube in the phenotypic

search space around the current best solution.

 Let the phenotypic parameter of a problem be X = (x
1
, x

2
, ..., x

n
). Let us consider a situation

where there is no updating of the current best solution by a new individual for some consecutive

generations. We represent the current best individual by its phenotypic parameter vector Xt
C
 = (xt

1,c
,

xt
2,c

,, xt
n,c

). Then, the neighborhood hypercube R(X t
C
) around Xt

C
 may be defined as R(Xt

C
) = {x

1
, x

2
,

..., x
n
 | (xt

i,c
- s

i
/2) ≤ x

i
 ≤ (xt

i,c
+ s

i
/2), i=1,2, ..., n}, where S =(s

1
, s

2
, ..., s

n
) defines the size of the

11

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

neighborhood hypercube R(X t
C
) and s

i
>0.

 Conditions for the phenotypic population forking are as follows:

(i) the current best evaluated value has not been updated by a new individual for a specified number

(K
H
 ≥1) of generations, and

(ii) the number of the individuals located inside the neighborhood hypercube R(X t
C
) is more than a

specified number N×K
R
 (0 < K

R
 ≤ 1.0), K

R
 is the phenotypic convergence threshold constant.

If the conditions of forking are satisfied, we make the initial population fork into a parent population

PPt1(t) which evolves outside R(Xt1
C
), and a child population CP t1(t') which evolves inside R(Xt1

C
) as

shown in Figure 9. Condition (ii) shows that the population has converged to a smaller diversity

(which in the g-fGA is modeled by conditions (b) & (c), Subsection 3.1.3).

 After the population forking has occurred, individuals which are located inside R(Xt1
C
), except

the best individual, will be deleted from the parent population PPt1(t); individuals are randomly

regenerated to keep the parent population size fixed. Thus the diversity of PPt1(t) may be recovered so

as to escape from being trapped in local optima as in the g-fGA. Figure 10 shows an example of the

blocking mode in the p-fGA and corresponds to Figure 7 of the g-fGA. In this figure, there are two

phenotypic parameters, x
1
 & x

2
 in the range 0.0 ≤ x

1
, x

2
 ≤ 25.5 and coded by 8 bits. We assume Xt1

C
 =

(10.0, 6.0). Let the precision of parameter x
i
 be represented by ∆x

i
. Then ∆x

1
, ∆x

2
 are both 0.1 (=

(25.5-0.0)/(28 -1)). We consider the case where the parent and the child populations have the same

precision. The neighborhood hypercube size S can be determined from the number of bits used to

represent each of the parameters in the child population and the precision used. If six bits are used to

represent both x
1
 & x

2
 in the child population, then S becomes ((26-1)×0.1, (26-1)×0.1) = (6.3, 6.3);

and thus (10.0-3.2) ≤ x
1
 ≤ (10.0+3.1) & (6.0-3.2) ≤ x

2
 ≤ (6.0+3.1) as shown in Figure 11. An

individual with parameter values x
1
 = 10.1, x

2
 = 5.1, for example, is being re-encoded in R(Xt1

C
) with

6 bits for each parameter; total length of a string in the child population being 12. Thus, the search

space of the child population is 1/16 (= 212/216)th of the original search space.

 Rest of this algorithm (i.e., how many times to fork and which child populations to discard) are

similar to that of the g-fGA. We like to mention here that we did not do the hypercube composition as

is done for the g-fGA.

12

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

Strings

(0.0, 25.5)

(0.0, 0.0) (25.5, 0.0)

(25.5, 25.5)

R(Xt1
C)

00101000 00010100

Blocking

Allowed string

Figure 10. Blocking mode in the p-fGA

Xt1
C=(10.0, 6.0)

00101000 00010100
x1=4.0 x2=2.0

01100101 00110011
x1=10.1 x2=5.1

deleted

Figure 11. Shrinking mode in the p-fGA

(10.1-6.8)/0.1
 =31

(5.1-2.8)/0.1
 =13

Shrunk string

Shrinking

(6.8, 9.1) (13.1, 9.1)

(6.8, 2.8) (13.1, 9.1)

R(Xt1
C)Xt1

C =(10.0, 6.0)

A string

01100101 00110011

16 bits

12 bit

x1=10.1 x2=5.1

100001 001101

Figure 9. Phenotypic population forking

(x1,min, x2,min)

(xt1
1,c+s1/2, xt1

2,c-s2/2)

(x1,max, x2,max)

(x1,max, x2,min)

・

(xt1
1,c+s1/2, xt1

2,c+s2/2)

s2

s1

R(Xt1
C)

Xt1
C=(xt1

1,c, xt1
2,c) : The best solution

 up to t1

Forking

Parent Population PPt1(t)

Phenotypic search space

(xt1
1,c-s1/2, xt1

2,c-s2/2)

(x1,min, x2,max)

(xt1
1,c-s1/2, xt1

2,c+s2/2)

(x1,min, x2,max) (x1,max, x2,max)

(x1,min, x2,min)

s2

s1

R(Xt1
C) s2

s1

(x1,max, x2,min)

R(Xt1
C)：A neighborhood hypercube

 around Xt1
C

Child Population CPt1(t')

13

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

4. Empirical Results

In this section, experimental results are analyzed to evaluate the g-fGA and the p-fGA. Two more

GAs are tested. They are the n-fGA (non-forking GA: population forking is not applied), and the

GENESIS (Grefenstette , Davis & Cerys, 1991) with an elite option. The performance was tested on

the following four test functions.

i) De Jong's test function: f
1
. This is a well known unimodal simple function (De Jong 1975) defined

as

1
1

3
2f xi

i
= ∑

=
. (6)

Each parameter x
i
 is represented by a 10-bit Gray code in the range -5.12 to 5.11 with a precision

of 0.01. The length of a string is 10×3 = 30 bit.

ii) Goldberg's deceptive function: f
deceptive

. This deceptive function is made up of 10 copies of a 3-bit

fully deceptive function (Goldberg, Korb & Deb, 1989) as follows:

f(000)=28, f(001)=26, f(010)=22, f(100)=14,

f(110)=0, f(011)=0, f(101)=0, f(111)=30.

We used a tightly coupled deceptive function in our experiment. The length of a string is 3×10 =

30 bit.

iii) FMS (Frequency Modulation Sounds) parameter identification problem: f
fms

 (Tsutsui & Fujimoto,

1993) . Here the problem is to specify 6 parameters (a
1
, w

1
, a

2
, w

2
, a

3
, w

3
) of the FM sound model

represented by

y t a w t a w t a w t() sin(sin(sin())),= + +1 1 2 2 3 3θ θ θ (7)

with θ = 2π/100. The function f
fms

 is defined as the summation of square errors between the evolved

data and the model data as follows:

fmsf y t y t
t

= −∑
=

2
0

0

100
(() ()) ; (8)

where the model data are given by the following equation:

0 1 0 5 0 1 5 4 8 2 0 4 9y t t t t() . sin(. . sin(. . sin(.))).= × − × + ×θ θ θ (9)

Each parameter is represented by an 8-bit Gray code in the range - 6.4 to 6.35 and a precision of

0.05 is used. The total length of a string is 8×6 = 48 bit.

iv) Modified Griewank Function: f
Griewank

 (Torn & Zilmskas, 1989). The function is defined as follows:

14

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

f x x ii
i

i
i

Griewank = ∑ − ∏ +
= =

2

1

5

1

5

4000 1/ cos(/) . (10)

Each parameter x
i
 is represented by a 10-bit Gray code in the range -51.2 to 51.1 with a precision

of 0.1. The total length of a string is 10×5 = 50 bit.

 Maximum number of trials were set to 3,000, 10,000, 100,000, 140,000 for f
1
, f

deceptive
, f

fms
 and

f
Griewank

, respectively. 30 simulations were made for each experiment. Searching continued until the

global optimum was found or the maximum number of trials was reached. A population size N = 50,

Hamming power α = 0.05, P
hm

 = 0.1 and K
TS

 = 0.8 were used for all the experiments. Other control

parameters were tuned and the optimum set is listed in Table 1. Except for the mutation rate, we used

the default parameter values for experiments with the GENESIS; the mutation rate was tuned. Two

point crossover operator was applied. We evaluated the models by measuring their #OPT (number of

runs in which the algorithm succeeded in finding the global optimum) and MNT (mean number of

trials to find the global optimum in those runs where it did find the optimum). Figure 12 shows the

#OPT for restricted number of trials and Table 1 summarize the results after maximum number of

trials.

 For the function f
1
, #OPT of the g-fAG, the p-fGA and the n-fGA were all 30. Also the MNT of

the g-fGA and the p-fGA were almost the same as that of the n-fGA. Thus, the performance of all

these algorithms were similar for the function f
1
. For the function f

deceptive
, the g-fGA performed better

(#OPT = 30, MNT = 4,283.6) compared to the p-fGA (#OPT = 25, MNT = 5,332.8). The n-fGA

(#OPT = 11, MNT = 3,426.7) and the GENESIS (#OPT = 5, MNT = 8,080.6) showed very poor

performance. The performance of the g-fGA (#OPT = 28, MNT = 35,834.9) and the p-fGA (#OPT =

30, MNT = 22,621.8) was reversed for the function f
fms

. The p-fGA showed better results. As usual,

the n-fGA and the GENESIS performed bad. Similar results were produced by the g-fGA (#OPT = 30,

MNT = 57,691.9) and the p-fGA (#OPT = 30, MNT = 43,599.4) for the function f
Griewank

; and results of

the n-fGA and the GENESIS were very poor. An overall analysis shows that the g-fGA and the p-fGA

outperformed both the n-fGA and the GENESIS.

 Performance of the g-fGA and the p-fGA depended on the type of the problem under consideration.

15

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

B
B
B
B
B
B
B
B

B
B

B
B
B
B
B
B
B
B
B

B
B
B
B
B
BB

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

J

H
H
H
H
H
H
H

H
H
H
H H

F
F

F
F

FF

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

B p-fGA J g-fGA H n-fGA F GENESIS

#OPT

x 1000 trials

(a) fdeceptive

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

J
J
J J

H
H
H
H
H
H
H

H
H
H H

F
F
F

F
F
F
F
F F

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

#OPT

x 1000 trials
(b) ffms

B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B

B
B
B
B

J
J
J

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

J
J

J
J
J
J

H
H

H H

F
F

F
F

F
F F

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

x 1000 trials

(c) fGriewank

#OPT

Figure 12. #OPT for restricted number of trials

16

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

#OPT

Pnm

f1 fdeceptive fGriewankffmsGA

p-fGA

g-fGA

n-fGA

GENESIS

2

MNT

#OPT

MNT

#OPT

MNT

#OPT

MNT

#OPT/C**

#OPT/C**

KR

KH

BSratio

KP

C-bits*

Pnm

KH

BSratio

KP

KO

KB

Pnm

Pnm

0.01

5 : 1

20

0.2

function

30

3 : 1

3

0.3

40

0.7

0.01

0.01

0.01

5

0.006

0.7

5

5

1 : 1

1

30 30 3025

1,253.0 5,332.8 22,621.8 43,599.4

16 0 7 22

0.006 0.02 0.02

0.5 0.7 0.8

5 60 60

0.3 0.4 0.3

1 : 1 3 : 1 3 : 1

1 3 2

30 28 30

1,325.0 4,283.6 35,834.9 57,691.9

1,302.1 3,426.7 9,206.9 39,026.7

2,242.7 8,080.6 65,937.9 47,241.2

3 8 6

0.007 0.01 0.01

30 11 10 3

0.006 0.02 0.02

1 1 0 8

3 2

3 : 1 3 : 1

2 5 7

60 60

0.8 0.3

0.02 0.02

Table 1. The g-fGA versus the p-fGA

* Number of bits used for each parameter in the child population

** Number of runs in which the optimal solution was found in one of the child populations.

Parameters

Parameters

17

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

For the function f
deceptive

, the optimum solution was always detected in the parent population by both

the g-fGA and the p-fGA. For the function f
fms

, the g-fGA always detected the optimum in the parent

population; whereas the p-fGA found the optimum 7 times in the child populations. Similar trend was

seen for the function f
Griewank

 (g-fGA detected the optimum solution 8 times in the child populations

and the p-fGA did the same 22 times). Thus for more complex functions (f
fms

 & f
Griewank

), we see that the

p-fGA maintained a balance in exploring the parent population and exploiting the child populations;

and showed better performance than the g-fGA. This is also evident from the Figures 12 (b) & (c).

5. Two Other Utilities of the Phenotypic Forking GAs

We have noticed from the results in Section 4 that the p-fGA maintained a balance in exploring the

parent population and exploiting the child populations; and showed better performance than the g-

fGA. In this section we consider two more utilities of the p-fGA; variable resolution searching scheme

and niche-formation feature.

5.1 Variable Resolution p-fGA

The p-fGA described in Subsection 3.2 uses the same resolution ∆x
i
 for the parent and the child

populations. Hereafter, we call this p-fGA as the fixed resolution p-fGA (fp-fGA). We may use different

∆x
i
 values for the parent and the child populations. This type of GA may be called as variable resolution

p-fGA (vp-fGA). Thus the vp-fGA provides more flexibility to define the size of the neighborhood

hypercube. Let us consider the case where we want to increase the size of the neighborhood hypercube

with the fp-fGA as shown in Figure 10. This can only be attained by increasing the number of bits to

represent strings of the child population. However, if we increase one bit to represent x
1
, then the value

of s
1
 increases from 6.3 to 12.7; thus almost doubling its size. In the vp-fGA, each ∆x

i
 is recalculated

for a given S and a given number of bits to represent members of the child population. Thus, we can

take any value for S, although it may be that the string length of the members of the child populations

becomes longer than that of the fp-fGA.

 With the vp-fGA we basically can achieve variable resolution searching as follows (please see

Figure 13):

(a) parent population is searched with a lower resolution and detects the near optimal solution fast.

18

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

(b) in the child populations searching is performed with a higher resolution, depending on the problem,

resulting in efficient detection of the global optimum or local optima, since searching proceeds in

the smaller phenotypic space.

In this context we mention that the variable resolution searching scheme is similar to the dynamic

parameter encoding (DPE) technique (Schraudolph and Belew 1992); but the search space division

scheme is completely different.

 Next, let us evaluate the vp-fGA by comparing it with the fp-fGA. We use the following two test

functions f
ripple

 and f
non-ripple

.

ripple ef x x
ix

i i
i

= −
−

=
() + ×∑ 2 2

20 1

0 8
6 2

1

5

5 0 1 500ln
.

. (sin () . cos ()),π π (11)

non ripple e−
−

−

=
= ()∑f x

ix

i
i

2 2
20 1

0 8
6

1

5

5ln
.

. sin (),π (12)

where, each x
i
 is in the range 0.0 ≤ x

i
 ≤ 100.0, i = 1, 2, .., 5. The function f

ripple
 has many main peaks

of different sizes surrounded by high frequency of small peaks. The function f
non-ripple

 does not have a

high frequency of small peaks. Both of these functions have the maximum value at x
1
 = x

2
 =, .., x

5
 = 0.1

with functional value 5.5. We choose these functions because they require very high resolution to

detect the actual optima. Let us consider that the problem is to find the optimal point with a resolution

of 0.0001 for each x
i
. Thus, we assume that the GA is able to find the optimal solution if the parameters

10 bit string
in PP t1(t)

R(Xt1
C)

f (X)

Phenotypic search space X

: Search space of the parent population

: Search space of the child population

Figure 13. Variable resolution searching scheme of the vp-fGA

10 bit string
in CP t1(t ')

19

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

x
1
, x

2
, .., x

5
 of the best individual are within the range [(0.1 - 0.0001) , (0.1 + 0.0001)].

 The following experimental conditions are commonly used. 30 runs are performed. Each run

continues until the global optimum is found or a maximum of 100,000 trials is reached. A population

size of 50, Gray coding and two point crossover are used. Other parameters are tuned in the ranges K
R

∈[0.5, 0.7], K
H
={60, 100}, K

P
∈[1, 3], P

nm
∈[0.006, 0.02], BS

ratio∈[1:1, 3:1] and a total of 48

combinations are tried so that #OPT of the fp-fGA for function f
ripple

is maximum. The size of the

neighborhood hypercube (S) was set close to the diameter (= 0.15) of the main peaks.

 In the vp-fGA, we use s
i
 = 0.15 for all i. To represent each parameter x

i
 , 12 bits and 11 bits are

used in the parent and child populations, respectively. Thus, the resolution ∆x
i
 of the parent and child

populations are 0.02442 (= 100.0/(212-1)) and 0.0000723 (= 0.15/(211-1)), respectively. In the fp-

fGA, each x
i
 used 20 bits & 11 bits for its representation in the parent and the child populations,

respectively. Thus, the resolution ∆x
i
 of the parent and the child populations is 0.0000953 (= 100.0/

(220-1)), and s
i
 = 0.195091 (= 0.0000953×(211-1)).

 Simulation results are shown in Table 2. For function f
non-ripple,

the results of the fp-fGA & vp-

fGA are almost the same; #OPTs of the fp-fGA and the vp-fGA were both 30 (100%), MNT of the fp-

fGA & vp-fGA were 16,845.7 & 22,953.1, respectively. For the function f
ripple

, vp-fGA showed better

performance; #OPT of the vp-fGA was 30 (100%) and that of the fp-fGA was 14 (47%) only, MNT of

the fp-fGA & vp-fGA were 65,272.9 & 21,087.4, respectively. It can be mentioned here that the n-

fGA and the GENESIS could not find the global optimum in any of the 30 runs for these functions.

Figure 14 shows #OPT for restricted number of trials for both f
ripple

 & f
non-ripple

 , and confirms theses

results.

 Thus, it is evident that the vp-fGA has a fairly good capability of finding the global optimum

with high resolution. It may be mentioned here that with this feature of the vp-fGA, we can make

compensation for the lack of local search capability of genetic algorithms.

20

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

Table 2. The fp-fGA vs. the vp-fGA

* Number of runs in which the optimal solution was found in the parent population.

GA vp-fGAfp-fGA

String
length

Size of neighborhood
hypercube

#OPT

Other parameters
KR=0.7, KH=100, KP=2, Pnm=0.02,

60(=12*5) bits

55(=11*5) bits

0.150.1950791

0.02442

0.0000723

0.0000953

0.0000953

BSratio =2:1

30

100(=20*5) bits

55 (=11*5) bits

fnon-ripple

fripple

30

3014#OPT

MNT

21,087.4

16,845.7 20,916.0

MNT 65,272.9

 si

#OPT/P*

#OPT/C**

#OPT/P*

#OPT/C** 30

30

2

28

4

10

Parent
Population
Child
Population

** Number of runs in which the optimal solution was found in one of the child
 populations.

Parent
Population
Child
Population

Resolution
∆xi

21

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B

J
J

J
J

J
J
J
J
J

J
J
J
J
J

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

B vp-fGA J fp-fGA

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

B vp-fGA J fp-fGA

 #OPT

 #OPT

 x 1000 trials

 x 1000 trials

(a) fnon-rippl e

(b) fripple

Figure 14. #OPT for restricted number of trials

22

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

5.2 The Niche-formation Feature of the p-fGA

We take a simple multi-modal function to show that the p-fGA has the niche-forming capability,

defined as

niche ef x
x

= ()− −
2 2

20 1

0 8
6 5ln

.

. sin ().π (13)

This function was used by Deb & Goldberg (1989) to test their sharing scheme and it has five peaks of

different sizes. We take the fp-fGA, and the parameters for its simulation are as follows: maximum

number of trials for both the parent and the child populations was 1000, population size = 10, string

length (Gray coded) = 30 (in the parent population), crossover Hamming power α = 0.3, normal

mutation rate P
nm

 = 0.006, high mutation rate P
hm

 = 0.06, maximum number of child populations K
P
 =

5, and the forking condition constant K
R
 = 0.7 & K

H
 = 3. The BS

ratio
 is set as 1:1. The string length of

child population is set to 27. The neighborhood hypercube size (S) is, then, (1.0/(230 - 1))×(227 - 1) ≈

0.125. This value is close to σ
share

×2, where, σ
share

 is a sharing parameter defined by Deb & Goldberg

(1989). Figure 15 shows a typical process of the niche-formation. With five child populations, all

peaks are fairly covered with solutions. We did 30 runs for this problem. All of these experiments

showed success in niche-formation, although the sequences of covering the peaks were different for

different runs. Similar results were obtained with the vp-fGA also. Please note that parameters were

chosen so as to ensure that a number of forkings occur.

6. Conclusions

In this article, we have proposed a new type of GA, the forking GA (fGA) which is intended to deal

with multi-modal problems. We use a multi-population scheme, which includes one parent population

that explores one subspace; and one or more child population(s) exploiting the other subspace. We

have considered two types of fGAs depending on the type of the search space to be divided. One of

them is the g-fGA (Genotypic fGA) which defines the search sub-space for each population depending

on the salient schema within the genotypic search space. The other is the p-fGA (Phenotypic fGA)

which defines a search sub-space by a neighborhood hypercube around the current best individual in

23

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

0.5
1

0
0.2 10.4 0.6 0.8

0.5
1

0
0.2 10.4 0.6 0.8

PP

0.5
1

0 0.2 10.4 0.6 0.8

0.5
1

0
0.2 10.4 0.6 0.8

0.5
1

0
0.2 10.4 0.6 0.8

CP1

CP1

 Gen = 10

Forking

Evolution

 Gen = 20

Forking

Forking

Forking

 Gen = 27

0.5
1

0
0.2 10.4 0.6 0.8

 Gen = 37

Figure 15. An example of niche-formation by the p-fGA

Evolution

PP

CP1 CP2 PP

PP

PP

CP2CP1

CP3 CP4 CP5CP2CP1

24

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

the phenotypic feature space.

 The empirical results on some complex function optimization problems showed that both the g-

fGA and the p-fGA perform fairly well over the conventional GAs. Although performance of the g-

fGA and the p-fGA depends on the type of the problem, for more complex functions we see that the p-

fGA maintains a balance in exploring the parent population and exploiting the child populations; and

shows better performance than the g-fGA. The fact that use of phenotypic search space information

outperforms the use of genotypic search space information corroborates the earlier finding of Deb &

Goldberg (1989) on sharing scheme where, phenotypic sharing maintained better subpopulation than

the genotypic sharing. Two additional utilities of the p-fGA are also studied briefly. Although the p-

fGA is mainly better than the g-fGA, for problems where genotypic feature directly maps to fitness

value the g-fGA will be useful.

 There are many opportunities for further research related to the proposed technique: analyzing

the extra overhead required for blocking and shrinking modes, studying the load balancing between

the parent and child populations, and devising a more efficient method to discard some of the child

populations. Evaluating the effectiveness of the fGAs on real life problems, comparing them with

other multi-population based schemes, extending them for permutation problems & other evolution

schemes such as real coded GAs, and determining the optimal parameter set for the fGAs also remain

to be investigated. Comparison of the variable resolution search capability of the p-fGA with the

dynamic parameter encoding technique and its niche formation capability with that of other niche

techniques will constitute another part of future study. Further, analytical analysis may establish some

relation of the p-fGA with the global random searching technique (Peck & Dhawan, 1995).

Acknowledgments

We like to thank the reviewers for their stimulating comments. This research is partially supported by

the Ministry of Education, Science, Sports and Culture, Japan under Grant-in-Aid for Scientific Research

on Priority Areas number 264-08233105.

25

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

References

Beasley, D., Bull, D. R. & Martin, R. R. (1993). A sequential niche technique for multimodal function

optimization, Evolutionary Computation, 1(2), pp. 101-125.

Deb, K. & Goldberg, D. E. (1989). An investigation of niche and species formation in genetic function

optimization. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on

Genetic Algorithms (pp. 42-50). San Mateo, CA: Morgan Kaufmann.

De Jong, K. (1975). Analysis of the behavior of a class of genetic adaptive systems. Ph. D. dissertation,

Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: how to have safe search when engaging

in nontraditional genetic recombination. In G. J. E. Rawlins (Ed.), Foundations of Genetic

Algorithms (pp. 265-283). San Mateo, CA: Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, Reading,

MA: Addison-Wesley.

Goldberg, D. E., Korb, B. & Deb, K. (1989). Messy Genetic Algorithms: Motivation, Analysis, and

First Results. Complex Systems, 3, pp. 493-530.

Goldberg, D. E., Deb, K. & Korb, B. (1990). Messy genetic algorithms revisited: Studies in mixed

size and scale, Complex Systems, 4, pp. 415-444.

Goldberg, D. E. & Deb, K. (1991). A Comparative analysis of selection schemes used in genetic

algorithms. In G. J. E. Rawlins (Ed.), Foundations of Genetic Algorithms (pp. 69-93). San

Mateo, CA: Morgan Kaufmann.

Grefenstette, J. J., Davis, L. & Cerys, D. (1991). GENESIS and OOGA: Two GA systems, Melrose,

MA: TSP Publication.

Mathias, K & Whitely, D. (1994a). Initial performance comparisons for the delta coding algorithm. In

J. D. Schaffer (Ed.), Proceedings of the IEEE International Conference on Evolutionary

Computation (pp. 433-438). Piscataway, NJ: IEEE Service Center.

Mathias, K. & Whitley, D. (1994b). Changing representations during search: a comparative study of

delta coding, Evolutionary Computation, 2(3), pp. 249-278.

26

Evolutionary Computation, MIT Press, Vol. 5, No. 1, pp. 61-80

Peck, C. C. & Dhawan, A. P. (1995). Genetic algorithms as global random search methods: an

alternative perspective, Evolutionary Computation, 3(1), pp. 39-80.

Schraudolph, N.N. and Belew R.K. (1992). Dynamic parameter encoding for genetic algorithms,

Machine Learning. 9, pp. 9-21.

Torn, A. & Zilmskas, A. (1989). In G. Goos and J. Hartmanis (Eds.), Global optimization (p. 186).

Berlin: Springer-Verlag (Lecture Notes in Computer Science).

Tsutsui, S. & Fujimoto, Y. (1993). Forking genetic algorithm with blocking and shrinking modes. In

S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp.

206-213). San Mateo, CA: Morgan Kaufmann.

Tsutsui, S. & Fujimoto, Y. (1995). Phenotypic forking genetic algorithms. In D. Fogel (Ed.)

Proceedings of the IEEE International Conference on Evolutionary Computation (pp. 566-572).

Piscataway, NJ: IEEE Service Center.

Whitley, D. (1989). The GENITOR algorithm and selection pressure: why rank-based allocation of

reproductive trials is best. In J. D. Schaffer (Ed.), Proceedings of the Third International

Conference on Genetic Algorithms (pp. 116-121). San Mateo, CA: Morgan Kaufmann.

Whitley, D. (1991). Fundamental principles of deception in genetic search. In G. Rawlins (Ed.),

Foundations of Genetic Algorithms (pp. 221-241). San Mateo, CA: Morgan Kaufmann.

ﾅD

