

J. Computer Sci., 3 (12): 948-955, 2007

 949

many disciplines to solve different types of problems

such as forecasting, identification and control,

classification and optimization. Complex and

heterogeneous systems are extremely difficult to model

mathematically. However, it has been proved that

ANN’s flexible structure can provide simple and

reasonable solutions to various problems.

A formal computational model of neural network:

Let us first recall a general model of an artificial neural

network that consists of s simple computational units or

neurons, indexed as V = {1, . . . , s}, where s = |V| is

called the network size. Some of these units may serve

as external inputs or outputs and hence we assume that

the network has n input and m output neurons,

respectively. The remaining ones are called hidden

neurons. The units are densely connected into an

oriented graph representing the architecture of the

network, in which each edge (i, j) leading from neuron i

to j is labeled with a real (synaptic)

weight () jiw i, j w= ∈ℜ The absence of a connection

within the architecture corresponds to a zero weight

between the respective neurons.

 The computational dynamics of a neural network

determines for each neuron j V∈ the evolution of its

real state (output)
(t)

y
j

∈ℜ as a function of time t 0≥ .

This establishes the network

state () s(t) (t) (t)
y y ,..., ys1

= ∈ℜ at each time instant t 0≥ .

At the beginning of a computation, the neural network

is placed in an initial state y
(0)

, which may also include

an external input. Typically, a network state is updated

by a selected subset of neurons collecting their inputs

from the outputs of their incident neurons via the

underlying weighted connections and transforming

these input values into their current states. Finally, a

global output from the network is read at the end of

computation, or even in the course of it.

 In general the models that we use to solve complex

problems are multi-layer neural network. There are

many algorithms to train the neural network models.

However the models being complex in nature, one

single algorithm cannot be claimed as best for training

to suit different scenarios of the complexities of real life

problems. Depending on the complexities of the

problems, the number of layer and number of neuron in

the hidden layer need to be changed. As the number of

layers and the number of neurons in the hidden layer

increases, training the model becomes further complex.

Very often different algorithms fail to train the model

for a given problem set. However we try to find an

alternative algorithm, which will train the model to

provide us with an output possibly not good enough to

our expectation. In the process we develop one model

containing many hidden layers and neurons, which is

very complex to train and computation intensive.

FLANN architecture: To overcome the complexities

associated with multi-layer neural network, single layer

neural network can be considered as an alternative

approach. But the single layer neural network being

linear in nature very often fails to map the complex

nonlinear problems. The classification task in data

mining is highly nonlinear in nature. So solving such

problems in single layer feed forward artificial neural

network is almost an impossible task.

 To bridge the gap between the linearity in the

single layer neural network and the highly complex and

computation intensive multi layer neural network, the

FLANN architecture is suggested
[1]

. The FLANN

architecture uses a single layer feed forward neural

network and to overcome the linear mapping,

functionally expands the input vector.

 Let each element of the input pattern before

expansion be represented as ()z i ,1 i d< < where each

element z(i) is functionally expanded as ()nz i ,1 n N< < ,

where N = number of expanded points for each input

element. Expansion of each input pattern is done as

follows.

 1 2 1 N Nx (i) z(i), x (i) f (z(i)),...., x (i) f (z(i))= = =
���������������������

 (1)

where, ()z i ,1 i d< < , d is the set of features in the

dataset.

 These expanded input pattern are then fed to the

single layer neural network and the network is trained

to obtain the desired output. The set of functions

considered for function expansion may not be always

suitable for mapping the nonlinearity of the complex

task. In such cases few more functions may be

incorporated to the set of functions considered for

expansion of the input dataset. However dimensionality

of many problems itself are very high and further

increasing the dimensionality by to a very large extent

may not be an appropriate choice. So, it is advisable to

choose a small set of alternate functions, which can

map the function to the desired extent.

Classification: The digital revolution has made

digitized information easy to capture and fairly

inexpensive to store
[8,9]

. With the development of

J. Computer Sci., 3 (12): 948-955, 2007

 950

computer hardware and software and the rapid

computerization of business, huge amount of data have

been collected and stored in databases. The rate at

which such data stored is growing at a phenomenal rate.

As a result, traditional ad-hoc mixtures of statistical

techniques and data management tools are no longer

adequate for analyzing this vast collection of data.

 Raw data is rarely of direct benefit. Its true value is

predicated on the ability to extract information useful

for decision support or exploration and understanding

the phenomenon governing the data source. In most

domains, data analysis was traditionally a manual

process. One or more analysts would become intimately

familiar with the data and with the help of statistical

techniques, provide summaries and generate reports. In

effect, the analyst acted as a sophisticated query

processor. However, such an approach rapidly breaks

down as the size of data grows and the number of

dimensions increases. When the scale of data

manipulation, exploration and inferencing goes beyond

human capacities, people look to computing

technologies for automating the process.

 All these have prompted the need for intelligent

data analysis methodologies, which could discover

useful knowledge from data. The term KDD refers to

the overall process of knowledge discovery in

databases. Data mining is a particular step in this

process, involving the application of specific algorithms

for extracting patterns (models) from data
[10]

.

Supervised pattern classification is one of the important

tasks of data mining.

 Supervised pattern classification can be viewed as

a problem of generating appropriate class boundaries,

which can successfully distinguish the various classes

in the feature space
[11]

. In real-life problems, the

boundaries between different classes are usually

nonlinear. It is known that using a number of

hyperplanes can approximate any nonlinear surface.

Hence, the problem of classification can be viewed as

searching for a number of linear surfaces that can

appropriately model the class boundaries while

providing minimum number of misclassified data

points.
 The goal of pattern classification

[12]
 is to assign

input patterns to one of a finite number, M, of classes.

In the following, it will be assumed that input patterns

consist of static input vectors x containing N elements

or continuous valued real numbers denoted x1, x2,..., xN.

Elements represent measurements of features selected

to be useful for distinguishing between classes. Input

patterns can be viewed as points in the

multidimensional space defined by the input feature

measurements. The purpose of a pattern classifier is to

partition this multidimensional, space into decision

regions that indicate to which class any input belongs.

Conventional Bayesian classifiers characterize classes

by their probability density functions on the input

features and use Bayes’ decision theory to form

decision regions from these densities
[13,14]

. Adaptive

non-parametric classifiers do not estimate probability

density functions directly but use discriminant functions

to form decision regions.

 Application of a pattern classifier first requires

selection of features that must be tailored separately for

each problem domain. Features should contain

information required to distinguish between classes, be

insensitive to irrelevant variability in the input and also

be limited in number to permit efficient computation of

discriminant functions and to limit the amount of

training data required. Good classification performance

requires selection of effective features and also

selection of a classifier that can make good use of those

features with limited training data, memory and

computing power. Following feature selection,

classifier development requires collection of training

and test data and separate training and test or use

phases. During the training phase, a limited amount of

training data and a priori knowledge concerning the

problem domain is used to adjust parameters and/or

learn the structure of the classifier. During the test

phase, the classifier designed from the training phase is

evaluated on new test data by providing a classification

decision for each input pattern. Classifier parameters

and/or structure may then be adapted to take advantage

of new training data or to compensate for nonstationary

inputs, variation in internal components, or internal

faults. Further evaluations require new test data.
 It is important to note that test data should never be
used to estimate classifier parameters or to determine
classifier structure. This will produce an overly
optimistic estimate of the real error rate. Test data must
be independent data that is only used to assess the
generalization of a classifier, defined as the error rate
on never-before-seen input patterns. One or more uses
of test data, to select the best performing classifier or
the appropriate structure of one type of classifier,
invalidate the use of that data to measure
generalization. In addition, input features must be
extracted automatically without hand alignment,
segmentation, or registration. Errors caused by these
processes must be allowed to affect input parameters as
they would in practical applications where extensive
hand-tuning is normally impossible. Unfortunately,
these simple guidelines, restricting use of test data and
limiting hand-tuning and also other important common-
sense guidelines discussed in

[15]
, are frequently broken

by pattern recognition researchers.

J. Computer Sci., 3 (12): 948-955, 2007

 951

 Supervised training, unsupervised training, or

combined unsupervised/supervised training can be used

to train neural net classification and clustering

algorithms. Classifiers trained with supervision require

data with side information or labels that specify the

correct class during training. Clustering or vector

quantization algorithms use unsupervised training and

group unlabeled training data into internal clusters.

Classifiers that use combined unsupervised/supervised

training typically first use unsupervised training with

unlabeled data to form internal clusters. Labels are then

assigned to clusters and cluster centroid locations and

sizes are often altered using a small amount of

supervised training data. Although combined

unsupervised/supervised training mimics some aspects

of biological learning, it is of interest primarily because

it can reduce the amount of labeled training data

required. Much of the expense and effort required to

develop classifiers results from the necessity of

collecting and hand-labeling large amounts of training

data. Combined unsupervised/supervised training can

simplify data collection and reduce expensive hand

labeling.

Back-propagation classifier: Back-propagation

classifiers form nonlinear discriminant functions using

single- or multi-layer perceptrons with sigmoidal

nonlinearities. They are trained with supervision, using

gradient-descent training techniques, called back-

propagation. Which minimize the squared error

between the actual outputs of the network and the

desired outputs. Patterns are applied to input nodes that

have linear transfer functions. Other nodes typically

have sigmoid nonlinearities. The desired output from

output nodes is low (0 or <0.1) unless that node

corresponds to the current input class, in which case it

is high (1.0 or >0.9). Each output node computes a

nonlinear discriminant function that distinguishes

between one class and all other classes. Good

introductions to back-propagation classifiers are

available in many studys. including
[9,20]

. Early interest

in back-propagation training was caused by the

presupposition that it might be used in biological neural

nets.

 Figure 1 shows how the multi-layer perceptron can

form three nonlinear input/output functions using back-

propagation training. The multi-layer perceptron shown

has n linear input node, p nodes with sigmoidal

nonlinearities in the first hidden layer and one linear

output node
 One major characteristic of back-propagation

classifiers is long training times. Training times are

typically longer when complex decision regions are

Yk

zp

Z1
x1

xn

w1k

w2k

v11

vnp

v1p

vn1

Non-linear

units

Fig. 1: Multi layer feed forward artificial neural

network

required and when networks have more hidden layers.
As with other classifiers, training time is reduced and
performance improved if the size of the network is
tailored to be large enough to solve a problem but not
so large that too many parameters must be estimated
with limited training data.

FLANN classifier: In this study, a single layer model

based on trigonometric expansion is presented. Let each

element of the input pattern before expansion be

represented as ()z i ,1 i I< < where each element z(i) is

functionally expanded as ()nz i ,1 n N< < , where

N = number of expanded points for each input element.

In this study, N = 5 and I = total number of features in

the dataset has been taken.

 Expansion of each input pattern is done as follows:

 1 2 3

4 5

x (i) z(i), x (i) sin (z(i)), x (i) sin 2 (z(i)),

x (i) cos (z(i)),x (i) cos 2 (z(i))

= = π = π

= π = π
���������������������

 (2)

where, ()z i ,1 i d< < , d is the set of features in the

dataset.

 These nonlinear outputs are multiplied by a set of
random initialized weights from the range [-0.5, 0.5]
and then summed to produce the estimated output. This
output is compared with the corresponding desired
output and the resultant error for the given pattern is
used to compute the change in weight in each signal
path P, given by

 () () ()j jW k xf k e k∆ = µ × × (3)

where, jxf (k) is the functionally expanded input at k
th

iteration.

 If there are p patterns to be applied then average
change in each weight is given by

 () ()
P

i
j j

i 1

1
W k W k

p =

∆ = ∆� (4)

J. Computer Sci., 3 (12): 948-955, 2007

 952

 Then the equation, which is used for weight

update, is given by

 () ()j j jW (k 1) W k W k+ = + ∆ (5)

where, Wj(k) is the j
th

weight at the k
th

 iteration, µ is the

convergence coefficient, its value lies between 0 to 1

and 1<j<J, J = M×d. M is defined as the number of

functional expansion unit for one element.

 () () ()ˆe k y k y k= − (6)

where, y(k) is the target output and ()ŷ k is the

estimated output for the respective pattern and is

defined as:

() () ()
J

j j
j 1

y k xf k .w k
∧

=

= �

where, xfj is the functionally expanded input at k

th

iteration and Wj(k) is the j
th

 weight at the k
th

 iteration

and Wj(0) is initialized with some random value from

the range [-0.5, 0.5]

 Figure 2 and 3 shows the functional expansion unit

for one element and FLANN architecture respectively.

Experimental studies: The performance of the

FLANN model is evaluated using the five benchmark

classification databases. Out of these, the most

frequently used in the area of neural networks and of

neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA

Liver Disorders and HEART Disease datasets. All these

databases are taken from the UCI machine repository
[27]

and its corresponding site is ftp: //ftp.ics.uci.

edu/pub/machine-learning-databases/. In addition, we

have compared the results of FLANN with other

competing classification methods using the aforesaid

datasets.

Description of the datasets: Let us briefly discuss the
datasets, which we have taken for our experimental
setup.

IRIS dataset: a classification data set based on
characteristics of a plant species (length and thickness
of its petal and sepal) divided into three distinct classes
(Iris Setosa, Iris Versicolor and Iris Virginica).

WINE dataset: data set resulting from chemical

analyses performed on three types of wine produced in

Italy from grapevines cultivated by different owners in

one specific region.

sin 2π Z(1) = x3(1)

Z(1)

Z(1) = x1(1)

sin π Z(1) = x2(1)

sin π Z(1) = x4(1)

sin 2π Z(1) = x5(1)

Fig. 2: Functional expansion of the first element

FE1

FE2

X(1)

X(2)

X(I)
FEI

�

Learning algorithm

 x1 (1) = xf 1

x5 (1) = xf5

x1
 (2) = xf

 6

x5 (2) = xf 10

x1 (I) = xf 5(I - 1)+1

x5
 (I) = xf

5(I-1)+5

W1 (k)

W5 (k)

W6 (k)

W10 (k)

W5(I-1)+1 (k)

W5(I-1)+5 (k)

()ky
∧

()ky

�

Fig. 3: Proposed nonlinear model for classification

FE1

Block form representation of Fig. 1

PIMA Indians diabetes database: data set related to

the diagnosis of diabetes (with or without the disease)

in an Indian population that lives near the city of

Phoenix, Arizona.

BUPA liver disorders: data set related to the diagnosis

of liver disorders and created by BUPA Medical

Research, Ltd.

Heart disease: data set related to diagnoses of people

with heart problems.

 Table 1 presents a summary of the main features of

each database that has been used in this study.

J. Computer Sci., 3 (12): 948-955, 2007

 953

Table 1: Description of the features of the databases employed

 No. of patterns No. of patterns No. of patterns

 No.of patterns No. of attributes No. of classes in class1 in class 2 in Class 3

Iris dataset 150 4 3 50 50 50

Wine dataset 178 13 3 71 59 48

Pima indian diabetes dataset 768 8 2 500 268

Bupa liver disorders 345 6 2 145 200

Heart disease 270 13 2 150 120

Table 2: Results obtained with the FLANN model for the

classification of four databases: IRIS dataset, WINE data,

PIMA Indians diabetes database and bupa liver disorders

Data set used Hit % in the Hit in the

for testing training set test set

iris1.dat 97.333 97.333

iris2.dat 100 100

Average IRIS 98.665 98.665

Wine1.dat 93.258 92.135

wine2.dat 98.876 98.876

Average WINE 96.058 95.506

pima1.dat 77.604 76.826

pima2.dat 79.948 79.427

Average PIMA 78.776 78.127

liver1.dat 73.837 75

liver2.dat 78.613 77.457

Average LIVER 76.225 76.229

Classification performance: In the case of the IRIS

Dataset, WINE Dataset, PIMA Indians Diabetes

Database and BUPA Liver Disorders, in order to

generate the training and test sets, the total set of

patterns was randomly divided into two equal parts

(database1.dat and database2.dat). Each of these two

sets was alternately used either as a training set or as a

test set. Table 2 summarizes the results obtained in the

classification of these four data sets with the use of the

FLANN model.

 The average values (in bold type) of each

application will be used for comparisons with other

classification methods (Table 5).

 As for the Heart Disease database (extracted from

the StatLog project
[16]

), the tests were carried out with

the use of the 9-Fold Cross Validation methodology
[16]

,

the same approach used by all algorithms that were

analyzed by the StatLog project. This method consists

of partitioning the database into nine subsets

(heart1.dat, heart2.dat, heart3.dat, heart4.dat, heart5.dat,

heart6.dat, heart7.dat, heart8.dat and heart9.dat), where

eight subsets are used for training and the remaining

subset is used for testing (validation). The process is

repeated nine times in such a way that each time a

different subset of data is used for testing.

 Thus, the database was randomly segmented into

nine subsets with 30 elements each. Each subset

contains about 56% of Class1 records (without heart

disease) and 44% of Class 2 records (with heart

disease).

Table 3: Cost matrix of the results

 Model classification

 --

Real classification Class 1 (Absence) Class 2 (Presence)

Class 1 (Absence) 0 1

Class 2 (Presence) 5 0

 The methodology also makes use of a cost matrix,

which is described in Table 3. The purpose of such a

matrix is to penalize wrongly classified records in

different ways, depending on the class. The weight of

the penalty for Class 2 records that are classified as

Class 1 records is 5, while the weight of the penalty for

Class 1 records that are classified as Class 2 records is

1.

 Therefore, the cost of wrongly classifying the

patterns in the training and test data sets is given by (7)

and (8), respectively, as follows:

P1*5 P2 *1

CTr
PTr

+
= (7)

P1*5 P2 *1

CTe
PTe

+
= (8)

where:

CTr = Cost in the training set

CTr = Cost in the test set

P1 = Number of patterns that were wrongly classified

as belonging to Class 1

P2 = Number of patterns that were wrongly classified

as belonging o Class 2

PTr = Total number of patterns in the training set

PTe = Total number of patterns in the test set

 Table 4 presents the errors and costs of the training

and test sets for the FLANN model. Upon closer

inspection of Table 4, it may be observed that the

configuration of the heart8.dat database as a test subset

obtained lower errors and consequently a lower cost for

the FLANN model.

Comparison with other models: The results obtained

for the Iris Dataset, Wine Data, Pima Indians Diabetes

J. Computer Sci., 3 (12): 948-955, 2007

 954

Table 4: Results obtained by the FLANN model for the classification of the heart disease database

 Error in the training set Error in the test set

Dataset used ------------------------------------- ---------------------------------- Cost in the Cost in

for testing Class 1 Class 2 Class 1 Class 2 training set the test set

heart1.dat 13/133 14/107 1/17 1/13 0.34583 0.2

heart2.dat 14/133 12/107 2/17 1/13 0.30833 0.23333

heart3.dat 13/134 15/106 4/16 2/14 0.36667 0.46667

heart4.dat 13/133 10/107 1/17 4/13 0.2625 0.7

heart5.dat 13/133 16/107 3/17 2/13 0.3875 0.43333

heart6.dat 13/134 14/106 6/16 0/14 0.34583 0.2

heart7.dat 15/133 13/107 0/17 3/13 0.33333 0.5

heart8.dat 18/133 17/107 1/17 0/13 0.42917 0.033333

heart9.dat 20/134 9/106 2/16 1/14 0.27083 0.23333

Average 0.338888 0.333333

Table 5: Comparison of the average performance of several

classification systems

 Pima Indians

 Iris Wine diabetes Bupa liver

 dataset data database disorders

NN 95.2% 65.1% 60.4%

KNN 96.7% 69.7% 61.3%

FSS 92.8% 73.6% 56.8%

BSS 94.8 67.7 60.0

MFS1 97.6 68.5 65.4

MFS2 97.9 72.5 64.4

CART 74.5

C4.5 94.0 74.7

FID3.1 96.4 75.9

MLP 75.2

NEF 96.0

class

HNFB 98.67 98.31 77.08 74.49

HNFB 98.67 97.8 78.0

fixed

HNFB 98.67 97.8 78.6

adaptive

HNFQ 98.67 98.88 77.08 75.07

HNFB-1 98.67 99.44 78.26 73.33

FLANN 98.67 95.51 78.13 76.23

Database and Bupa Liver Disorders data sets were

compared with the results described in
[17]

 where the

performance of several models is presented: NN

(nearest neighbor), kNN (k- nearest neighbor, FSS

(nearest neighbor with forward sequential selection of

feature) and BSS (nearest neighbor with backward

sequential selection of feature). In addition, FLANN

model has also been compared with other methods such

as MFS (multiple feature subsets)
[18]

, CART (CART

decision tree)
[19]

, C4.5 (C4.5 decision tree)
[20]

, FID3.1

(FID3.1 decision tree)
[21]

, MLP (multilayer

perceptron)
[22]

 and NEFCLASS
[23]

. Finally, the

performance of FLANN was compared with the

hierarchical neurofuzzy BSP models (Table 6) HNFB,

HNFB fixed (which is the HNFB model with the same

variable for all cells in the same level), HNFB_adaptive

(the HNFB model with different variables for cells in

the same level) and the Hierarchical Neuro-Fuzzy

Quadtree (NFHQ) model
[24]

, which uses the Quadtree

Table 6: Table comparing the average cost in the training and test set

of several classification systems evaluated for the heart

disease database

Algorithm Cost in test Cost in training

FLANN 0.339 0.333

HNFB-1 0.366 0.594

Bayes 0.374 0.351

Dicrim 0.393 0.315

LogDisc 0.396 0.271

Alloc80 0.407 0.394

QuaDisc 0.422 0.274

Castle 0.441 0.374

Cal5 0.444 0.330

Cart 0.452 0.436

Cascade 0.467 0.207

KNN 0.478 0

Smart 0.478 0.264

Dipol92 0.507 0.429

Itrule 0.515 -

BayTree 0.526 0.111

Default 0.560 0.560

BackProp 0.574 0.381

LVQ 0.600 0.140

IndCart 0.630 0.261

Kohonen 0.693 0.429

Ac2 0.744 0

Cn2 0.767 0.206

Radial 0.781 0.303

C4.5 0.781 0.439

partition of the input space
[25]

. The results were also

compared with Inverted Hierarchical Neuro-Fuzzy BSP

System (HNFB
−1

)
[26]

. Table 5 presents a summary of

the results obtained by the various different models.

The best performance for each data set, measured in

terms of each model’s hit percentage, is highlighted in

bold type.

 The classification results found for the Heart

Disease data set were compared with the results found

in the StatLog project
[16]

. According to the StatLog

project methodology, comparison consists of

calculating the average cost produced by the nine data

subsets used for validation. Table 6 presents the

average cost for the nine training and test subsets. The

result of the FLANN model is highlighted in bold.

J. Computer Sci., 3 (12): 948-955, 2007

 955

CONCLUSION

 In this study, we have evaluated the Functional

Link Artificial Neural Network (FLANN) model for the

task of pattern classification in data mining. The

FLANN model functionally expands the given set of

inputs. These inputs are fed to the single layer feed

forward artificial neural network. The network is

trained like Back propagation training methods. The

experimental studies demonstrated that the FLANN

model performs the pattern classification task quite

well. In most cases, the results obtained with the

FLANN model proved to be as good as or better than

the best results found by the other models and

algorithms with which it has compared. The

performance of the FLANN models is remarkable in

terms of processing time, which is also treated as one of

the crucial aspect in data mining community. For all the

databases described in the experimental studies, the

models converged in an order of magnitude of less than

one min of processing time on a Pentium IV 500 MHz

computer.

REFERENCES

1. Agrawal, R., T. Imielinski and A. Swami, 1993.

Database mining: A performance perspective.
IEEE Trans. Knowledge Data Eng., 5: 914-925.

2. James, M., 1985. Classification Algorithms. Wiley.
3. Goldberg, D.E., 1989. Genetic algorithms in

search, optimization and machine learning. Morgan

Kaufmann.
4. Breiman, L., J.H. Friedman, R.A. Olshen and

C.J. Stone, 1984. Classification and Regression
Trees. Wodsworth, Belmont.

5. Quinlan, J.R., 1993. C4.5: Programs for Machine

Learning. Morgan Kaufman.

6. Lippmann, R., 1987. An introduction to computing

with neural networks. IEEE ASSP Mag., 4: 22.

7. Pao, Y.-H., S.M. Phillips and D.J. Sobajic, 1992.
Neural-net computing and intelligent control
systems. Int. J. Contr., 56: 263-289.

8. Fayyad, U. and R. Uthurusamy, 1996. Data mining
and knowledge discovery in databases. Commun.
ACM, 39: 24-27.

9. Inmon, W.H., 1996. The data warehouse and data

mining. Commun. ACM, 39: 49-50.

10. Mitra, S., S.K. Pal and P. Mitra, 2002. Data mining

in soft computing framework: A survey. IEEE

Trans. Neural Networks, 13: 1.

11. Bandyopadhyay, S., S.K. Pal and B. Aruna, 2004.

Multiobjective GAs, quantitative, indices and

pattern classification. IEEE Trans. Syst. Man

Cybernetics, Part-B, 34: 5.

12. Lippmann, R.P., 1989. Pattern classification using

neural networks. IEEE Commun. Mag., pp: 47-64.

13. Duda, R.O. and P.E. Hart, 1973. Pattern

Classification and Scene Analysis. NY: John Wiley

and Sons.

14. Fukunaga, K., 1972. Introduction to Statistical

Panern Recognition. NY: Academic Press.

15. Nagy, G., 1983. Candide's practical principles of

experimental pattern recognition. IEEE Trans.

Panern Anal. Mach. Intel., PAMI-5: 199-200.

16. Heart Disease Dataset. http:// www.ncc. up.pt

/liacc /ML/ statlog/datasets/heart/heart.doc.html

17. Aha, D.W. and R.L. Bankert, 1994. Feature

selection for case-based classification of cloud

types: An empirical comparison. Proc. Am. Assn.

for Artificial Intelligence (AAAI-94)-Workshop

Case-Based Reasonings, pp: 106-112.

18. Bay, S.D., 1999. Nearest neighbor classification

from multiple feature subsets. Intell. Data Anal.,

3: 191-209.

19. Pattern Recognition and Neural Networks.

http://129.186.1.21/~dicook/stat501/97/lectures/4.1

7.html

20. Quinlan, J.R., 1996. Improved use of continuous

attributes in C4.5. J. Artif. Intell. Res., 4: 77-90.

21. Janikow, C.Z. and M. Faifer, 1999. Fuzzy

partitioning with FID3.1. Proc. IEEE 18th Int.

Conf. North Am. Fuzzy Inform. Processing Soc.,

pp: 467-471.

22. Haykin, S., 1999. Neural Networks-A

Comprehensive Foundation. Englewood Cliffs, NJ:

Prentice-Hall.

23. Klawonn, F., D. Nauck and R. Kruse, 1995.

Generating rules from data by fuzzy and neuro-

fuzzy methods. Proc. Fuzzy-Neuro-Syst.,

pp: 223-230.

24. de Souza, F.J., M.M.B.R. Vellasco and

M.A.C. Pacheco, 2002. Hierarchical neuro-fuzzy

quad tree models. Fuzzy Sets Syst., 130/2,

pp: 189-205.

25. Finkel, R.A. and J.L. Bentley, 1974. Quad trees, a

data structure for retrieval on composite keys. Acta

Informatica, 4: 1-9.

26. Goncalves, L.B., M.M.B.R. Vellasco,

F.J. de Souza, M.A.C. Pacheco, 2006. Inverted

hierarchical neuro-fuzzy BSP system: A novel

neuro-fuzzy model for pattern classification and

rule extraction in databases. IEEE Trans. Syst. Man

Cybernetics-Part C: Appl. Rev., 36: 2.

27. Blake, C.L. and C.J. Merz, UCI Repository of

Machine Learning Databases. http://www.ics.

uci.edu/~mlearn/MLRepository.html

	1.pdf
	2-8.pdf

