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Fuzzy Logic Approaches to Structure Preserving
Dimensionality Reduction

Nikhil R. Pal, Senior Member, IEEE, Vijaya Kumar Eluri, and Gautam K. Mandal

Abstract—Sammon’s nonlinear projection method is computa-
tionally prohibitive for large data sets, and it cannot project new
data points. We propose a low-cost fuzzy rule-based implementa-
tion of Sammon’s method for structure preserving dimensionality
reduction. This method uses a sample and applies Sammon’s
method to project it. The input data points are then augmented by
the corresponding projected (output) data points. The augmented
data set thus obtained is clustered with the fuzzy C-means (FCM)
clustering algorithm. Each cluster is then translated into a fuzzy
rule to approximate the Sammon’s nonlinear projection scheme.
We consider both Mamdani-Assilian (MA) and Takagi—Sugeno
(TS) models for this. Different schemes of parameter estimation
are considered. The proposed schemes are applied on several data
sets and are found to be quite effective to project new points, i.e.,
such systems have good predictability.

Index Terms—Dimensionality reduction, fuzzy rule-based sys-
tems, nonlinear projection, Sammon’s method.

I. INTRODUCTION

EATURE extraction and dimensionality reduction are im-

portant problems in pattern recognition and exploratory
data analysis. Feature analysis can avoid the “curse of dimen-
sionality,” improve generalization ability of classifiers by elim-
inating harmful features and reduce the space and computational
requirements associated with analysis of the data. Many features
not only lead to more computational overhead, but often can
create confusion thereby degrading the performance of a classi-
fier or any other system designed on them. Dimensionality re-
duction can be done mainly in two ways: selecting a small but
important subset of features and generating (extracting) a lower
dimensional data preserving the distinguishing characteristics
of the original higher dimensional data. This paper deals with
extraction of lower dimensional data.

Let X = {x1, X2, ..., X,, } beaset of n feature vectors (sig-
nals) in R?. The jth observed object (some physical entity) has
vector X; as it’s numerical representation; x ;. is the kth char-
acteristic (or feature) associated with object j. Feature extrac-
tion and data projection can be viewed as an implicit or explicit
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mapping ® from a p-dimensional input space to a g-dimensional
output space

d: RP — R (1)

such that some criterion, C, is optimized. Usually ¢ < p, but for
some feature extraction problems g may be greater than p also.

A large number of approaches for feature extraction and data
projection are available in the pattern recognition literature
[1]-[11]. These approaches differ from each other in the charac-
teristics of the mapping function ¢, how ¢ is learned, and what
optimization criterion C is used. The mapping function can be
linear or nonlinear, and can be learned through supervised or
unsupervised methods.

Sammon’s nonlinear projection method [3] is quite effective
for small data sets. For large data sets the computational over-
head is very high. Moreover, Sammon’s method does not have
predictability; in other words, with every new data point, the
entire process is to be repeated. In order to equip Sammon’s
method with generalizability, some neural network (NN) imple-
mentations have been attempted [10], [11]. NN-based schemes
usually work fine but sometimes the performance on the test
data becomes poor. More importantly, the NN-based schemes
always produce some output even when the test data are far
away from the training data or are outliers. For example, even
if an input is far away from the convex hull of the training data,
the network will produce some lower dimensional representa-
tion for it. It would be more useful, if we can develop a system
that is interpretable [not a black box like the multilayer percep-
tron (MLP)], can interpolate (i.e., has predictability) and can
deal with outliers. At least the system should be able to reject
the inputs which are far away from the training data. Fuzzy
rule-based systems have all these three desirable properties, and
hence, in this paper we explore the possibility of using fuzzy
reasoning system for structure preserving dimensionality reduc-
tion. These schemes integrate structure preserving characteristic
of Sammon’s function and the generalization capability of fuzzy
rule based systems. As to the knowledge of the authors so far no
attempt has been made to exploit the power of fuzzy rule based
system in dimensionality reduction.

The proposed schemes are found to produce, like Sammon’s
algorithm, lower dimensional data which are coherent with the
original data at a lower computational cost. The performance
of the proposed schemes have been compared with original
Sammon’s algorithm and NN implementations of Sammon’s
method. The results obtained are quite satisfactory.



II. SAMMON’S NONLINEAR PROJECTION METHOD

Sammon [3] proposed a simple yet very useful nonlinear pro-
jection algorithm that attempts to preserve the structure present
in a set of »n points in p-space by finding n points in g-space
such that interpoint distances in g-space approximate the corre-
sponding interpoint distances in p-space.

Let X = {xx [xx = (2r1,Za2, -0 20)", k
=1, 2, ..., n} be the set of n input vectors and let Y = {y
|Yk = (ykla Y2, -+ yk‘!])Ta k= 1a 2a LR 77,} be the un-

known vectors to be found.

Let d;kj = d(xq, Xj), x;,x; € X and d;; = d(y;, Yj), Vi,
y; € Y, where d(x;, x;) be the Euclidean distance between x;
and x;. Sammon suggested looking for ¥ minimizing the error
function £

1 (df; — diy)*
E= » Y . 2)

i<y
J; J

Sammon used the method of steepest descent for (approxi-
mate) minimization of E. Let y;(¢) be the estimate of y; at the
tth iteration, V<. Then, y;(¢ + 1) is given by

SE()
Oyi;(t)
R E()
Oy (t)?

where the nonnegative scalar constant « is the step size for gra-
dient search.

With this method we cannot get an explicit mapping function
governing the relationship between patterns in R¥ and corre-
sponding patterns in R?. Therefore, it is not possible to project
new points. Hence, with every additional point, it is necessary to
redo the optimization with all data points. Every step within an
iteration requires computation of ((n(n — 1))/2) distances and
for large n the computation time becomes high. Finally, there
are many local minima on the error surface and it is usually un-
avoidable for the algorithm to get stuck in some local minimum.
When n is large, getting a good solution may be difficult and one
may need to try several initializations.

Several modifications of Sammon’s algorithm have also been
proposed [4]-[7]. These algorithms approximate Sammon’s
method and do not have predictability. Even for comparison of
the quality of outputs, it is desirable to compare with original
Sammon’s output. Consequently, we do not consider any
approximate version of Sammon’s algorithm.

III. ARTIFICIAL NEURAL NETWORKS FOR SAMMON’S
PROJECTION

The potential of artificial neural networks (ANNSs) in various
applications is well established. Recently a number of ANNs
have been proposed for feature extraction and multivariate data
projection [8]-[11] Next, we discuss an interesting neural im-
plementation of Sammon’s method which augments Sammon’s
algorithm with prediction capability [8], [9].

Let us express Sammon error given in (2) as

n—1 n
E=> > By

i=1 j=i+1
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TABLE 1
TEN CENTROIDS FOR IRIS DATA PRODUCED BY Fuzzy C-MEANS (FCM)

Cluster | z; 9 z3 Z4 Y1 Yo
1 0.6116 | 0.3969 | 0.1674 | 0.0132 | 0.5671 | -0.0394
2 0.8874 | 0.3848 | 0.7303 | 0.2539 | 0.3269 | 0.5957
3 0.8303 | 0.3826 | 0.6440 | 0.2318 | 0.3451 | 0.4941
4 0.8180 | 0.3719 | 0.5739 | 0.1768 | 0.3906 | 0.4137
5 0.6307 | 0.3010 | 0.3954 | 0.1223 } 0.3629 | 0.1381
6 0.6741 | 0.4842 | 0.1774 | 0.0189 | 0.6563 | 0.0352
7 0.6363 | 0.4236 | 0.1978 | 0.0538 | 0.5710 | 0.0239
8 0.7233 | 0.3232 | 0.5141 | 0.1406 | 0.3519 | 0.2872
9 0.7634 | 0.3366 | 0.6275 | 0.2058 | 0.2929 | 0.4172
10 0.6466 | 0.4394 | 0.1770 | 0.0199 | 0.6066-| 0.0020
TABLE 11
SORTED CENTERS FOR &1 AND THE ASSOCIATED MEMBERSHIP PARAMETERS
Cluster | z; b, bRy
1 0.6116 | 0.0379 | 0.0191
5 0.6307 | 0.0191 | 0.0056
7 0.6363 | 0.0056 | 0.0093
10 0.6466 | 0.0093 | 0.0275
6 0.6741 | 0.0275 | 0.0492
8 0.7233 | 0.0492 | 0.0401
9 0.7634 | 0.0401 | 0.0546
4 0.8180 | 0.0546 | 0.0123
3 0.8303 | 0.0123 | 0.0571
2 0.8874 | 0.0571 | 0.0389
8 (¥ 1 A i
FERLY (T LA
LA KA XL KN
g | -'I I'.'.lll..'.l ) I-'. / . .-"‘q. 'I I| .-’:r Y
T R T R T R T S T BT
f}lﬁsl The ten antecedent membership functions defined on feature x¢ of
where
(df; — diy)?
Eji=A d;
with
G —
2 2 di
i=1 j=i+1

d;; and d;; are the distances, respectively, in R? and R? be-
tween patterns ¢ and j.
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Jain and Mao [8], [9] used a multilayer feedforward network TABLE III
for Sammon’s projection. The number of input nodes is set to p. EpOCHS USED FOR VARIOUS METHODS FOR EVERY DATA SET

The number of output nodes is equal to g. A pair of input x; €

X, x; € X is applied one after another and the corresponding SAM 1
outputs y; and y; are noted and are used to define £;;. Like BOA L0
an MLP, Jain and Mao trained the net using backpropagation to avy | 10000

minimize E.

In [8], it was shown experimentally that the number of nodes MNN | 10009 (FCAH1000{MLEH-1 0N Sammon et}

required in the hidden layer to be around nq to get good results. FRTS | 1O(SAM)+100(FCM)+10000(T=)
Although, it is an interesting application of NN to data projec- FRMA | 100{SAM)+100{FCM)4+10000{MA)

tion, it requires a lot of space and training time to get good re-
sults. The error after training, as we will see, is also not found
comparable to that of Sammon’s algorithm.

In [9], another approach was followed for training so as to
take advantage of the nonlinearity of the above network. Ini-
tially, a PCA network [12], [13] was used to project data and
then standard backpropogation algorithm was used to approx-
imate principal components. The connection weights of such

TABLE 1V
SAMMON ERRORS ON X7, AND ON X WHEN TRAINING WAS DONE ON X 7.

Methods | SE{K T SE(Ry. X
a trained MLP were then used to initialize the weights of the s s 5B fixy,, Xrr) (Pxr,  X)
Sammon’s neural net. This means that Sammon’s network is 5AM 0.004853 0.004683
initialized such that it behaves like a PCA network. PCA 0015391 012137
The main purpose of this network was to handle nonlinear RIS NN 0280449 b (A%
data,! as, linear (.1ata are very well prOJe(.:ted by the PCA net- MNN 0.007553 0.00R09T
work, but even this may not always be achieved by the proposed
implementation [9], as shall be seen from Section V-B. FRTS 0.010243 0.226525
FRMA | 0.000380 o022y
IV. PROPOSED FUZZY MODEL FOR DATA PROJECTION SAM 0.001192 0.001418
Sammon’s algorithm does not have predictability, i.e., with PR, i ML
every new point the entire data set has to be projected afresh; Halix ONN 0015336 0.02006G7
this in turn reduces the practical utility of Sammon’s method. MMM 0003240 0.00308%
So we want to get a system for Sammon’s projection with pre- FETS 0002816 0.001502
dictability. Several NN schemes have already been proposed as
. . e FRMA L0 188G 0.002140
a solution to the predictability issue, but they have some prob- =
lems as discussed earlier. Here, we intend to identify the relation SAM 0.000752 0.000924
between input and the projected data by a set of fuzzy rules so PCA 1.01876E 0.0L8T8E
that the task of projecting new point§ beco.rnes.a triVi.aleb. We Elongated oMM 0. B40E5T 0,051 860
assume .that 'the data set.l?nder. co.ns@eratlon is obtz.uned from Clliiatae MMM 0.D06T00 0.006257
a time invariant probability distribution. Under this assump- |
tion if we extract the rule base from a representative sample X FRTS 0.000775 0.000811
then its performance on a new data point x,, is expected to be FRMA 0000 EsT 0.amz19
nearly the same as that of the system identified from the data set SAM D.0Z1TES 0L.O3EZL4
, . .
X = X U {xs}. So our scheme consists of the following three PCA 0.104831 0108081
major steps: Ik 0, 387808 0548430
1) project X by Sammon’s algorithm to generate Y e ' :
2) extract a fuzzy rule base R from (X, Y) as described Shell MNN AR 0.046007
next; FRTS (. OZ3B0E 0032445
3) use R to project any new data point. FEMA | 0.024524 0031867
Let tth; Enpltg ‘1;‘2’;‘ Stet bili( ; {Xl{’ X2, ..., Xn} C} 7? ;‘;qd 5AM D.013757 0.015138
rojected (output) data setbe Y = {y1, y2, ..., ¥n .
gNeJdeﬁne POA 0038042 DA 245
10-Iy Marmal | ONN 0113191 0. 107386
X*={x" = x; € RP RPHa i=1.2
=15 T \yiemre )€ ’ t=54 0 Mixture MNN 0.117438 0.121100
Loosely, we call a data sct linear if a linear transformation can project it to a FRTS 0.019%50 0.023563
lower dimension preserving the cluster structure in the original data. Otherwise, FRMA b.0653a7T 0.0E2a65
the data set is nonlinear in nature.
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i.e., X; is x; augmented by y;. Suppose we cluster X™* by some
clustering algorithm producing a set of centroids

V*:{vjz <zy§£q> e RPYE, =1, 2,...,0}

and a partition matrix (hard or fuzzy). This clustering results can
be used to extract fuzzy rules. Use of clustering for fuzzy rule
extraction is motivated by the fact that if there is a cluster in
the input space with centroid v¥ and if we assume a smooth
relationship between the input and output, then the points in
the output space corresponding to the input cluster are likely to
form a cluster around v¥. Thus, if v} is associated with a good
cluster in the input—output space, then this is a signal that when
Ixx — v¥|| is small, [[yx — v|| would also be small. This is
a rough indication that such a cluster corresponds to a locally
continuous and smooth input—output relation. Even when the
data do not have any cluster structure in the pattern recognition
sense, it is possible to partition the input—output data into several
subsets such that for each subset such a rule can be written.
Thus, the 7th cluster can be translated into a rule of the form

Mamdani—Assilian (MA) model [14] :

If x is CLOSE to v then y is CLOSE to v/
Takagi—Sugeno (TS) model [15] :

If x is CLOSE to v¥ then y = u;(x, v?).

Usually, the antecedent part, if x is CLOSE to v, is written as
a conjunction of p atomic clauses: If -y is CLOSE to v}; and x>
is CLOSE to v}, and - - - and z, is CLOSE to v7,. The function
u;(.) in the Takagi-Sugeno (T-S) case primarily models the
behavior of the input—output relation in the neighborhood of v
Rules can also be generated by clustering Y. In this case, the
centers {v7 } can be obtained as centroids of associated clusters
in X. Similarly, when X is clustered, the centers {v}} can be
generated as centroids of associated clusters in Y.

If a fuzzy clustering algorithm is used, then we can induce
fuzzy clusters on different axes by projecting the membership
values of the extracted clusters. Suppose the clustering is done
in X*. One of the simple ways to assign a membership value to
the input vector x; is by

o) =) = () e
J Y
And then each component of x; € R? can be assigned mem-
bership values in the same way, i.e.,

M(%) = IH’?X {N(Xk”xkj = xij}v VJ =12 ...,p

Although several authors [16]-[19] have used exploratory
data analysis for rule based system identification, there are sev-
eral problems as discussed in Pal et al. [25] which need careful
attention to make such approaches useful. We next discuss these
issues [25] and our solutions to them.

1) Choice of the clustering algorithm: Although there
could be many choices, we use the FCM algorithm as
we have no idea about the type of cluster structure that
may be present in the data. FCM extracts hyperspherical
clusters and any input—output relation, even say a linear
relation, can be approximated by a reasonable number of
hyperspherical patches (clusters).
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2) Choice of the clustering domain: There are four choices:
clustering of X, clustering of Y, clustering of X*, or clus-
tering of both X and Y separately. In this paper, we de-
cided to use X* because in X*, x and the corresponding
y are tied together so that interpretation of a cluster as a
rule becomes easier.

3) Deciding the number of rules or clusters: Researchers
have used different cluster validity indexes like the
Xie—Beni [20] index, Gath—Geva [21] index and so on.
These indexes have been developed for cluster valida-
tion without paying attention to the rule-based system
identification problem. Hence, use of these indexes for
the present problem is debatable. Suppose we have two
compact big (the convex hull of each cluster is big) well
separate clusters. Here any cluster validity index will
indicate ¢ = 2, but each cluster has too high variability
to be modeled by a single rule. We have heuristically
decided the number of clusters.

4) Choice of the structure of the rule base: This refers to
deciding on whether Mamdani—Assilian (MA) model or
TS model is to be used. We do not have any prior knowl-
edge about the possible nonlinear relation that might be
present. So we decided to use both the MA model and
the TS model with linear consequents. Under a fairly gen-
eral set of conditions, the MA model can approximate any
nonlinear relation, similarly, TS model with linear conse-
quents can also approximate any nonlinear relation.

5) Estimation of parameters of the model: We shall dis-
cuss it in the appropriate place.

6) Validation of the model: A common practice is to use
square error on the training data as an index for validation.
In the present case, in addition to visual assessment of
outputs we also consider Sammon’s error for validation of
the system. Moreover, we partition the data X into X,
and X7, such that X = X7, UXp,. and Xp,.N X, = ¢
We identify the rule base Rx... using Xr,. and test Rx.._
on Xr.. But how do we assess the quality of output with
Xr1.? Let SE(R, X) be the Sammon error on the data
set X obtained by the rule base R. To validate the model,
we compare SE(Rx.,. , X) with Sammon error directly
computed on X by the original Sammon’s algorithm.

Each of these issues requires a much detailed and careful
analysis and that is beyond the scope of this paper. We men-
tioned these issues here to indicate that the proposed system can
further be improved by paying closer attention to these issues.
Here, we simply establish the utility of fuzzy rule-based system
for dimensionality reduction. For the sake of completeness, we
next briefly discuss the FCM algorithm.

Given X = {x1, X2, ..., X, } C R?, the FCM algorithm

finds a partition matrix U = [u;z]cxn and a set of centroids
V = {vy, v2, ..., V.} minimizing [24]

Tn(U, V) =303 ult |lxe — vil& 4)

k=1 i=1
where m is a weighting exponent greater than 1 (typically m =
2) and the inner product norm metric
l[xa — Vil = (x — vi) T AG — Vi)

¢ is the number of clusters, and A is any p X p positive—definite
matrix.
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Letv}, ¢ = 1,2, ..., cbe the centroids of the clusters ob-
tained by FCM on X*. We translate the ¢th cluster (using the TS
model [15]) into a rule of the form: RY*: If x is CLOSE to v¥
then y = u,(x, v!). Note that, “x is CLOSE to v¥” is an an-
tecedent clause with p components. Thus, R;‘FS . If 21 is CLOSE
towv} and- - -and x,, is CLOSE to v, theny = wu,;(x, v;). Since
v € R, R; canalso be viewed as ¢ different rules, one for each
component of y. This set of ¢ rules forms an initial rule base for
data projection. For the MA model we translate the 7th cluster
as RM4: if x is CLOSE to v¥ then y is CLOSE to vY. Like a
TS rule, here too the antecedent part is written as a conjunction
of p atomic clauses.

For an input vector x; € RP, let a; be the firing strength
of the rule RY® computed using any 7-norm [26], say product.
Then ¥% = (g1, Gr2, - - -, Jrq)* is computed as

Zc: a; (v
N (%)

For the MA model we can compute ;. using one of several
defuzzification methods like the height method, the center of
gravity method [26]. For computational simplicity we use the
height method of defuzzification [26].

A. The Rule Identification Scheme

As mentioned earlier R7 corresponds to a set of ¢ rules. We
denote these ¢ rules as Rf}s : If x is CLOSE to v{ then y; =
wij(x, v;), J = 1,2, ..., ¢. We use uy; = dijo.vj; + diji.m1
+oF digpap,t=1,2,...,¢ 35 = 1,2,...,q, where
d;i;i(1 = 0,1, ..., p) are constants to be identified. Thus, the
output is a linear combination of vaJ and the input. Since vaJ
is given (i.e., a constant), without loss of generality we denote
dijo.vfj as d,;o and estimate it along with other parameters.
Hence, the output is computed by

(el
Z Qg Uiy (Xk, Ufj)

=1
C
>
=1

Ykj =

As pointed out by Takagi and Sugeno, given a set of rules with
fixed antecedents, optimizing the parameters in the consequent
equations with respect to training data reduces to a linear least
square error estimation. This problem can be solved easily and
the solution is always globally optimal [15]. Since the output
cluster centroids are not necessary for this model, one might
be inclined to use only clustering of the input data. However,
it is not a good idea as a cluster found in X ignoring ¥ may
correspond to more than one region of the output space.

To choose the appropriate set of consequent parameters d;;;,
we have to formulate the optimization problem as a linear least
squares problem. In doing this, we rewrite (6) as

Yk = Z pi - (dijo 4+ dij1 - Ty + -+ + dijp - Tayp)
i1

o o
o
o o
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Fig. 2.  Results for Iris. (a) SAM output for Iris on X +... (b) SAM output for
Iris on X. (¢) PCA output for Iris with training on X 7. and test on .X'. (d) ONN
output for Iris with training on X 7. and test on .X. (¢) MNN output for Iris with
training on X', and test on .X. (f) FRTS output for Iris with training on X ..
and test on X'. (g) FRMA output for Iris with training on X - and test on X.

where
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(c) (d)

W\/M\Wﬁ”

(e) (H

AV

(&)

Fig. 3. Results for helix. (a) SAM output for helix on X7, (b) SAM output
for helix on X. (¢) PCA output for helix with training on X7, and test on X.
(d) ONN output for helix with training on X . and test on X . (¢) MNN output
for helix with training on X7, and test on .X. (f) FRTS output for helix with
training on X7, and test on X'. (g) FRMA output for helix with training on
X7, and test on X.

Therefore

C

Yrj = Z (dijo-twi+dij1-Tr1 i+ -+ dijp-Tap-piri)- (7)
i1

Then using a set of input—output data, we can easily obtain
the consequent parameters

Di =(dyjodajo - - dejodijidagy -+~ deji - dijpdajp - - dejp) T

J=12...,q
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by the least square error method using (7). So, for a set of n
input—output data, (7) gives us a system ¥ = A - DD where
Y =(y1,v2, .-, yn)b, D= (D'D?. <. D)4 1)exq and

A

Hi1mHie H11-T117 " Hle T11 " 7 H11-Tlp - "Hle Llip
21 tf2e H21 L2117 TH2e X211 H21X2pt  TH2e L 2p

Hnl " "Mne Hnl Tnl® " Hne L1 Unl Tnp" " Hnec Lnp
Here, Y}, x4 is a matrix of output values, A, »c(p41) is a con-
stant matrix as all z;; and y;; are given, D41y, is the matrix
which contains all parameters to be estimated. The estimate of
D minimizing this square error ||AD — Y||? is given by

D = (ATA)ATY. (8)

B. Choice of Antecedent Memberships

In order to implement the rule base we need to define the
membership function for “z; CLOSE to v;.” We use asym-
metric triangular functions having peak, a;; = v;; and widths
b, bi% (here L and R indicate the left and right widths of the
triangle). Note that, a;;s, biLjs and bf}s for all ¢ rules (one for
each output variable) corresponding to a particular cluster ¢ are
the same. For the jth feature, to find b and b5 we proceed

as follows. We sort v, ¢« = 1, 2, ..., c. Let the sorted list be
vl 0 =1,2, ..., c. Suppose v;; takes the mth position in the
sorted list, i.e., v ; = v}, then the width of the fuzzy set asso-

ciated to v}, (i.e., the mth fuzzy set on the axis for jth feature)

is defined by

1)71;17]»: {7zfmj—7)fm71j}, m=2,...,c—1 )
and
bgj:{vfmﬂj—vfmj}, m=2,...,c—1.  (10)

The widths of the fuzzy sets at the two extreme ends of the
domain of z; are defined by (11)—(14) as follows:

bf ;= {vf; — (L — (005 (H; — L))} (1)
bl = {vi; — i} (12)
be.j = {”f;j - ”’z‘iilj} (13)
by = {(Hj +(0.05% (H; = L)) =i} (14)

Here, L; and H; are the lowest and highest values of feature
7. Equations (11) and (14) expands the domain of the jth
feature by 5% on either side. The choice of the asymmetric
triangular membership functions with the left and right widths
as defined in (9)—(14) ensures sufficient overlaps between
adjacent membership functions. Table I shows the ten six-di-
mensional (four-input and two-output variables) centroids
obtained from the FCM algorithm for the normalized IRIS data
[22]; while Table II displays the sorted values corresponding
to column xz; of Table I. For this feature, H; = 0.910256
and L; = 0.589744. This makes b, = 0.0378816 and
b{%} 1 = 0.03888162. Columns 3 and 4 of Table II display the
left end and right end of all ten membership functions defined
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Fig.4. Results for elongated clusters. (a) SAM output for elongated clusters on
X7+ (b) SAM output for clongated clusters on X . (¢) PCA output for clongated
clusters with training on X7, and test on X. (d) ONN output for clongated
clusters with training on X, and test on X . (¢) MNN output for elongated
clusters with training on X.. and test on X. (f) FRTS output for clongated
clusters with training on X', and test on X'. (g) FRMA output for clongated
clusters with training on X .- and test on X.

on x; and Fig. 1 depicts the graphs of the corresponding ten
membership functions.

C. Further Tuning of Parameters

In Section IV-A, we have obtained the least square error
(LSE) estimate of the consequent parameters of a TS model
assuming fixed values for the antecedent parameters. We
take this as an initial choice for the consequent and then use

the gradient descent method to further refine all parameters
(including antecedent membership functions) because the
objective function minimized by the clustering algorithm and
the objective function that a rule base should minimize are not
the same. Moreover, such a two-stage hybrid scheme for further
tuning of consequents along with membership parameters is
justified because when membership parameters are altered
the LSE estimate of the consequents may (usually will) not
remain optimal. The rule base parameters a;;, b;; and d;j;
are tuned using gradient descent to minimize the error £ =

Dones 9% =yl as

aij(t—i-l) :aij(t) — Qg —3(1‘ (15)
L5
oF
L _ L
VGt + 1) = bE(t) — oy 0L (17)
g g ab”
and
OF
diﬂ(t—i—l) Idiﬂ(t) — (g Wl (18)
k¥)

In (15)—(18), ¢ indicates the iteration number. One might
argue that direct gradient descent (without the LSE estimate) on
all parameters should be able to produce the same result. Yes,
theoretically it is possible. But we all know the problems with
gradient descent when we do not have a good starting solution.
In this hybrid scheme, since the initial antecedent memberships
are judiciously chosen based on cluster analysis, they are likely
to form a reasonable good set of linguistic values. The LSE
estimate of the consequent parameters keeping the antecedent
memberships fixed will result in a fairly good rule based
system. Hence, our gradient descent step will start with a good
initialization and we are likely to get a better rule base with
less training epochs. For the MA model, we tune all parameters
of the antecedent membership functions and the peak of the
consequent membership functions using gradient descent.

To summarize we get two schemes: fuzzy rules extracted
by TS model (FRTS) and fuzzy rules extracted by MA model
(FRMA).

FRTS ( )

{
Run Sammon’s projection with X C R? as
input to generate Y C R?
Augment X by Y to get X*;
Run FCM algorithm to produce c¢ clusters
using X*;
Define MF's for antecedents using
(9)-(14);
Form the initial rule base;
Find LSE estimate of the consequent pa-
rameters using (8);
/* Tuning of the rule base x/
Refine the rule base using equations
(15)-(18) till

RMS error < € or iteration = maxsteps;
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Fig. 5. Results for sphere shell. (a) SAM output for sphere shell on X7, (b)
SAM output for sphere shell on X. (¢) PCA output for sphere shell with training
on X and test on X . (d) ONN output for sphere shell with training on X ..
and test on X, (¢) MNN output for sphere shell with training on X7, and test
on X . (f) FRTS output for sphere shell with training on X7,. and test on X. (g)
FRMA output for sphere shell with training on X7, and test on X.

In Algorithm FRTS, ¢ is a preassigned small positive quantity
and maxsteps is a predetermined limit on the maximum number

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 3, JUNE 2002

of iterations. We can now use this trained rule base to project X
and any new data points.

FRMA ( )

{
Run Sammon’s projection with X
input to generate Y C R¢
Augment X by Y to get X*;
Run FCM algorithm to produce ¢ clusters
using X*;
Define MF's for antecedents using
(9)-(14);
Form the initial rule base;
/* Tuning of the rule base x/
Refine the rule base using equations
(15)-(18) till

RMS error < ¢ or iteration = maxsteps;

C RP as

This trained rule base can now be used to project X and any
new data points.

V. IMPLEMENTATION AND RESULTS

A. Data Sets and Computational Protocols

To demonstrate the effectiveness of the proposed scheme we
implemented the following algorithms: Sammon’s algorithm
(SAM), principal component analysis (PCA) net, original
NN implementation of Jain and Mao (ONN), modified NN
implementation of Jain and Mao (MNN) that uses an MLP
trained to learn the principal components as the initialization
of the net for data projection, FRTS and FRMA. All algorithms
are tested on five data sets named Iris, Helix, Sphere-Shell,
Elongated-Clusters, and 10-D Normal-mixture.

Iris [22] is a well-known data set consisting 150 points from
three classes in a four-dimensional space. Each class has 50
points. One of the classes is well separated from the rest while
the other two have some overlap.

Helix is a three-dimensional (3-D) data containing 1000
points drawn uniformly distributed on a helix [3].

Sphere-shell [23] is a synthetic data set consisting of 1000
points in 3-D. 500 points are selected randomly within a hemi-
sphere of radius 71 and rest 500 are generated in a shell defined
by two hemispheres of radii 2 and 73, such that 71 < 72 < 3.

Elongated-cluster [9] is also a synthetic data set consisting of
two elongated clusters of 500 points each in 3 space.

Ten-dimensional (10-D) normal-mixture is synthetic data
containing a mixture of three ten-variate normals. It contains
200 points from each of the normal distributions.

For ONN and MNN we used networks with one hidden layer
having 20 nodes. For FRTS and FRMA rule-based systems, we
used ten rules for all data sets. In all cases except SAM, we
used randomly selected 30% of the data set for training and the
entire data set for testing of the systems. We applied SAM on
the entire data set so that we can compare the generalization of
the identified system. The number of epochs for each method is
listed in Table III.
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Fig. 6. Results for 10-D normal mixture. (a) SAM output for 10-D normal
mixture on X r,. (b) SAM output for 10-D normal mixture on X. (¢) PCA
output for 10-D normal mixture with training on X, and test on .X. (d) ONN
output for 10-D normal mixture with training on X, and test on X. (¢) MNN
output for 10-D normal mixture with training on X7, and test on .X. (f) FRTS
output for 10-D normal mixture with training on X'+, and test on .X'. (g) FRMA
output for 10-D normal mixture with training on X7, and test on X.

B. Results

Table IV reports SE(Rx,.., Xry) and SE(Rx, , X) for
all data sets. In addition, the first row for each data set shows
(in bold) the Sammon’s error obtained by SAM on X, and
X. Column 3 corresponds to Sammon’s error on X7, when
the system is trained on X,.; while column 4 corresponds to
Sammon’s error on the entire data set X when the training is
done on Xr,..

For visual assessment of the results, we display the scatter-
plots of the projected data. Fig. 2 includes seven scatterplots of
the two dimensional outputs produced for IRIS data. In Fig. 2
and in all other figures the following numbering schemes are
used: (a) corresponds to the scatterplot of the output produced
by SAM on Xr,.; (b) corresponds to the scatterplot of the output
produced by SAM on X; (¢)—(g), respectively, correspond to the
output produced by PCA, ONN, MNN, FRTS and FRMA for
the entire data set X when the training is done only on Xr,.,
i.e., they correspond to column 4 of Table I'V.

For IRIS except ONN, all methods produced good projec-
tions. For ONN, although the scatterplot looks quite different
from the rest, it does separate the three classes. SF(Rx... , X)
is the highest for FRTS, though visually the output is quite good.
This tells that the rule base f2x,., is not doing a good job of op-
timizing Sammon’s error on X but, since it did a good job for
Xrr, 1e., Rx,. has captured the structure inherent in the data,
the projection of X is reasonably good.

Fig. 3 displays scatterplots of the projected data for Helix.
Note that, the orientation of the projections by SAM are dif-
ferent for X, and X [Fig. 3(a) and (b)], but the structural con-
tent remains the same. For Helix the performance of ONN is
quite poor. Table IV shows that in terms of S E (on X7 and X),
again ONN is the worst. The scatterplots also reveal the same.

For elongated clusters (Fig. 4) and Sphere-shell (Fig. 5) the
TS rule base (FRTS) does the best job while again ONN is the
worst. For both data sets SE(Rx,.., Xr,) with FRTS is almost
the same as that of Sammon’s error. Similarly, SE(Rx,. , X)
with FRTS is very close to the Sammon error directly computed
on X by Sammon’s original method. This reveals that FRTS
does an excellent job of generalization (i.c., achieves a good
prediction capability). For elongated clusters although the SE
value for FRMA is not as good as that of FRTS, but both of them
are much smaller than the SE for other methods tried. Fig. 5
shows that for sphere-shell FRTS results in the best output which
not only preserves the shapes of the two classes, but it also nicely
separates the two.

Fig. 6 depicts the scatterplots for the 10-D normal mixture
data. In this case, PCA does a very good job (both in terms of
SE and scatterplots). None of ONN and MNN could do a good
job of projection at least for the simulations that we tried. On the
other hand, both FRTS and FRMA exhibit good generalization
and structure preservation.

VI. CONCLUSION

In this paper, we have proposed a fuzzy rule-based scheme
for structure preserving dimensionality reduction (feature ex-
traction). It is based on the structure preserving characteristic
of Sammon’s method and the generalization capability of rule-
based fuzzy systems. We used both the TS model with conse-
quent expressed as a linear combination of the input variables,
as well as, the MA model with height method of defuzzifica-
tion. An initial rule base was extracted using cluster analysis.
For the TS model, the consequent parameters of these rules are
then estimated using LSE technique. The antecedent as well as
the consequent parameters of the rule base thus obtained are
further refined using gradient descent. For the MA model we
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tuned both antecedent and consequent parameters using gra-
dient search. We tested the proposed schemes on several data
sets and obtained excellent results. Our method achieved four
things: 1) unlike Sammon’s method it has good predictability;
2) computationally, it is more efficient than original Sammon’s
method; 3) it has better predictability than some of the NN im-
plementations of Sammon’s method; and 4) it can detect outliers
while testing.

REFERENCES

[1] K. Fukunga, Introduction to Statistical Pattern Recognition, 2nd
ed. New York: Academic, 1990.

[2] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Saddle River, NJ: Prentice-Hall, 1988.

[3] J. W. Sammon, Jr., “A nonlinear mapping for data structure analysis,”
1EEE Trans. Comput., vol. C-18, pp. 401-409, 1969.

[4] B. Schachter, “A Nonlinear mapping algorithm for large databases,”
Comput. Graph. Image Process., vol. 7, pp. 271-278, 1978.

[5] C.E.Pykett, “Improving the efficiency of Sammon’s nonlinear mapping
by using clustering archetypes,” Electron. Lett., vol. 14, pp. 799-800,
1980.

[6] C.L.Chang and R. C. T. Lee, “A heuristic relaxation method for non-
lincar mapping in cluster analysis,” IEEE Trans. Syst. Man. Cybern., vol.
SMC-3, pp. 197-200, 1973.

[7] G. Biswas, A. K. Jain, and R. C. Dubes, “Evaluation of projection al-
gorithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp.
701-708, 1981.

[8] A.K.Jain and J. Mao, “Artificial ncural networks for nonlinear projec-
tion of multivariate data,” in Proc. IEEE Int. Joint Conf. Neural Net-
works, vol. 3, 1992, pp. 59-69.

[9] J. Mao and A. K. Jain, “Artificial neural networks for feature extraction

and multivariate data projection,” /EEE Trans. Neural Networks, vol. 6,

pp- 296317, Apr. 1995.

N. R. Pal and V. K. Eluri , “Neural networks for dimensionality reduc-

tion,” in Progress in Connectionist-Based Information Systems, Proc.

4th Int. Conf. Neural Inform. Processing, vol. 1, Kasabov, Ed., New

Zealand, 1997, pp. 221-224.

——, “Two efficient connectionist schemes for structure preserving

dimensionality reduction,” /EEE Trans. Neural Networks, vol. 9, pp.

1142-1154, Dec. 1998.

J. Rubner and P. Tavan, “A self-organizing network for principal com-

ponent analysis,” Europhys. Lett., vol. 10, pp. 693—698, 1989.

J. Rubner and K. Schulten, “Development of feature detectors by self

organization,” Biol. Cybern., vol. 62, pp. 193—199, 1990.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis

with a fuzzy logic controller,” Int. J. Mach. Studies, vol. 7, no. 1, pp.

1-13, 1975.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-

cation to modeling and control,” JEEE Trans. Syst., Man, Cybern., vol.

SMC-15, pp. 116-132, Feb. 1985.

M. Delgado, A. F. Gomez-Skarmeta, and F. Martin, “A fuzzy clustering-

based rapid prototyping for fuzzy rule-based modeling,” /EEE Trans.

Fuzzy Syst., vol. 5, pp. 223-233, Apr. 1997.

S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J.

Intell. Fuzzy Syst., vol. 2, pp. 267278, 1994.

M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-

tive modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, 1993.

R. Rovatti and R. Guerrieri, “Fuzzy sets of rules for system identifica-

tion,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 89—102, Apr. 1996.

X. L. Xicand G. A. Beni, “Validity measure for fuzzy clustering,” JEEE

Trans. Pattern Anal. Machine Intell., vol. 13, pp. 841-846, Aug. 1991.

T. Gath and A. B. Gava, “Unsupervised optimal fuzzy clustering,” JEEE

Trans. Patt. Anal. Mach. Intell., vol. 11, pp. 773—781, July 1989.

Upper

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]

[21]

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 3, JUNE 2002

[22] E. Anderson, “The IRISes of the Gaspe peninsula,” Bull. Amer. IRIS
Soc., vol. 59, pp. 2-5, 1935.

H. Niemann, “Linear and nonlinear mapping patterns,” Pattern Recogn.,
vol. 12, pp. 83-87.

J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-

rithms. New York: Plenum, 1981.

[23]
[24]

[25]

N. R. Pal, K. Pal, J. C. Bezdek, and T. Runkler, “Some issues in system
identification using clustering,” in Proc. Int. Conf. Neural Networks,
ICNN. Piscataway, NJ, 1997, pp. 2524-2529.

D. Driankov, H. Hellendorn, and M. Reinfrank, An Introduction to Fuzzy
Control.

[26]
New York: Springer-Verlag, 1993.

Nikhil R. Pal (M’91-SM’00) received the B.Sc. de-
gree in physics (with honors) and the M.B.M. degree,
both from the University of Calcutta, India, in 1979
and 1982, respectively, and the M.Tech. and Ph.D. de-
grees (computer science) from the Indian Statistical
Institute, Calcutta, in 1984 and 1991, respectively.

Currently, he is a Professor in the Electronics
and Communication Sciences Unit of the Indian
} Statistical Institute, Calcutta. From September 1991

_'i to February 1993, July 1994 to December 1994,

October 1996 to December 1996, and January to

July 2000, he visited the Computer Science Department of the University
of West Florida, Pensacola. He was also a Guest Faculty Member of the
University of Calcutta. He coauthored Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing (Boston, MA: Kluwer, 1999),
coedited a volume Advances in Pattern Recognition and Digital Techniques,
ICAPRDT99 (Narosa, New Delhi), and Pattern Recognition in Soft Computing
Paradigm (Singapore: World Scientific, 2001). He is an Associate Editor of
the International Journal of Fuzzy Systems and the International Journal of
Approximate Reasoning, and is also an Area Editor of Fuzzy Sets and Systems.
His research interests include image processing, pattern recognition, fuzzy scts
theory, measures of uncertainty, neural networks, genetic algorithms, and fuzzy
logic controllers.

Dr. Pal is an Associate Editor of the IEEE TRANSACTIONS ON FUZZY SYSTEMS
and the IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS—B.

Vijaya Kumar Eluri received the B.Tech. degree in
computer science from Andhra University, India, and
the M.Tech. degree in computer science from the In-
dian Statistical Institute, Calcutta, in 1993 and 1996,
respectively.

Currently, he is working as a Senior Software
Engincer at HNC Software, Inc., San Dicgo, CA.
His research interests includes necural networks,
fuzzy logic, dimensionality reduction, and pattern
recognition.

Gautam K. Mandal received the M.Sc. degree in
applied mathematics and the M.Tech. degree in at-
mospheric sciences, both from the University of Cal-
cutta, India.

Previously, he was with the Center for At-
mospheric Sciences, University of Calcutta and
Surendranath College, Calcutta, India. He is cur-
rently with Cap Gemini Ernst and Young Singapore
l Pte., Ltd., Singapore.




	1.pdf
	2-10.pdf

