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many disciplines to solve different types of problems 

such as forecasting, identification and control, 

classification and optimization. Complex and 

heterogeneous systems are extremely difficult to model 

mathematically. However, it has been proved that 

ANN’s flexible structure can provide simple and 

reasonable solutions to various problems.  

 

A formal computational model of neural network: 

Let us first recall a general model of an artificial neural 

network that consists of s simple computational units or 

neurons, indexed as V = {1, . . . , s}, where s = |V| is 

called the network size. Some of these units may serve 

as external inputs or outputs and hence we assume that 

the network has n input and m output neurons, 

respectively. The remaining ones are called hidden 

neurons. The units are densely connected into an 

oriented graph representing the architecture of the 

network, in which each edge (i, j) leading from neuron i 

to j is labeled with a real (synaptic) 

weight ( ) jiw i, j w= ∈ℜ  The absence of a connection 

within the architecture corresponds to a zero weight 

between the respective neurons. 

 The computational dynamics of a neural network 

determines for each neuron j V∈  the evolution of its 

real state (output) 
(t)

y
j

∈ℜ as a function of time t 0≥ . 

This establishes the network 

state ( ) s(t) (t) (t)
y y ,..., ys1

= ∈ℜ at each time instant t 0≥ . 

At the beginning of a computation, the neural network 

is placed in an initial state y
(0)

, which may also include 

an external input. Typically, a network state is updated 

by a selected subset of neurons collecting their inputs 

from the outputs of their incident neurons via the 

underlying weighted connections and transforming 

these input values into their current states. Finally, a 

global output from the network is read at the end of 

computation, or even in the course of it. 

 In general the models that we use to solve complex 

problems are multi-layer neural network. There are 

many algorithms to train the neural network models. 

However the models being complex in nature, one 

single algorithm cannot be claimed as best for training 

to suit different scenarios of the complexities of real life 

problems. Depending on the complexities of the 

problems, the number of layer and number of neuron in 

the hidden layer need to be changed. As the number of 

layers and the number of neurons in the hidden layer 

increases, training the model becomes further complex. 

Very often different algorithms fail to train the model 

for a given problem set. However we try to find an 

alternative algorithm, which will train the model to 

provide us with an output possibly not good enough to 

our expectation. In the process we develop one model 

containing many hidden layers and neurons, which is 

very complex to train and computation intensive.   

 

FLANN architecture: To overcome the complexities 

associated with multi-layer neural network, single layer 

neural network can be considered as an alternative 

approach. But the single layer neural network being 

linear in nature very often fails to map the complex 

nonlinear problems. The classification task in data 

mining is highly nonlinear in nature. So solving such 

problems in single layer feed forward artificial neural 

network is almost an impossible task. 

 To bridge the gap between the linearity in the 

single layer neural network and the highly complex and 

computation intensive multi layer neural network, the 

FLANN architecture is suggested
[1]

. The FLANN 

architecture uses a single layer feed forward neural 

network and to overcome the linear mapping, 

functionally expands the input vector.  

 Let each element of the input pattern before 

expansion be represented as ( )z i ,1 i d< <  where each 

element z(i) is functionally expanded as ( )nz i ,1 n N< < , 

where N = number of expanded points for each input 

element. Expansion of each input pattern is done as 

follows. 

 

 1 2 1 N Nx (i) z(i), x (i) f (z(i)),...., x (i) f (z(i))= = =
���������������������

 (1) 

 

where, ( )z i ,1 i d< < , d is the set of features in the 

dataset. 

 These expanded input pattern are then fed to the 

single layer neural network and the network is trained 

to obtain the desired output. The set of functions 

considered for function expansion may not be always 

suitable for mapping the nonlinearity of the complex 

task. In such cases few more functions may be 

incorporated to the set of functions considered for 

expansion of the input dataset. However dimensionality 

of many problems itself are very high and further 

increasing the dimensionality by to a very large extent 

may not be an appropriate choice. So, it is advisable to 

choose a small set of alternate functions, which can 

map the function to the desired extent. 

 

Classification: The digital revolution has made 

digitized information easy to capture and fairly 

inexpensive to store
[8,9]

. With the development of 
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computer hardware and software and the rapid 

computerization of business, huge amount of data have 

been collected and stored in databases. The rate at 

which such data stored is growing at a phenomenal rate. 

As a result, traditional ad-hoc mixtures of statistical 

techniques and data management tools are no longer 

adequate for analyzing this vast collection of data.  

 Raw data is rarely of direct benefit. Its true value is 

predicated on the ability to extract information useful 

for decision support or exploration and understanding 

the phenomenon governing the data source. In most 

domains, data analysis was traditionally a manual 

process. One or more analysts would become intimately 

familiar with the data and with the help of statistical 

techniques, provide summaries and generate reports. In 

effect, the analyst acted as a sophisticated query 

processor. However, such an approach rapidly breaks 

down as the size of data grows and the number of 

dimensions increases. When the scale of data 

manipulation, exploration and inferencing goes beyond 

human capacities, people look to computing 

technologies for automating the process.  

 All these have prompted the need for intelligent 

data analysis methodologies, which could discover 

useful knowledge from data. The term KDD refers to 

the overall process of knowledge discovery in 

databases. Data mining is a particular step in this 

process, involving the application of specific algorithms 

for extracting patterns (models) from data
[10]

. 

Supervised pattern classification is one of the important 

tasks of data mining. 

 Supervised pattern classification can be viewed as 

a problem of generating appropriate class boundaries, 

which can successfully distinguish the various classes 

in the feature space
[11]

. In real-life problems, the 

boundaries between different classes are usually 

nonlinear. It is known that using a number of 

hyperplanes can approximate any nonlinear surface. 

Hence, the problem of classification can be viewed as 

searching for a number of linear surfaces that can 

appropriately model the class boundaries while 

providing minimum number of misclassified data 

points. 
 The goal of pattern classification

[12]
 is to assign 

input patterns to one of a finite number, M, of classes. 

In the following, it will be assumed that input patterns 

consist of static input vectors x containing N elements 

or continuous valued real numbers denoted x1, x2,..., xN. 

Elements represent measurements of features selected 

to be useful for distinguishing between classes. Input 

patterns can be viewed as points in the 

multidimensional space defined by the input feature 

measurements. The purpose of a pattern classifier is to 

partition this multidimensional, space into decision 

regions that indicate to which class any input belongs. 

Conventional Bayesian classifiers characterize classes 

by their probability density functions on the input 

features and use Bayes’ decision theory to form 

decision regions from these densities
[13,14]

. Adaptive 

non-parametric classifiers do not estimate probability 

density functions directly but use discriminant functions 

to form decision regions.  

 Application of a pattern classifier first requires 

selection of features that must be tailored separately for 

each problem domain. Features should contain 

information required to distinguish between classes, be 

insensitive to irrelevant variability in the input and also 

be limited in number to permit efficient computation of 

discriminant functions and to limit the amount of 

training data required. Good classification performance 

requires selection of effective features and also 

selection of a classifier that can make good use of those 

features with limited training data, memory and 

computing power. Following feature selection, 

classifier development requires collection of training 

and test data and separate training and test or use 

phases. During the training phase, a limited amount of 

training data and a priori knowledge concerning the 

problem domain is used to adjust parameters and/or 

learn the structure of the classifier. During the test 

phase, the classifier designed from the training phase is 

evaluated on new test data by providing a classification 

decision for each input pattern. Classifier parameters 

and/or structure may then be adapted to take advantage 

of new training data or to compensate for nonstationary 

inputs, variation in internal components, or internal 

faults. Further evaluations require new test data.  
 It is important to note that test data should never be 
used to estimate classifier parameters or to determine 
classifier structure. This will produce an overly 
optimistic estimate of the real error rate. Test data must 
be independent data that is only used to assess the 
generalization of a classifier, defined as the error rate 
on never-before-seen input patterns. One or more uses 
of test data, to select the best performing classifier or 
the appropriate structure of one type of classifier, 
invalidate the use of that data to measure 
generalization. In addition, input features must be 
extracted automatically without hand alignment, 
segmentation, or registration. Errors caused by these 
processes must be allowed to affect input parameters as 
they would in practical applications where extensive 
hand-tuning is normally impossible. Unfortunately, 
these simple guidelines, restricting use of test data and 
limiting hand-tuning and also other important common-
sense guidelines discussed in

[15]
, are frequently broken 

by pattern recognition researchers.  
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 Supervised training, unsupervised training, or 

combined unsupervised/supervised training can be used 

to train neural net classification and clustering 

algorithms. Classifiers trained with supervision require 

data with side information or labels that specify the 

correct class during training. Clustering or vector 

quantization algorithms use unsupervised training and 

group unlabeled training data into internal clusters. 

Classifiers that use combined unsupervised/supervised 

training typically first use unsupervised training with 

unlabeled data to form internal clusters. Labels are then 

assigned to clusters and cluster centroid locations and 

sizes are often altered using a small amount of 

supervised training data. Although combined 

unsupervised/supervised training mimics some aspects 

of biological learning, it is of interest primarily because 

it can reduce the amount of labeled training data 

required. Much of the expense and effort required to 

develop classifiers results from the necessity of 

collecting and hand-labeling large amounts of training 

data. Combined unsupervised/supervised training can 

simplify data collection and reduce expensive hand 

labeling. 

 

Back-propagation classifier: Back-propagation 

classifiers form nonlinear discriminant functions using 

single- or multi-layer perceptrons with sigmoidal 

nonlinearities. They are trained with supervision, using 

gradient-descent training techniques, called back-

propagation. Which minimize the squared error 

between the actual outputs of the network and the 

desired outputs. Patterns are applied to input nodes that 

have linear transfer functions. Other nodes typically 

have sigmoid nonlinearities. The desired output from 

output nodes is low (0 or <0.1) unless that node 

corresponds to the current input class, in which case it 

is high (1.0 or >0.9). Each output node computes a 

nonlinear discriminant function that distinguishes 

between one class and all other classes. Good 

introductions to back-propagation classifiers are 

available in many studys. including
[9,20]

. Early interest 

in back-propagation training was caused by the 

presupposition that it might be used in biological neural 

nets.  

 Figure 1 shows how the multi-layer perceptron can 

form three nonlinear input/output functions using back-

propagation training. The multi-layer perceptron shown 

has n linear input node, p nodes with sigmoidal 

nonlinearities in the first hidden layer and one linear 

output node 
 One major characteristic of back-propagation 

classifiers is long training times. Training times are 

typically  longer  when  complex  decision  regions   are 

Yk
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Fig. 1: Multi layer feed forward artificial neural 

network 
 
required and when networks have more hidden layers. 
As with other classifiers, training time is reduced and 
performance improved if the size of the network is 
tailored to be large enough to solve a problem but not 
so large that too many parameters must be estimated 
with limited training data.  
 
FLANN classifier: In this study, a single layer model 

based on trigonometric expansion is presented. Let each 

element of the input pattern before expansion be 

represented as ( )z i ,1 i I< <  where each element z(i) is 

functionally    expanded   as   ( )nz i ,1 n N< < ,    where 

N = number of expanded points for each input element. 

In this study, N = 5 and I = total number of features in 

the dataset has been taken.  

 Expansion of each input pattern is done as follows: 

 

 1 2 3

4 5

x (i) z(i), x (i) sin (z(i)), x (i) sin 2 (z(i)),

x (i) cos (z(i)),x (i) cos 2 (z(i))

= = π = π

= π = π
���������������������

 (2) 

 

where, ( )z i ,1 i d< < , d is the set of features in the 

dataset. 

 These nonlinear outputs are multiplied by a set of 
random initialized weights from the range [-0.5, 0.5] 
and then summed to produce the estimated output. This 
output is compared with the corresponding desired 
output and the resultant error for the given pattern is 
used to compute the change in weight in each signal 
path P, given by 
 

   ( ) ( ) ( )j jW k xf k e k∆ = µ × ×  (3) 

 

where, jxf (k)  is the functionally expanded input at k
th 

iteration. 

 If there are p patterns to be applied then average 
change in each weight is given by 
 

   ( ) ( )
P

i
j j

i 1

1
W k W k

p =

∆ = ∆�  (4) 
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 Then the equation, which is used for weight 

update, is given by  

 

   ( ) ( )j j jW (k 1) W k W k+ = + ∆  (5) 

 

where, Wj(k) is the j
th 

weight at the k
th

 iteration, µ is the 

convergence coefficient, its value lies between 0 to 1 

and 1<j<J, J = M×d. M is defined as the number of 

functional expansion unit for one element. 

 

   ( ) ( ) ( )ˆe k y k y k= −  (6) 

 

where, y(k) is the target output and ( )ŷ k  is the 

estimated output for the respective pattern and is 

defined as: 
 

( ) ( ) ( )
J

j j
j 1

y k xf k .w k
∧

=

= �  

 
where, xfj is the functionally expanded input at k

th 

iteration and Wj(k) is the j
th

 weight at the k
th

 iteration 

and Wj(0) is initialized with some random value from 

the range [-0.5, 0.5] 

 Figure 2 and 3 shows the functional expansion unit 

for one element and FLANN architecture respectively.  
 
Experimental studies: The performance of the 

FLANN model is evaluated using the five benchmark 

classification databases. Out of these, the most 

frequently used in the area of neural networks and of 

neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA 

Liver Disorders and HEART Disease datasets. All these 

databases are taken from the UCI machine repository
[27]

 

and its corresponding site is ftp: //ftp.ics.uci. 

edu/pub/machine-learning-databases/. In addition, we 

have compared the results of FLANN with other 

competing classification methods using the aforesaid 

datasets.  
 
Description of the datasets: Let us briefly discuss the 
datasets, which we have taken for our experimental 
setup.  
 
IRIS dataset: a classification data set based on 
characteristics of a plant species (length and thickness 
of its petal and sepal) divided into three distinct classes 
(Iris Setosa, Iris Versicolor and Iris Virginica). 
 
WINE dataset: data set resulting from chemical 

analyses performed on three types of wine produced in 

Italy from grapevines cultivated by different owners in 

one specific region. 

sin 2π Z(1) = x3(1)

Z(1)

Z(1) = x1(1)

sin π Z(1) = x2(1)

sin π Z(1) = x4(1)

sin 2π Z(1) = x5(1)

 
 

Fig. 2: Functional expansion of the first element 
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Fig. 3: Proposed nonlinear model for classification 

 

FE1

 
 

Block form representation of Fig. 1 

 

PIMA Indians diabetes database: data set related to 

the diagnosis of diabetes (with or without the disease) 

in an Indian population that lives near the city of 

Phoenix, Arizona. 

 

BUPA liver disorders: data set related to the diagnosis 

of liver disorders and created by BUPA Medical 

Research, Ltd. 

 

Heart disease: data set related to diagnoses of people 

with heart problems. 

 Table 1 presents a summary of the main features of 

each database that has been used in this study. 



J. Computer Sci., 3 (12): 948-955, 2007 

 

 953 

Table 1: Description of the features of the databases employed 

    No. of patterns No. of patterns No. of patterns 

 No.of patterns No. of attributes No. of classes in class1 in class 2 in Class 3 

Iris dataset 150 4 3 50 50 50 

Wine dataset 178 13 3 71 59 48 

Pima indian diabetes dataset 768 8 2 500 268  

Bupa liver disorders 345 6 2 145 200  

Heart disease 270 13 2 150 120  

 
Table 2: Results obtained with the FLANN model for the 

classification of four databases: IRIS dataset, WINE data, 

PIMA Indians diabetes database and bupa liver disorders 

Data set used Hit % in the Hit in the 

for testing training set test set 

iris1.dat 97.333 97.333 

iris2.dat 100 100 

Average IRIS 98.665 98.665 

Wine1.dat 93.258 92.135 

wine2.dat 98.876 98.876 

Average WINE 96.058 95.506 

pima1.dat 77.604 76.826 

pima2.dat 79.948 79.427 

Average PIMA 78.776 78.127 

liver1.dat 73.837 75 

liver2.dat 78.613 77.457 

Average LIVER 76.225 76.229 

 

Classification performance: In the case of the IRIS 

Dataset, WINE Dataset, PIMA Indians Diabetes 

Database and BUPA Liver Disorders, in order to 

generate the training and test sets, the total set of 

patterns was randomly divided into two equal parts 

(database1.dat and database2.dat). Each of these two 

sets was alternately used either as a training set or as a 

test set. Table 2 summarizes the results obtained in the 

classification of these four data sets with the use of the 

FLANN model. 

 The average values (in bold type) of each 

application will be used for comparisons with other 

classification methods (Table 5).  

 As for the Heart Disease database (extracted from 

the StatLog project
[16]

), the tests were carried out with 

the use of the 9-Fold Cross Validation methodology
[16]

, 

the same approach used by all algorithms that were 

analyzed by the StatLog project. This method consists 

of partitioning the database into nine subsets 

(heart1.dat, heart2.dat, heart3.dat, heart4.dat, heart5.dat, 

heart6.dat, heart7.dat, heart8.dat and heart9.dat), where 

eight subsets are used for training and the remaining 

subset is used for testing (validation). The process is 

repeated nine times in such a way that each time a 

different subset of data is used for testing. 

 Thus, the database was randomly segmented into 

nine subsets with 30 elements each. Each subset 

contains about 56% of Class1 records (without heart 

disease) and 44% of Class 2 records (with heart 

disease). 

Table 3: Cost matrix of the results 

 Model classification 

 ---------------------------------------------------- 

Real classification Class 1 (Absence) Class 2 (Presence) 

Class 1 (Absence) 0 1 

Class 2 (Presence) 5 0 

 

 The methodology also makes use of a cost matrix, 

which is described in Table 3. The purpose of such a 

matrix is to penalize wrongly classified records in 

different ways, depending on the class. The weight of 

the penalty for Class 2 records that are classified as 

Class 1 records is 5, while the weight of the penalty for 

Class 1 records that are classified as Class 2 records is 

1. 

 Therefore, the cost of wrongly classifying the 

patterns in the training and test data sets is given by (7) 

and (8), respectively, as follows: 

 

   
P1*5 P2 *1

CTr
PTr

+
=  (7) 

 

   
P1*5 P2 *1

CTe
PTe

+
=  (8) 

 

where: 
 
CTr = Cost in the training set 

CTr = Cost in the test set 

P1 = Number of patterns that were wrongly classified 

as belonging to Class 1 

P2 = Number of patterns that were wrongly classified 

as belonging o Class 2 

PTr = Total number of patterns in the training set 

PTe = Total number of patterns in the test set 

 

 Table 4 presents the errors and costs of the training 

and test sets for the FLANN model. Upon closer 

inspection of Table 4, it may be observed that the 

configuration of the heart8.dat database as a test subset 

obtained lower errors and consequently a lower cost for 

the FLANN model. 

 
Comparison with other models: The results obtained 

for  the  Iris Dataset, Wine Data, Pima Indians Diabetes
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Table 4: Results obtained by the FLANN model for the classification of the heart disease database 

 Error in the training set Error in the test set 

Dataset used ------------------------------------- ---------------------------------- Cost in the Cost in 

for testing Class 1 Class 2 Class 1 Class 2 training set the test set 

heart1.dat 13/133 14/107 1/17 1/13 0.34583 0.2 

heart2.dat 14/133 12/107 2/17 1/13 0.30833 0.23333 

heart3.dat 13/134 15/106 4/16 2/14 0.36667 0.46667 

heart4.dat 13/133 10/107 1/17 4/13 0.2625 0.7 

heart5.dat 13/133 16/107 3/17 2/13 0.3875 0.43333 

heart6.dat 13/134 14/106 6/16 0/14 0.34583 0.2 

heart7.dat 15/133 13/107 0/17 3/13 0.33333 0.5 

heart8.dat 18/133 17/107 1/17 0/13 0.42917 0.033333 

heart9.dat 20/134 9/106 2/16 1/14 0.27083 0.23333 

Average     0.338888 0.333333 

 
Table 5: Comparison of the average performance of several 

classification systems 

   Pima Indians 

 Iris Wine diabetes Bupa liver 

 dataset data database disorders 

NN  95.2% 65.1% 60.4% 

KNN  96.7% 69.7% 61.3% 

FSS  92.8% 73.6% 56.8% 

BSS  94.8 67.7 60.0 

MFS1  97.6 68.5 65.4 

MFS2  97.9 72.5 64.4 

CART   74.5 

C4.5 94.0  74.7 

FID3.1 96.4  75.9 

MLP   75.2 

NEF 96.0 

class 

HNFB 98.67 98.31 77.08 74.49 

HNFB 98.67 97.8 78.0 

fixed 

HNFB 98.67 97.8 78.6 

adaptive 

HNFQ 98.67 98.88 77.08 75.07 

HNFB-1 98.67 99.44 78.26 73.33 

FLANN 98.67 95.51 78.13 76.23 

 

Database and Bupa Liver Disorders data sets were 

compared with the results described in
[17]

 where the 

performance of several models is presented: NN 

(nearest neighbor), kNN (k- nearest neighbor, FSS 

(nearest neighbor with forward sequential selection of 

feature) and BSS (nearest neighbor with backward 

sequential selection of feature). In addition, FLANN 

model has also been compared with other methods such 

as MFS (multiple feature subsets)
[18]

, CART (CART 

decision tree)
[19]

, C4.5 (C4.5 decision tree)
[20]

, FID3.1 

(FID3.1 decision tree)
[21]

, MLP (multilayer 

perceptron)
[22]

 and NEFCLASS
[23]

. Finally, the 

performance of FLANN was compared with the 

hierarchical neurofuzzy BSP models (Table 6) HNFB, 

HNFB fixed (which is the HNFB model with the same 

variable for all cells in the same level), HNFB_adaptive 

(the HNFB model with different variables for cells in 

the same level) and the Hierarchical Neuro-Fuzzy 

Quadtree  (NFHQ)  model
[24]

,  which  uses the Quadtree 

Table 6: Table comparing the average cost in the training and test set 

of several classification systems evaluated for the heart 

disease database 

Algorithm Cost in test Cost in training 

FLANN 0.339 0.333 

HNFB-1 0.366 0.594 

Bayes 0.374 0.351 

Dicrim 0.393 0.315 

LogDisc 0.396 0.271 

Alloc80 0.407 0.394 

QuaDisc 0.422 0.274 

Castle 0.441 0.374 

Cal5 0.444 0.330 

Cart 0.452 0.436 

Cascade 0.467 0.207 

KNN 0.478 0 

Smart 0.478 0.264 

Dipol92 0.507 0.429 

Itrule 0.515 - 

BayTree 0.526 0.111 

Default 0.560 0.560 

BackProp 0.574 0.381 

LVQ 0.600 0.140 

IndCart 0.630 0.261 

Kohonen 0.693 0.429 

Ac2 0.744 0 

Cn2 0.767 0.206 

Radial 0.781 0.303 

C4.5 0.781 0.439 

 

partition of the input space
[25]

. The results were also 

compared with Inverted Hierarchical Neuro-Fuzzy BSP 

System (HNFB
−1

)
[26]

. Table 5 presents a summary of 

the results obtained by the various different models. 

The best performance for each data set, measured in 

terms of each model’s hit percentage, is highlighted in 

bold type. 

 The classification results found for the Heart 

Disease data set were compared with the results found 

in the StatLog project
[16]

. According to the StatLog 

project methodology, comparison consists of 

calculating the average cost produced by the nine data 

subsets used for validation. Table 6 presents the 

average cost for the nine training and test subsets. The 

result of the FLANN model is highlighted in bold. 
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CONCLUSION 
 

 In this study, we have evaluated the Functional 

Link Artificial Neural Network (FLANN) model for the 

task of pattern classification in data mining. The 

FLANN model functionally expands the given set of 

inputs. These inputs are fed to the single layer feed 

forward artificial neural network. The network is 

trained like Back propagation training methods. The 

experimental studies demonstrated that the FLANN 

model performs the pattern classification task quite 

well. In most cases, the results obtained with the 

FLANN model proved to be as good as or better than 

the best results found by the other models and 

algorithms with which it has compared. The 

performance of the FLANN models is remarkable in 

terms of processing time, which is also treated as one of 

the crucial aspect in data mining community. For all the 

databases described in the experimental studies, the 

models converged in an order of magnitude of less than 

one min of processing time on a Pentium IV 500 MHz 

computer. 
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