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W demonstrade the cxistenee of a4 social cholee Fanction in an cnvigonment
where thers are twn sutcomes and iwo players cach of whim can be of two Lypes,
which can only be implementsd in Bayesian ™Nash equilibrivm by 2 mechanizm
where Bl plavers have an idinite avmbes of messages. This slands i dramatic
conerast 0 the gase of hash implementarion e complete mformation, finite
enviranments. fowrnal of Eesnomic Literaiere Classilication Numbers: 025, (26,

boOINTROVDLCINON

The theory of implementation is concerned with the decentralisation of
decsion making when agents have privale information. The heart of the
mmplementation problem is the consiruction of g mechanism or decision
procedure which will induce agents to reveal their private information. This
need 1o pive sgents the ripghl incentives acls as g constraint both on the
kind of decentralised procedures which can be used as well as on the class
of social objectives which can be implomenicd.

Of course, the choice of mechanisms as well as the natare of implemen-
table social goals willi depend on the environment, in particular on the
strocture of information. In a classic paper, Maskin [6] considered the
case of complete fovmarion, that 15, a frumework in which the state of the
world is known o all agents. Various issues in the implementation problem
with complete mlonnation have been analysed subseyuently !

One aspect of the literature which has come in lor a 1ot of criticism is
that many of the positive results are obtained with the help of mechanisms
which possess undesitezhle features, For inslance, Moore [7] remarks that
the general theoremn on implementation in subgame perfect equilibrium
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PAYESIAN IMPLEMESTATION 131
involves ... the construction of an enormously ¢laborate mechanism, with
several stages of simultanecus moves. Worse, the mechanism appeals 1o
clevel but unpalatable devices which exploit the Bnite details of what con-
stitutcs--of rather does not constitute - an egquilibrivm,” Moore goes on to
st some of these “unpalatable” devices, one of them being the use of
mechanisms whose message scts are infimte even when the environment is
finite.

In this paper, we restrict attention to eovironments with incomplete
information, in particular o those in which agents possess evofsive [nfor-
mation.? We show that in uoneconomic ennfrowarents” with {exclusive)
incomplete information, there are social choice correspondences which can
ouly be implemented in Bayesian - Mash equilibriam by mechanisms with
messape sets which are not finite ever in the simplest finite environment.
Thus, our result shows that the very nalure of Bayesiun implementation
imvalves Lhe use of mechanisms with “unpalatable™ devices.

This result alse underlines the difference between implementation in
MNash cguilibrium and in Bayesian—Nash equilibrivm. In the Tormer case,
upwanted equilibria can be destroyed by making imdividuals eycle endlessly
over a [inite set of strategies. This is accomplished by means of the
“modulo game” construction, Indeed, an upper bound on the size (that s
the number of messages) of individual message sets can be obtained as a
function of the environment.” Our result demonstrates that this idea cannot
be used in the incomplete inlormation context. Atiempls Lo climinate
equilibria with a finite number of sirategies may result i the creation of
new unwanted equilibria. Consequently, the general principles underlving
mechanism design in incomplete information environments are far more
subtle than in the complete information setting, It is also important to
realise that the usoal “inteper games” will not suffice either. Although such
games have an infinite number of strategies, it is always possible o
teplicate them perfectly by using appropriate modulo games ?

2 AN alternative framewark is one where information (&8 nedesgfisiaoe: that (5. cach agent’s
information s redundant i the other agents pool thoir information. Seg Postlowatie and
Schmeidler [18] and Palirey and Srvastava [2] for analvess of muplementation in ks
sedling.

"Wy are [ollowing dhe tecminology of Tackson [3]. Tackson defined an ecomorc cpitiron-
wicnd s orte it which e leasl feo agents are nover sadisled.

1 8ee Danilov [1], Dutla and Sen [2, 3], and Moore and Repulle 18] for some recent
applications of madule ivpe consituctions o the context of jmplementation in the perlect
mfarmation sctling

* Thee refleree has drawn gur attendion o the nesd for caulion in the vse of the lerm “ioeger
gamie.” e points aut that the imfinie mechansm we emplay in our exaiople can be described
g5 an mieger game o the following kind: Roth players annougsce integers and the outcomc i
2 T apent one has a higher tnisper end g, otherwive, By “integer pame™ we celer 1o games
where the player with the higher inleger dictates e oulcote.
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The tost general result on Bayesian implementation is that of Jackson
(5]. Jackson formulales 2 condilion on sooial cholee functions called
monctonicity-no-vero, He shows that if there are thres individuals, then the
condition is sufficient for implernentation. Moreover, implementation is
achicved by means of a mechanism which 1s finite in finite cnvironments,
Our exampie is not covered by Jackson's sufficiency theorem for two
rcasons. We have two individuals and the social choiee function does not
satisfy monotonicity-no-veto, IHowever, we show thai it is possible to
cxtend our two person example to i thmee person cxample where two
players require infinite message scts. Therefore, the lack of finiteness is 2
consequence of the failure of monolonicity-no-velo,

2. Notanon aND DEFINITIONS

In this sectipn, we describe the general framework of Bayesian
implementation. For any collection of sets (&), icf B and B ¥ will
denote the Carwesian products [T,., 8 and [T, Bt 8/, respectively, The
vector (B A~'1e B denotes the vectar (&', ., 5" LE B+ L BY) 1o
general, lower case detters will denote elements of sets which are repre-
scnted by corresponding capital leltcrs,

The set of individuals 15 a finite set f= {1, ... ¥ | Following the lormula-
rion of Harsany {4]. the ser of repes of individual i e f will be denoted by
&% Throughout the paper, we assume that 5 is finite. An element ve 5 will
be referred to as a stare of the world, or simply as a state. A complete
description of individual preferences is associated with each state.

The sel of feasible outcomes will be denoted by 4. Elements of 4 may
b interpreted as allacations of commaedities across individuals, candidates
in an election, and so on. It is assumed that A js Nixed and independent of
the state

An gffocation x 15 a mupping x2S — A4 Forall xe & x[¢]=s 4 s the out-
come spectfied by x. Let X denote the set of all allocations. Mote that when
A g hoite, the set of allocations will also be fomte. We will refer 1o this case
as the finite epviresnnean!,

Every individual i e f has a prior probability distribution ¢' defined on the
scl & We assume thal {528 | g45)> 0] =5 for all fef

Foralliel #e8 and s '8 * g'{s *|s') is the conditional probahility
af 7% piven that " has occurred.

Each individual [ has a stafe-dependent wtility function w'i Ax & —+ R
Note that the utility function depends on the entire state 5 and not just on
individual /s type & in that state.
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For all fe/ and '8 the hinaey relation RY{s'} is defined on the
elements of X as follows:

forallx, ye X, xRTe)r e+ ¥ fulix[s] s — (5] sg'ts™ i s)1 20

One feature of the binary relation &'} deserves special mention. Pick
an arbitrary icf and 5687 Lel x, 3. % §e X be such that x[f. s ] =
#f5. s '] and p[Fhs '1=7[F%s ‘Y lor all 5 ‘e85 % Then EREF U
and only if x®Y5' v Thos, for the purpose of tanking any two allocations
x and v under R}, only the values of x and p in states whose fth
component is 7 matter. This et Bllows immediately from the defintion
of R{s').

A socfeld cheice function |SCF) F is an element ol X

A mechanism G s an (N + 1) tople (M, ., M* g), where M' is the
message set for individoal fe f and g is the outcome lunction g: M — 4

Let @ be a mechanism. The collestion (7 8, 1¢'} .., {0} .r. G} con-
stitutes a game of incomplete information. We shall refer to this game as
the game associdled with 7, or Lhe G-game. A sttategy for individual §, o,
is a mapping i S’ - M’ The set X7 is the set of all strategies of ¢ For all
ae X, als} represents the vector (g1, .. (4™ 1} and glo} (he allocation
which results when o ts played.

A Bavesian-Neash equifibrium of the G-pame 15 a vector of strategies
L such that gla RS gle’ o, ') Tor all a'e IV, s'e 8 el Let
Z 6] denwole the set of all Bayesian -Nash equiliboa of the (f-game.

Derrrmion L1, A SCF F is implementable if there exists a mechanism
G such that {g{o,) | o, e, (G) =2

Juckson [5] contains a review of other definitions of implementation in
the mcomplete information context. The reader is also referred to Palfrey

[10].

3. THE NECESSITY OF INFIMITE MECHANISMS

We present an example to demonstrate the striking fact that implementa-
tion ¢ren in fimite environments may involve the use of mfinite mechanisms.
This has scrious imphlcations, The most general resull on Bayesian
implementation sa far (Jackson [37]) uses the Bayesian equivalent of the
“modulo game” widely used in mechanisms for implementation in eomplete
information settings. These mechanising are finite when the environment is
finite. In our example, the unique implementing mechanism is infinile cyven
though the environment is finite. This suggests immediately that it would
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be impossible o use “integer” or "module game” constructions Lo obtain
a necessary and sufficient condition.

The necessity of infinite mechanmismy also stands in sharp contrast to
canchical mechanisms in the compiete information case. Here, it is well
known that if a SCF is implementabie. we need not look bevond the class
of modulo pames in our search for the mechanism that implements 1t The
cxample shows that this resull does nol carry over (o the incomplele
information case. We now proceed to the example.

Let 1=1{1,2}, §'={s" s}, §7°={" ), and A= {a,,a,}. An ailoca-
tion will be represented by a 4 teple whose first, second, third, and lourth
components refer (0 the oulcomes i states 5'¢', 5'0%, 5%, and 5%, respec-
tively. Thus, {&;, 2. ;. -] 1% the allocation which specifics a,, t-. 7. and
ay inostates s't' s, o' and ¢, respectively. There are 16 allocations
altopether and they are numbered as follows:

[ﬂ],d],a],ﬂl}l=xl, [a],ﬂl1ﬂhﬂ1}=l’3,
1 l

(a, @, @) =% a0, a3, 8 )= X7,
(e, e, et @3 =27 lay, dsy 0, a;)=x"
LS S L L T LaWaa e, Haf=-A 4
(). crotr, o b=x"y  {a. i, a1, @)= x",
(s, diy, ety i ) =x" @ g, a,a0=x"

{a.anana ) =x"" day e, a,ab=5"%

{ﬂi1ﬂ11ﬂ|,ﬂ|}_—x”1 {ﬂhﬂ:,ﬂhﬂg}f.\[”,

148

(£, Fuytta, & =X {u:,ﬂ,,az,a,]l=xm.

The vtiiity funclions of the individuals are s follows:
wag (f'ON=2  w'lan (5'1))=1
wia, ('8N =1; wMa,, (') =2
w'ia, (FON=1;  wlay, (57'))=2
wia,, (22 =2; w'lay (577)) =2
wia, (s'9'N=2 u’la,, (&' =0
Wil (FPEN=2 wiag, (s4'))=2
wia, (FEN=15  wla,, (s =2

wla, (872N =2 wllay, (511 =0,
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The prior probability diseributions for the players are given by
gt s =g'tF sl =gttt ) =g' 17 ) =05
and
ksl gt et e lad i3 eap¥e? | 9500005

It 15 easy to verify that with thesc data, the binary relations R'(5'), R'(s"),
EHy, and RUEY are as Tollaows:

Bls'y

L

T L Lo | O Ly SR
II?"-."L'm"‘-'x“*-')CI:
R][SZ}
et M e e P 1 0
Il"‘-xﬁ"“xlu“-.\fu"‘- x] wan‘_..{.?‘ ""’-‘-C”I
RYrY
xl"‘-’.rz“—'."fl"-l'd’hxj"v‘xﬁ“-'.x?“-x!
R e b e E SR LR L
sz::j
.Ki"-.'(-"**-.’.'”‘vxlﬁ
.xl’“xdi"-’xu m-_l_ll
P e e

x}. "'-‘_"CJ P xlﬂ . x[l.

In ali the four binary relations, any two allocations on the same row are
indifferent (0 cach other. I one allocation 15 above the other, then the first

iz strictly preferred to the second.
Consider the SCF, #'={x"]." Let & denote the mechanism described

bl :

# Observe that 17 is {weakleh maximal for players of alk tvpes bul i5 not F. Therefore, £ doey
net satisfy Jackson's monotonicity-oo-velo condilion.
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{Iere, player | chooses rows, while player 2 chooses calumms).

Prorosition 3.1, The mechanivn & fmplements F. Moreover, it iy the
whigue (upio o relabeliing of rowy and columns) mechaniym whick implerments
it.

Proof. We Nirsl cstablish that & implements £ Let alts'b=m],
g 0 t=m), oLtV =m}, oL’ )=m; Clearly. gle, )= x* We first show
that m, &' (7}, where X, ({7} is the sat of equilibrinm strategies in 7. By
deviating from &, player 1 can get any of the allocations x'. x° 2", 217,
and x" However, x* is weakly preferred to all these allocations according
to both R'(s'y and R'(3%). Similarly, deviation from o, allows player 2 to
gei allocations x', x°, and 7. However, none of these are better than !
under either R¥(r') or R4¢°), Therclore, 7, X {G).

We now show that if el then gla)=x" Pick an arbilrary el
We first claim thal it canmel be the case that gial=x" ot x'Y To see this,
suppose that glol=1r=x" Assume without loss aof generality rthat
alisti=m!. Lel ¥(t'y=ri] and 2(42)=m]. Il must he the case that & </,
Otherwise, one of the following must hold: (i) v[s't' T=2[3"¢] =ua,,
() vl ] =3[ =a,, or (Hidy[s' ) =a, and y[:4% ] =a,. In cach
case we contradict the hypothesis that y=x'". Suppose that ¢(s”)=m]
and e Then ¥[<**]=a, or y=x'" Therfore. v>=r But now
W[a't' ] =u, implies that p[s%')=a.. Therelore y# "™ Supposc that
gla)=x". let §eX be such thal &' =«', &' i=o%t't=a'(¢}) and
e =a{¢') Then, x{7)=x'" However. this is impossible. Therefore,
glo}#x".

Let gla) =y Player 1, by playing a sirategy &' such that &'(s?)=m!
with v sufficiently laree, can ensurc that g(&', ¢¥1=2z, where z[1't' ] =
yLatet], 2[5 =plste* ] z[#%8 ) ==z[#*7] = .. Supposc that gio)= x%
By deviating, plaver ! can get x’ Since x*P'(+*}x', ¢ cannot be an
equilibrivm. By & similar arpument, ¢ canoet be an equibbrivm if
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efa=x® x% 2", 2% x% or x'% In these cases, plaver 1 has a deviation
which will give him x* £ %' %, % and x", respectively, In each case,
the deviation is strictly preferred pecording 1o P For all ge 2,
player 2, by playing &° such that #°[¢'y=wm;} and ¢4’} =m; with & and {
sufficiently large, can cnsure that gle', 82)=x' This imphics that il glo)e
fa xl w1 'L then o cannot be an eguilibrium. Player 2 will
deviate to get ¥ and will be strictly better off according to R3¢ It
alse implies that if gler)=x* or x", then o cannot be an equilibrium. Once
agair, player 2 will deviate o get x' and will be strictly better off
according to K*{r*). This only leaves the case where gig) = x*. It is accept-
ahle for o to be an equilibrium since F={x*} This cstablishes that
implements F.

We now demonsirate thal €7 95 the unigue (up (o 4 pertutaton of rows
and columns}t mechanism which implements F, Let G=(M' " gl be an
arbitrary mechanism which implements F, Let £ denote the strategy space
of player [ in the G-game. There must exist o, € £ such that gia, )—x*
Assume without loss of gencrality that o!, (') =m]. alis®)=m], ai(')=
mi, and a3(7*) =i The part of G we have constructed so far Tooks as
foliows:

M

=]

gy

WY ods

Consider the strategy de X, where ¢'is'|=arl, #1407 =m}, @70 ) =mi.
and d%(¢"y=m?. Then, g{d)=x" Since x*¢ F, some player must have a
profitable deviation from 4. This pliyer canmot be player 2, since x° is both
Ry and R¢*) maximal. Therefore, player 1 must destroy & as a poten-
tial cquilbrium. Moreover, since ™ is BYs") maximal, player | must have
a profitable deviation according to R'{s”). Suppose this deviation yields the
allocation ¥, where y=x* x7, x"", or &' All these allocations shave the
common feature that in states st' and %%, they speeily outcomes g, and
a, tespectively, This implics that player 1 must have a messape. say ml,
such that gid ), M3} =a, and R}, m¥) = a,. Now consider & € X such that
glishi=m}, d's?)=ml, &' )y=m3, and F(F)=m] Then gifl=x"
Since +7 is simultasecusly R'(s'), ®'(s), R%r'). and R3r°F maximal, &
imust be an equilibrium of G. However, <" ¢ £ and we have a contradiction,
Therefore, the player T deviation which knocks oul & must yicid
pefx? of x 1" Al these allocations specify «; in states 57t and 57r%;
hence, there must be 2 message for player !, say s}, such that giwmy, )=
i), M3l =a,. Now (F looks as follows;
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T
=
mi 4,
mLods iy

P SR B

Consider the strategy o X, where a'(x'y=s, slis?)=mi. a'(t')1=m;.
and ¢(r')=m:. Then gim)=x" Sincc x*¢F, some playver must deviate
ftom o Since & is both R'(s") and &'(57) maximal, it must be player 2
who deviates, Let the allocation which player 2 gets by deviating be 1.
Since x¥ s R2(HY) maximal, it must be the case that vP % )x® Ther: are
two cases to consider. In the first, ¥ & {x°, 57, x"%, x'*}. In this case, there
must exist 4 message for player 2, say /3. such that giml, mil=a; and
glil, it =a,. But now. if plaver 1 plays ¢' and player 2 plays /3 when
of type ¢ and &3 when of type % Lhe outcome 15 x7. We have argued
garlier that such 4 strategy must be an equilibrium. We are led to a
cotitraciction since x" ¢ £ Therelore ve [x', 2% x% 'L This implies
that therc s u message for player 2. say 3, such that gha), ml)=
gim}, mit=u,. Suppose that g, =g, Then the strategy where
plaver | plays #t) und ) when of types &7 and o, respectively, and plaver
2 plays A% and #1; when of types 2! and (%, respectively, gives rise to the
allocation v, We know that this leads to a contradiction. Therefore,
gim), mll=wu;. The part of & constructed so far is shown helow,

e

Wy Ao

= F
My ey i

i, @ d#y

m_-!_ [2E I £y

Now ook at the strategy deZ, where d'(s'y=m?, 6'(s)=nl,
gty = mi, and 5%¢") = w1 Then g{#) = x° Duplicating earlier
arguments, we deduce that there must exist a message for player 1, say i),
such that giml, miy=g[mb, mi)=a, Moreover, there must exist a
message for player 2, say ml, such that giml, mi)=g(mi, #l) =a,. Alo,
#im, mii=a ; otherwise il would be possible to canstruct a stratepy
whose oulcome s x7. We claim that gise, sl =a,. If gizm,, mil =2, then
the strategy where player | plays /) and M) when of types &' and &7,
respectively, and 2 plays w3 and #2] when of types ¢ and %, respectively,
yvields the allocation x’, After the messages my and 2 are added, & looks
as fullows:
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Starting with the strategy ¢ such that &'(s')=w), &'(s*)=sml.
#ly=m3, and #*(rV=m], we can repeat all the earlier arpuments
te infer that there must exist messages sl and w3 for players | and 2,
respectively, such that gtml miy=a, lor {=1,2,3 4, gim) mi)=a for
E=1,2.3. 4. and glm, mil=a, In fact, it is clear that this argument can
be repeated ad infinitum so that & must contain an infinite number of
messages for both players. Inspection canfitms that & = G, This proves the
praposition.

Why does Bayesian implementation require infinite mechanisms in finite
environments? More specifically, why is it not sufficient to restrict attention
to module games? Consider the example presented in this section and the
mechanism G which implements F= {x"}, We can think of & as a matrix
whose entries are elements of 4. The only allocation which can be sup-
ported by stratcgies in the F-pume are those which form the vertices of a
rectangle in the matrix. This is, of couarse, due to the deflinition of a player's
sleatepy in an imcomplete information gane—ihe message sent by a player
depends only on his own type. Let X*(&) be the set of allocations which
can be supported by strategies in G. Observe that x" ¢ Y*{). Now let '
bt ancther mechanisin which implements £ and let ¥*('} be defined in
the same manher as Y*(Gh Since x° is maximal for all individuals of all
twpes, it must be the case that x7 ¢ X*(G' ). However, i ¢ incorporates the
module game [specifically, we mean that G is a mechanism of the type
used m Jackson [5]), then it is impossible to ensure that <" ¢ X*[G'). In
peneral, modulo game constructions do offer the players the largest set of
deviations (rom stralegies which are not equilibrin. However, in doing so,
ther may enlarge the set of allocations which can be supported by
sirategies. 1 any of these newly created allocations are maximal or players
of all types {as in the cuse of x7), then the mechanism may pick up non-
optimal equilibria.

The preceding  discussion  suppgesis  that  the pecessity of  infinie
mechanisms does not depend on a two person assumption.

We conlirm this by means of a simple modification af the cxample, Sup-
pose there iz a third player. player 3, who is either of type r, or type r,.
If she 15 of type ry, player 1 and 2 have the same wtility lunctions as before,
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while il she s of type r., all outcomes have a utility of zero. Player 3 geis
4 constant whlity {say zero} for all ouwtcomes in all stales. Formally, the
utility functions #', &7, and &7 are given as loliows: For all £, j, &, 7= 1, 2,

u':{.:.r.}, (s5er™ ) = ul{a, (£*']) if m=1

=1} i m=2;
Farall j, & fm=1,12,
ﬁj[ﬂj, [S.icfn'r.lu}] =0,

Assume further that player types are distributed independently and that for
all plavers, cach type is equally likeiy.

We now represcnted an allovation by a pair such s (x 1) where x and
¥ are the 4 tuples of ouleomes in siales where player 3 s of types r, and
¢y, respectively, Let R'(s*), R'(s7), R, ete, denote the ordenngs
induced on allocations. Orbserve that for players | and 2, differences in
utilities wssocigted with outcomes arise enly when player 3 is of tvpe v,
Thus, for all pairs of allocations {x, ¢) and {w, z), (x, V) B [&5)w, z) iIf
AR (v k=12 and (xov) BR0C Ww, 23 iF xBR 5w, =1, 2 Of course,
Bty = B¢’} is the trivial ordering which ranks all pairs of allocations as
indifferent.

Let F={{xy, .0} We claim that the mechanism & of Proposition | is
the unique mechanism which implements . Thus, player 3's message set
contains only one element. while players 1 and 2 have an infinite nomber
of messages. We omit a proof of this clatn which hinges on the relationship
between the £ and & orderings and the arguments used in Proposition 3.1,
Let ex bricfly consider the argument Lo estabiish the unigueness of &
Starting from the revelation game, observe that players 1 and 2 have a
deception which gives rise Lo the allocation {(x*, x). Sinec player 3 s
always indifferent. either plaver 1 or 2 must have a deviation to upset this
potential equilibrium. The siructure of preferences is such that thizs can
cceur if and only if one of these players has a successtul deviation against
x% Ao the oripinal G-pame. Tn addition, ihese oew messages cannot be
permitted to allow supportable allocations of the type (x7,-). Similar
arpuments can be made to establish an exact correspondence between
this construction and the mechanism ¢, This allows us to deduce the
uniguensss of 7

In this three player example, it suffices to give player 3 a singls message.
However, in spite of her trivial preferences, player 3 is not 8 “dummy™
player because the utility functions of the other players depend on her type.
It is possible to construct cxampies with more than two players when all
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players have infinite message sets? The logie of our examples leads us W
betieve that 11 is possible 1o do so. We do not attempt such constructions
heganse of the formidable computational difficultics imvelved.

1=
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