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TWO EXISTENCE THEOREMS IN SURVEY SAMPLING
OF CONTINUOUS POPULATIONS

By V. R. PADMAWAR
Indian Statistical Institute
SUNMM. -iRl Intorproting tho traditional survey sampling sot-up in the continuous

infinite . k somo imality results w.r.t. 4 moasure of uncortsinty, undor the
coll-known ion model, aro oblained

| INTRODUCTION

Consider a population of infinitely many pairs (y(x), z), 2 > 0, such that
the joint distribution of y(z), z 2 0, is not known completely. For convenience
we assurge that y(x), > 0, are defined on some probability space (Q, 4, £).
The distribution of X, whosc observed values are x, assumed to be continuoua
and known is specified by

Flay = glf(u)du, >0

In the continuous set up, the label of u population unit is a continuous
index A, where for convenience A [0, 1). A more specific ordering is imposed
on A by identifying it with A-th quantile of the X-distribution. Heving
drawn and observed » units the data are recorded as (y(x), z); 1 = 1,2, ..., n;
or equivalently (y(), z); where & =(z,, 2, ...,z,). The problem under
consideration is to cstimate the population mean for the variate Y, namely

my = EfY) = [ yla)fx)dz.
v
This, incidentally, defines the operator, Ey.

Let @ be the Borel g-algebra of 5 ={x:% >0 i=12 .0}
Any continuous probability measure @ on g is called a sampling design.
Q(z) is the probability of drawing a sample such that the auxiliary variate
value in the i-th draw does not exceed 24, 1 = 1,2, ..., n. Let g(@) = {igg)"

then g(z) can be expressed as g(x) = p{z)f(x), where f(x) = ﬁ fla). plx)
is colled a design function giving rise to the mmplmg design Q(a:)

aMS (1670) subject elamjlmum. n . 02D05.
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Here we consider a apecific super-population model, namely the regreasion
model, induced by the probability space (Q, A, £)
Y(z) = fz+2(z),z 3 0
where for every fixed z > 0
Ey(Z(z)) = 0, E((Z%2)) = o%z0 o (L1

and for every fixed 2 # 2, z,2° > 0

Ey(Z(x)2(z") = 0
where 02> 0 and § are unknown whereas g ¢ [0, 2] may be known or un-
known.

Any function T' of the observed data (y(x), ) is called an estimator of
my, whereas (p, T) an estimator 7' together with a design function p is called
a strategy.

A strutegy (p, T) is said to be p-unbiased (design-unbinsed) if

Ey(T) = § Ty(x), op()fxidz = | y(x)f(x)iz
7, bl

for every real valued F-integrable function y(x). This defines the operator Ep.
A stratogy (p, T) is said to be Z-unbiased (model-unbiased) if
E(T(Y(x), x}—my) = 0 ae. [Q).
We assume that Y(2) is square integrable w.r.t. the product probability

(FxE). To judge the performance of a strategy (p, T') we uvse the following
meuasure of uncertainty

M, T) = EEyT—my)?. .. {L2)
In actuslly computing (1.2) we assume that the population conforms to the
mode! (L.1) with g € [0, 2) known.
In this paper we consider the following :

(8) For a given design the problem of obtaining & best » as well aa
E-unbiaged linear estimator, under the model (1.1) with g known, w.r.t. the
measure of uncertainty (1.2).

(b) For a given design the problem of obtaining a best p-unbiased linear-
2
estimator, under the model (1.1) with g kmown and the ratio %—, also lmown,
w.r.t. the mesaure of uncertainty (1.2).
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2. EXiSTENOR THEORHMB
A linear estimator is of the form

T(y(x), @) = é a(@)y(z) . (2))

where aq(@), 1 =1,2,...,n are &-measurable functions. The condition of
E-unbinsedness for the linear estimator (2.1) is given by

.%, o(Thoe = p N TR o (22)
where g = Ey(X) = f:j(z)d:c,

0
The condition of p-unbiasedness for the strategy (p, T) is given by

dla,r)=1%2>0 . (23)
where @ = (a,, @y, ..., 4,)), a; = &{T),
dula, ) = 7eI~ _ladr)p(r)’l;lll_f(rﬂdzl e (24)
and sla, z) = 3 #da, z).

Now tfor a “p as well ns £-unbiased” linear strategy (p, T') the measure of
uncertainty (1.2) takes a simpler form; namely

Mp,Ty=0? | ‘f aj(x)ydplx)flzydz+ At —Em). ... (2.5)
7?‘ -1

Thus for a given design function our problem is to minimize (2.5) subject to
the conditions (2.2) and (2.3).
For a design function p(z) define
qlz) = | p@fix) 11 dzy e {2.6)
* 1#1
Let us assume that the given design function p() satisfies the following
conditions.

For some fixed » > | and for every i =1,2,...,n

|z | 2nr-u i8 g¢ (2)-integrable
and qj'((_:))"r""_” ia f(z)-integrable. 2

The number v is chosen as close to 1 aa possible so that the conditions (2.7)
are still satisfied.
B 2-13
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Let @ = (a,, a4, ..., a,), Where a;(x) is &-measurable, s = 1,2, ...,n and

g(x) = p(@)f(x).
Define
U = {a: |a{x)| ¥ is g(x)-integrable ¥ i = 1,2, ..., n}
7, = (o |atz)|tis gayintogrsble}
Vy = {blz) : |bx)|?is flz)-integrable}.

Note that with usual ‘Ly’ norms U, V..V, are all Banach spaces. Let
V="VxV,and V* be the dual space (the space of all bounded linear func-
tionals on ¥ w.r.t. usual Lynorm) of ¥. Clearly V* = V.

Let G = | T adapip@feds
m =]l

iy = 1) £ aer—u)

Hya) = I,(2)(¢(a, )—1)
(@) = (H,(a), H,(a))

where Ha) =1 if e}
=0 otherwise

and Ii(z) =1 fz>0
=0 otherwise.

We are now in a position to formulate our problem as a familiar minimization
problem on vector spaces :
Minimize G(a) subject to H(a@) = 6 .. (28)
where 0 is the zero vector of V.
It can be checked that ¢ and H are infinitely Fréchet differentiable.
To solve (2.8) we make use of the Lagrangian multipliers technique.  The
Lagrangian corresponding to (2.8) is given by
Lia, v*) = G{a)+v*H(a) L(2.9)
where v e V* =V
It is known that if (a,, v;) is the unconstrained minimum of (2.9) then
a, solves (2.8). Now (2.9) can be written sa

L, o) = [ Zalzidip(x)fzldz—2 | A@)(Sa(z)a—ppa)f(z)de
»: e

—2 | bz)$(a, z)—1)f(z)dx
x
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where 0° = —2(A(x), b(z)), A{x) & ¥, and b(z) ¢ V,.
Let 6L(a, v°; h, w*) be the derivative of L(a,v*) with the increment
(h, v*). Setting 3L(a, v*; b, w*) = 0 4 (h,uw*) e Ux V* we get

H(a)=6
and ¥ heU

[ I a@h@dp@f@de— [ Nz 3 k@)
m {=1 ﬁ: (=1

— | b@)h. 2)f(x}dz = 0. . (210)
7?4

Note that
[ )i, )flx)dz = [ bla)(@)pE)f(x)de.
R Fio

Hence from (2.10), we got, -v_h.(a:) elUy = {a: |a(x)|? is g(x)-integrable},

7{» Mz x)zd— Aa)z—b(z) Jpl@)f(xde = 0; i = 1,2, .., n.

Hence a(x)z = M@)z+bx). o (2.01)
Now using the constraint (2.2) we get
I LN
Ne) = Ty L (212)

Substituting the value of A(x) from (2.12) in (2.11) we get
— 1-g
a(x) =b(11)z,"+”7x§z;_)f’——.z}". o (213)

From (2.13) we get

| @) ,':l Flepdzy = balarontz)—at efz))

i) 2l £ I 27 Magagz, z)f(zMzy ... (2.14)
I pot

whero  r(e) = qlefe), olz) = | e 2(@) Tl flazy
79:—_) 3] pro]
1 L
and ciglz, 2g) = 7{”-2 T P(w)bguf(”k)dxk-
Now observe that "
I [z} Nazeim, 2)fleddey = E [ 20 Wajeiln, z)f(2)dz
It ot i g+

= | 2'0(2)Difz, 2)f(z)dz,
®
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n

where Dy(z,2) = I cy(zy, z).
4

Substituting this in (2.14) we get,

$1(0, 2) = YN aIrz)—21% o)) +ux0 o(z)
=210 [ bwyw'~? Dz, w)f(w)dw.
e

Now using the constraint (2.3) we get

1= ba) [0 % rz) -zt £ o(a)]
=1 [}

+puz'=o gq(z)—x“' | dwwt~? Diz, w)fw)dw. ... (2.15)
= 7ot
where D(z, w) = “:‘. Dy(z, w).
£

Observe that
ri(2) — 2t ey(x) = [l—-ﬂ—z’; JP(T) 1T flz)Mdz,
b =

g 2ot T 23
i
> 0.
Hence (2.15) can be compressed to the familiar Fredholm equation, [vide
Hochstadt, 1973]
m(z) = bz)— [ Kz, w)bw)f(w)dw o (2.16)
7t
1 —pa'9Ecy(z)

where m(z) = I — - Ee)

awi D@, w)
Zry(z) - 2 0%e(z) |
Thus determining tho Lagrangian multiplier b(z) is equivalent to solving the
equation (2.18). If d(z) is a solution to (2.16) then by substituting in (2.13)

and K(z, w) =

we got » functions dy, dy. ..., d,. We now show that this @ is indeed s solution
to (2.8). Treating I{a, »*) as a functional in @ we note that the second deriva-
tive with the increment h, h, 62L{a, v*; h, h) > 0 4 h ¢ U and the higher
order derivatives are uniformly zero. Hence using Taylor's expansion, namely

La+h,v") = L(a, v")+5L(a, v*; h)+‘?,’l’(‘£'2 '.’I';_"L?’)
NI L Y ) . (227
mas ml

we get for d, (@) < L{d+h) v heU.
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As a matter of fact, depending on solutions to (2.16), even if @ iz not
unique, again using (2.17) it is clear that the value L(a, v*) is same for all of
them, i.6., we may get different vectors @ leading to the same value of the
functional L(a, v*).
We now state a theorem which can be used to solve (2.16) :

Theorom 2.1: If m(z) € V; and [ K¥z, w)f(2)f{w)dzdw < o
72}

then Mz)—A | Kz, w)bw)f(w)dw = m(z) . (218)
7ot

has a unigque solution if and only if
bz)—A [ Kz, wb(w)f(e)dw = 0 . (219)
r

has only the trivial solution bz) = 0.
I (2.19) has at lenst one nontrivial solution then (2.18) will have & solution

[ m@)(z)f(x)dz = 0
7

for overy I(x) satiafying the equation
Uz)—=A [ K(w, 2)(w)f(w)dw = 0.
et

We aro now in a position to state our first existence theorem :

Theorem 2.2: For any design function p(x) salisfying (2.7) and for which
(2.16) has a solution there exislts a best p as well as £-unbiased linear estimalor
under the model (1.1) with g known w.r.l. the measure of uncertainty (1.2).

Example 2.1 : Lot us consider an oxample so as to get the idea about the
above result.

Lot Py =4 2 230 1T plzy) . (220)
=1 i
where A is the normalizing constant and p(r) is such that (2.7) is setisfied
and x'-9p(x) and 29/p(x) belong to V,. For the p(x) given by (2.20), we have
rz) = nAp(n— A +at-00]
Teda) = Apla)h,
Dz, w) = n{n- 1), A p(x)p(w)

K(z, w) = W:'p{u-)
1

ras

™= o)~

zAg
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where A, = [ z%9 p(2)f(z)dz, A = ( Il p(z)f(z)dz) "~y
foad boad

1

= - — 3
A=h [ pefEE A= A T G,
It is easy to check that A~' = nA A,
The equation (2.16) reduces to
z Azl
b(z)— X 7£ ’ w-rp{w)b(w)f(w)dw = pZT)"‘“”‘ .21
Let by = [ w=op(w)bw)f(w)dw;
b
zhy, Az
then b(z)— A= ) — AT . (2.22)
Multiplying both sides of (2.22) by z'~9p(z) and integrating we get
5,0 = Ag—Agh,. (229)

This shows that (2.22) has a solution for any real value of b, if and only if
(2.23) is satisfied. But note that

_ _ Il _ /‘is_
A=A = a4 n—1)%,

- L. -
= Tmnnan, (oA
=0,

¢

henes b(x) = :”4— ;g) — Az i8 a solution to (2.21), where 7 ia any real number.
1

Substituting b(z) in (2.13) we get a unique set of » functions d,, dy, ..., @,
i.e., they do not depend on any particular choice of 7. Thus for p(x) in (2.20)
tho best p as well as é-unbiased eatimator is given by

I afe)y(x)
=1
where a(x) =p%27) +’L‘L§%&"’ 2 i=12 .m0 .. (224)

1-¢
Remark 2.1: In particular for p(zq) = 2{™' we get a(x) = g_,, and
]

further if g = 2 we get d,(x) = %
]

We now proceed to our next existence result.
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For & p-unbiased linear strategy the measure of uncertainty (1.2) takee

the form

Hp =o' ] ’z al{tp(@)f(z)e

+£ | | % afai)’ sxifizidz—Eens.
LM

Let o*/f* = k. Our attempt is to find a best linear p-unbissed estimator for
a given design function when k is known. Woe assume that p(x) satisfies 2.7).
Let
n n 1
6a)=k | T ajmatplalfiedet | (T a@)) pyia)dz.
7?: =1 7‘_7: il
Thus our problem is to
Minimize G\(a) subject to Hya) = 6, .. (2.25)
where H,(a) is same as in the provious problem and 0 is the zero vector of Vs
The Lagrangian corresponding to (2.25) is given by
La, v*) = Gya)+v°H (a) . (2.28)
where v* ¢ Vi =V,
1t is easy to check that G, is infinitely Fréchot differentiable. Proceeding
on the lines similar to that used in solving the previous problem we get
g gi-g ZNX)Z)0 ’
afz) = k| ozt 2o )’:z__, ] o (227)
where —2b(x), &(z) € V,, is the Lagrangian multiplier.
To determine b(z) we make use of the constraint (2.3). Now

blaz)= | afept) N faiz
®t, s

b
= k-! 7?{ 70 [b(.r,)—: kfg—:; ]p(a‘) l'l j(z,)dz,

-1

=k | =) | pa) 01 fladay
R, IEY

N Pz) u
f b(zt)ﬂsf_lkT H‘f( 1)y

+22F aiy
=lr‘[b(z‘)zr'(n(z')—zf"axz«))—z‘ v | bwjwtDiz, w)f(w)dw]
ﬂ+

A Yz~ { g o T fdn) s
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where (=) = qlz)lf(x);
. _ o{x) i \
clzr, 7y) —72'{: H—&!,‘_'n;g,; S(a)day ;
ofz) = [ cylz z)f(z))dzy.
Vel

Diz, z) = I eyfzq, 7).
IEL

Now using i $i(a, x) = ¢la,z) =1 we get
(=1

Hz)— [ K'(z, w)bw)f(w)dw = m'(z) L. (2.28)
Fied
, zw'-0D'(z, w) ) kxt
where K'(z, w) = 7@ —2Bia) and m'(z) = Hz)—i-0B(z)

with D'(x, w) = Z" Dj(z, w), r{z) = I'!. r(z) and B(z) = i cz).
i=l =1 -]

Now to solve the oquation (2.28) we make use of Theorem 2.1. Thus if ¥z)
is a solution to (2.28) then by substituting it in (2.27) we get a vector G¢'. As
shown in first problem, we can indeed prove that this @’ i a solution to (2.25)
and if there is more than one choice for @’ the corresponding value of the
functional L(a, v*)is same for all of them. Thus we have our second existence
theorem as follows.

Theorem 2.3 :  For any design funclion p(x) salisfying (2.7) and for which
(2.28) has a solution there exials a best p-unbiased linear estimalor under the
model (1.1) with g und o?[fi* = k known; w.r.t. the measure of uncertainly (1.2).

Let us consider an example so as to get an idea about the above result.

Ezample 2.2: Let

» n
pz) = A(k+ T abo) T plz)
{=1 =
where 4 is the normalizing constant. Let p{x) be such that (2.7) is satisfied
and z'-7p(z), z#/p(z) belong to V,. It can be checked that
m'(z)=—w = z (8say)
nAp@EA + (= DAAT T~ “plz) T

where A= [ pa)f(z¥z and A, = [ 2“op(a)f(z)dz.
et »
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Thus the equation (2.29) reduces to
4
Hz)—-Ag [ wiplwhlwlfw)dw = A, 2z e (229)
»

Letting b, = [ wi-#p(w)b(w)f(w)dw, multiplying both sides of (2.29) by
e

71-9p(z) and integrating we get

b1 =AAy) = Ay
note that AA, < 1.

A
Hence b = T——'/(‘,/\,'
= A Adgs
Thos %) = o F1-ad,
Agz?
= 23 +Az {say).
Substituting in (2.27) we get
A e LS I
8@ = ey * s Tate [/\,_ b Ep(zj)]" P= 1,20 .. (230)

‘Thus for the above p(z) the best linear p-unbiased estimator is given by
L
’21 a(@)yi=)

where d{x), = 1,2, ..., n are given by (2.30).
Remark 2.2: In particular for ¢ =2 and p{z,) = % we got d{x)

independent of k, namely é(x) = —’n:l .
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