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Identification of human proteins using the linguist’s tools
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The symbolic sequences of the exons that make human proteins are subjected to methods of statistical linguistics. The
ideas developed for the natural languages by G. K. Zipf, when applied to these sequences, show significant promise. In
particular, we argue, the Zipf’s exponent differcntiates, and hence, identifies disparate human sequences.

Introduction

Natural languages share some gross scaling
properties as noted by G. K. Zipf'. Later, through the
second half of the 20th century, the other common,
perhaps more substantive feature of natural languages,
namely the generative grammar’® has been
exhaustively investigated. Literary pieces, somewhat
like music, appear to have long-range power law
correlations of 1/f" type®®.

The DNA sequences are texts in the symbols A, C,
G and T. The gross scaling properties, the Zipf’s law,
could characterize the DNA sequences the same way
it does for the literary pieces. The Zipf’s exponent
could be used to identify and label the sequences.

The DNA sequences may be broadly divided into
two parts: the coding (exons) and the non-coding
(introns and the intergenic parts or flanks). The
coding parts, dominated by the degenerate, triplet
codons, typically have the Fourier spectra as shown in
Fig. 1. The non-coding regions on the other hand are
not dominated by single, unique periodicities, but
have Fourier spectra of the type given in Fig. 2.

The first hurdle in applying the ideas of Zipf to
DNA texts is the identification of words that carry
biological sense. In the case of coding regions, the
triplets dominate. The Fourier spectra have the
overwhelming 3 period, i.e. a sharp peak at 1/3
frequency. Biological words may be viewed to be the
triplet codons.

For introns and the flanks, the clear absence of any
unique dominant feature makes identification of
words ambiguous. The applicability of the Zipf’s law
in these cases is somewhat circumscribed’.

The curious aspect is the long-range power law
correlations. The introns and the flanks show a clear
evidence of this behaviour. Notice the large fall-off
for the ultra low frequencies in Fig. 2. On the other
hand, such behaviour, if present in the coding regions,
is weak and muted. The long-range order in exon
regions is certainly not as universal as for the introns
and the flanks. Some exons do show long-range
correlations while for the others, these correlations are
at best weak or non-existent. Thus the coding regions,
where the identification of words is clear, appear to be
weakly similar to the languages or music, while the
introns and the flanks, though similar to the languages
in the sense of long-range correlations, do not have
the well-understood word structure.
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Fig. 1—Frequency [f] is plotted'" against Power Spectrum [S(f)]
for the exons of human alpha globin gene (GenBank V00488).
[The exon regions show a sharp peak at f=1/3 suggesting the
ubiquitous presence of the 3 periodicity. The peak at f=0 is muted.
The exon texts, thercfore, show a weak resemblance to the
characteristic 1/f® correlations in the languages.]
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Fig. 2—Frequency [f] is plotted” against Power Spectrum [S(f)]
for the introns of human alpha globin gene (GenBank V00488). It
is difficult to isolate any unique periodicity that dominates the
intron regions. Note the sharp fall-off near {=0, characteristic of
the long-range 1/f* correlations.

It is known, however, that the gross Zipf behaviour
is applicable not just to the literary works, but to any
random sequence of letters and spaces created
playfully on a typewriter. Indeed, it has been argued
that the idealized Zipf’s exponent corresponds to the
random sequence. It is the deviation of the exponent
from this ideal value that characterizes the order and
the organization in the sequences. With this in mind,
we have applied the Zipf’s law to coding sequences.
The other, equally important, purpose of our work is
to study if the exponent can be used to classify and
label the sequences.

Methodology

Zipf proposed that in a text of certain length, the
vocabulary V (i.e., the number of different words) and
the text length T (i.e., the total number of words) hold
a power-law relationship:

Vv=T" (D
where o is the Zipf's exponent.

The law was originally aimed at the analysis of
natural human languages. Here we explore the
application of this law to understand the exon regions
of a few protein-coding human genes.

Exons are the coding parts of a gene, which consist
of triplet codons, each of which gives rise to an amino
acid in the ultimate protein. We considered each
triplet a word, thereby, for a single gene, the
maximum possible vocabulary could be 62 (because
61 for all amino acid coding triplets, and 1 for any of
the three stop codons). The increase in vocabulary
suggests the increase in the variability of triplets. If

we take the log of both sides in equation (1), the
relationship becomes:

logV =alogT
1

o = gV @)
log T

Therefore, the more the exponent value, more the
variation of words in the sequence. Under idealized
Zipf’s law conditions, the value of the exponent
would be 0.873. In other words, the closeness or the
deviation of the exponent value from 0.873 gives the
most pertinent information about the text concerned.

Results and Discussion

The Zipf’s exponents for 29 human proteins were
calculated. These proteins can be divided into nine
different classes: oxidoreductase, kinase, transferase,
high mobility group, histone, globin, globulin,
albumin and insulin. The exponent rises steadily
starting from albumin, which has the lowest exponent
to histone H4 having the highest exponent. In Table 1
the results are summarized. A plot of the o-values
against the proteins appear in Fig. 3. In Fig. 3, the five
histones are subdivided into four different classes:
H1, H2, H3 and H4.

Despite the wide variety in exon-lengths, the
exponent value for a specific class of proteins was
found to be nearly constant. Within the class the
variation is marginal, the exceptions being H1, H2A
and 2B, H3 and H4. These histones have widely
varying  Zipf-exponents. Curiously, the class
oxidoreductase and histone H1 have overlapping
exponent values (Fig. 3). It is interesting further that
H2 (both A and B), H3 and the high mobility group
(HMG) have exponent values close to one another.

The protein classes, leaving aside the exceptions
noted above, are characterized by unique o values.
Since the proteins belonging to a particular class
perform nearly similar functions, the character o
classifies the protein functions. In that sense, o gives
us a measure of the structural similarity of the protein
conformations.

The value of o varies from about 0.64 (albumin) to
0.81 (histone H4) and the internal organization of the
peptides vary significantly. The difference of
o provides a measure of the variation and, therefore,
the organization (and information) in the amino acid
sequences. We presume, therefore, the Zipf exponent
is related to the entropy of the exon/polypeptide
sequences.
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Table 1—Zipf's exponent values for a few human protein-coding exon sequences

Category Protein Exon-length Zipf’s exponent
Oxidoreductase Glyceraldehyde-3-phosphate dehydrogenase 1008 0.6825
Lactate dehydrogenase
Dihydrodiol dehydrogenase 999 0.6991
L-glycerol-3-phosphate : NAD oxidoreductase 972 0.7083
1050 0.6961
Kinase Glucokinase (liver) 1395 0.6524
Glucokinase (pancreas) 1398 0.6492
Pyruvate kinase M2 type 1596 0.6550
Pyruvate kinase L type 1632 0.6526
Transferase Glutathione transferase 669 0.7307
Hypoxanthine phosphoribosy! transferase 657 0.7367
High mobility group HMGI 648 0.7420
SRY 615 0.7528
Histone H1 666 0.6962
H2A 393 0.7762
H2B 378 0.7777
H3 408 0.7837
H4 312 0.8098
Globin Alpha globin 429 0.7221
Beta globin 444 0.7279
Globulin Thyroxine-binding globulin 1248 0.6761
Sex hormone-binding globulin 1209 0.6853
Corticosteroid-binding globulin 1218 0.6789
Albumin Serum albumin 1830 0.6435
Alpha albumin 1800 0.6374
Alpha fetoprotein 1830 0.6384
Afamin 1800 0.6374
Insulin Insulin 333 0.7986
Insulin-like growth factor precursor 462 0.7919
Insulin-like growth factor 1 (breast tumour cell
line) 414 0.7980
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Fig. 3—The Zipf’s exponent values for 12 different classes of protein-coding exon sequences. The five histones are subdivided into four
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different classes: H1, H2, H3 and H4. The error-bars simply indicate the maximum deviations from the average values.
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Since o characterizes the classes, it provides a
quick measure for the identification of unknown
query sequence. In that sense, the study of the
exponent is useful.

The natural as well as the computer languages are
characterized by gross statistical features studied by
Zipf and subsequently, by many others. The DNA
texts of the letters A, C, G and T are subjected to this
statistical analysis. The results show that the gross
statistical quantities are linked to the DNA functions.

The other, and deeper, feature of the languages is
the generative grammarg'lo. Work is in progress in our
laboratory on the generative grammar of the DNA
sequences.
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