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ABSTRACT

One way of handling composite hypotheses by SPRT’s is to integrate
out nuisance parameters under both the null and alternative hypoth-
eses and then form an SPRT. If the prior is improper, Wald inequal-
ities will not hold in general. We provide sufficient conditions and
then verify that the usual sequential | #| -test satisfies these conditions
but Wald’s |z|-test does not satisfy these conditions and in fact
cannot satisfy a strengthened form of these inequalities in general.
Nonetheless, simulations show Wald’s inequalities for A, B,
corresponding to usual small «, 8, will usually hold.
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1. INTRODUCTION

Sequential Probability Ratio Tests (SPRT’s) for simple and
composite hypotheses were first introduced by Wald!"*!*l, For composite
hypotheses, they are based either on integration of the nuisance param-
eters with respect to priors (Wald!'®)), or elimination of nuisance param-
eters via invariance and sufficiency (Hall et al'%). In many cases, the
priors, conditional on the hypotheses H;,i = 0, 1, are improper, making
the Wald inequalities somewhat doubtful in general. We explore this
question in detail, specially in the context of sequential two-sided r-test.
The corresponding ratio of integrated likelihoods depends on |¢|, and
hence we call this test the sequential | #|-test.

We first prove a general result that ensures the validity of Wald
inequalities, and then examine the following special case. Suppose X;'s
are independent and identically distributed (i.i.d.) as N(u,o?), the null
hypothesis 1s Hy : p = 0 and the alternative is H; : u/o = +A for some
specified A. Slightly extending Hoel!'!), we consider the family of priors
under H;:

n(a):%, 0<o<o(0<yL]),

u =0 under Hp, and u/o given o, equals A,—A with probability half
under H;. They all lead to sequential |z|-tests in the sense that the like-
lihood ratio (defined in (2.1) and (2.4) below) at nth stage is a monotone
function of the corresponding | ¢| statistic. In the rest of the paper, unless
stated otherwise, by “likelihood ratio’” we shall mean “ratio of integrated
likelihoods’’.

If y = 1, we get the usual sequential lt |-test, often called the WAGR
sequential test, vide Barnard!!], Rushton!"®), Ghosh!®!, The validity of this
test is proved rigorously in Barnard!® via convergence arguments. Its
validity is also proved in Hall et al.l'%. It is possible to show in this case
that the ratio of integrated likelihoods at nth stage is actually the likeli-
hood ratio of |¢| with df = n — 1, the numerator involving an appropri-
ate non-centrality parameter. Details are given in Sec. 2. We show our
general theorem applies in this case.
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If y = 0, we get the sequential |¢|-test proposed by Wald. One of the
reasons for writing this note is to settle whether the famous Waldl'4'
inequalities hold for Wald’s test. We show that our general theorem does
not hold. In fact, the likelihood ratios with approximating proper priors
do not converge to the limiting likelihood ratio of Wald under the
sequence of approximating priors. This explains why a limiting argument
cannot hold. In principle, Wald inequalities can still hold. We prove a
general result on likelihood ratios and show that a certain strengthened
version of Wald inequalities (see (2.11)) which is an essential step in
Wald’s argument cannot hold.

These arguments are quite general and apply to all tests with

1
1«',(0')=;1-;, 0<y<l.

Incidentally, our results make it clear that Hoel’s!'!! concern about these
tests was justified. They also show why a rigorous proof or at least
numerical support from simulations is needed in Statistics in spite of it
being an applied discipline, see in this context the interesting discussion
in Barnard!"?, In view of these facts, the claim in Ghosh!” is not true
for Wald’s test; the claim is true for the usual test with y = 1. It is pointed
out in Ghosh!” that the Wald inequalities only lead to approximations
for error probabilities and hence Hoel’s!'!! argument does not really
apply. This point remains true, the so-called (approximate) double
minimax property defined in Hoel'!) holds for the WAGR test, and
any other test for which the Wald approximations hold. In this connec-
tion, it is worth pointing out that the prior associated with the usual
sequential |z|-test avoids the marginalization paradox (vide Dawid
et al.”®)) but the other priors may not.

It is our finding that notwithstanding these theoretical discussions for
Wald’s test, Wald’s inequalities hold for all the cases where we have
undertaken simulations so far. This may be because the boundaries of
this test are close to the boundaries of the test with y =1 and Wald
inequalities are quite conservative for the latter. Results of some simula-
tions are presented.

It is worth mentioning that all these tests terminate with prob-
ability one, at least under Hy and H;. This can be verified by employing
Theorem 2.5 of Berk!®l. Also all of them have monotonically decreasing
error of second kind as || /o increases, vide Ghosh!"*L

Wald was one of the greatest statisticians of the twentieth century.
He packed in a period of ten to fifteen years what would have been for
lesser people the work of a lifetime. Had his life not been cut short by
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the tragic accident in India, he would have himself settled the questions
relating to use of improper priors. Incidentally, for a fascinating descrip-
tion of Wald’s visit to the Indian Statistical Institute and the problems
caused by improper priors in another arca see the autobiographical
account of D. Basu in Ghosh et al.”’,

2. RESULTS

Let X1, X, ... be i.i.d. observations from a distribution with density
f(x,8). We want to test the hypothesis Hy : 8 € @ against the alternative
H, : 0 € ©). Let =n;(0) be improper noninformative prior density of 6
under H; and II; be the corresponding measure, j = 0,1.

Let

Pln
An =—, >1, 2.1
n " nz ( )

where

Pin = pj’l(xlv'wxn)défL Hf(X,,G)n,(B)dG, Jj=01 n2>1

7 i=1

Note that p;, and py, are not proper probability density functions.
Consider Wald’s SPRT with boundaries B < A and likelihood ratio
An(X1,...,X,) at stage n>1. Let N be the stopping time, ie.,
N min{n >1: 1, & (B,A)}.

We consider a sequence of sets @ 1 ©; as M — oo such that
I1;(®u) < oo for all M, j=0,1, and the proper likelihood ratios based
on the approximating proper priors #;(0)/T1;(® ) on @p:

PinM
Ao =y m2h 22
nM Donst ( )
where
R deg Jo 0 [Tim1 (X0, 6)m;(6)d0
Pinm = Pinm{(X1, ..., Xn) = 0.0 ,

j=0vl’ n>1, M2>1.

The functions pj.u,j=0,1, are proper probability density functions.
Let Pjuy,j = 0,1, be the corresponding probability distributions.
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We also assume that Ho(@ou) = H[(@IM) for all M so that

_ Jou, i1 f(Xi, 0)m:1(6)d6

1 - T .
" Joo, Hic1f(Xi, 0)mo(0)d

The basic idea is as follows. Since p;, and Pon are not proper
probability density functions, we cannot verify directly whether the Wald
inequalities hold for the ratio 1,. We, therefore, try to approximate 4, by
the proper likelihood ratios A,4 which are based on the approximating
proper priors m;(8)/T1}(®;y) on ©;y. The Wald inequalities will hold
with these likelihood ratios A, Thus, when Anym approximates 1, well,
the Wald inequalities for 4, are also expected to hold. In other words,
approximation of 4, by A.u is the key issue. This issue is explored in
detail.

We state below (in Theorem 2.1) a version of the Wald inequalities.

Let Poy and Pyy be the probabilities on R™® defined by the finite
dimensional distributions {Poy:n > 1} and {Piuy:n> 1)}, respec-
tively. We assume that

(A) for any n>2, the distribution of (43,...,4,) under
Pium(j =0,1) converges weakly to some continuous (n — 1)-
dimensional distribution as M — oo.

This collection of finite dimensional limiting distributions defines a
unique probability distribution, denoted Py, on R™ which is the limit
of the distribution of (4;,4s,...) under P;yy as M — oo. Note that Py,
is a probability on the space of (42,43,...) and the event that Hj is
accepted (or rejected) can be described in terms of (43, 43,...). We define
the event Hy is accepted (rejected) as {N < oo, Hy is accepted (rejected)}.
If N < oo with probability one under both hypotheses, then we can drop
“N < oo™

Theorem 2.1. Suppose that for each n > 2, Ay e Anas M — o0, ie.,
for every € > 0, Pinpg(| Anpt — An | >€) — 0 as M — o0, for j=0,1, and
that Assumption (A) above holds. Let Py,j=0,1, be the limiting
probabilities as defined above. Then for Wald’s SPRT with boundaries
A and B and likelihood ratios { A, : n > 2}, we have

(@) Py, (Ho is accepted) < B Py,(Hy is accepted), and
(b) Py, (Hy is rejected) > A Py,(Hp is rejected).
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Proof. We prove part (a) only, the proof of part (b) being similar.
Note that the event Hp is accepted can be written as a countable
disjoint union as follows:

{Ho is accepted} = | J{B< A2 < A,...,B < A1 <A, 1, < B}.

n>2
Under the assumptions of the theorem,

Pwq(B< A2 < A,...,B<2Ap| <A <B)
—-PM(B< Aoam <A,...,B< Jm—l,M < A,A,._M < B)-——>0.
as M — 000. (2.3)

The proof of (2.3) follows from the definition of weak convergence
(see, for example, Theorem 25.4 of Billingsley!™).
Since A,y = pi1nm/Pony is @ proper likelihood ratio,

Piuy(B< lay < A,...,B< An-im < A,y m < B)
< BPyuu(B< oy < A,...,B< Ap 1y < A,2sm < B).

Therefore, from (2.3),

o0
Zb}i_%opl,,,,,(3<12<A,...,B<1,._l < A, < B)

n=2

[+
ngmPo,,M(B<Az<A,...,B<). _1 < A,A, < B).

This completes the proof of Theorem 2.1. O

We now consider the special case where the observations X;’s are
random samples from a N(u,¢?) population with u and ¢° both
unknown. The null hypothesis to be tested and the alternative are

respectively
Hy:pu=0 and H;:p/oc=+A

for some specified A. We consider the family of priors

n(a)=&17, 0<o<0(0<y<1)
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under both Hy and Hy, p = 0 under Hy, and u/o given o, equals A and —A
with probability half under H;. Note that #(c) is an improper prior for o.
We consider approximating proper priors n(-) restricted to (au,by),
where ay, by are positive numbers, ayy — 0 and by — oo as M — oo.
When 0 < y < 1, we may, however, take ay = 0.

With pjn, pjam(j = 0,1) as defined above, we then have

&0 1
po,,=f f(X],...,X,.;O,G')—dO',
0 o
U7 sk o Ac o) Ld
pu=s| [ 1,0 Xei800,0) Lo

® 1
+[ f(X],.-.,Xn;—Aﬂ',O')—dO'],
0 o7

by 1 (24)
Ponmt = Cym f(X],...,X,,;0,0')—dO',
ay 0'7
PinM = _2— [ - f(Xla ¢o ,X,,,AU,O')};dO’
by 1
+ F(Xiy. ..y Xn; -—Aa,a)—da],
au a¥
where
f(x Xp; 1, 0) ———-I—-—-ex ~—Lz”:(x. N
1y s A&n3 Hy —(\/2_1!0')" p 252 Z i—H
and
(0% / 1 d
y = —dc.
M i O
Notice that for any constant d,
) ‘ 7 g 58)d
see ) - = == y b3 )
‘/; f(Xl) aXmaas 0) a? do (\/Z—i)nsﬂ_},_]‘/ﬂ g)‘(u ) u
(2.5)

where

(-2 =3 (0-X7, X=23 %, =X,

i=1 i=1

3
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and
&(u,1;6) % 12 exp [-—-;-{(n — 1) + (tu— 5\/5)2}] , u>0.

(2.6)

Recall now that the expression for the density function of non-central
t-distribution T(p,0) with degrees of freedom p and non-centrality
parameter @ is given by

/2 o
f(& p, 9)‘!--?'r —‘/-2_—52’-;—_1}-@-/0 u exp {— % [P + (tu - 9)2] }du,

te R,

Hence, when y = 1, except for the leading constant the expression appear-
ing on the right hand side of (2.5) coincides with f(t;n — 1,84/n). Thus
wheny =1,

1= fltin—1,Ay/n) + flt;n — 1,—A\/n)

2f(t;n — 1,0)
f(tn-l A/n)+ f(—t;n—1 A\/_)
2f(t;n —1,0)

and hence

__ density of |[T(n — 1,Ay/n)| evaluated at |¢|
"™ density of |T(n — 1,0)|evaluated at ||

We first consider the case with y = 1.

JnM‘

Proposition 2.1. If y=1, then for any fixed n>2,Auy — A as
M—o00,j=0,1, ie, for every €>0,Piupm(|daps — A >€)—0 as
M — oo.

To prove this proposition, we need the following lemma.

Lemma 2.1. Let 5 be the sample standard deviation c;eﬁned as
(n~ 1‘2.5'2 Yo (X - ~X)? with Xﬂ!—f1 oy Xi. Then s/by 250 and
au/s —= 0asM — o00,j=0,1.

Proof. All the probability statements in the proof refer to the joint
distribution of (Xj,...,X,) and (g, o).

We choose K > 0 such that Pr(s/c < K) can be made sufficiently
close to 1. This is possible as distribution of s/o, given (u, ), is free of
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(u, 0). Also, for any € > 0,

Gbu 1 l b _ 1
Pr(c/by < €) = Ciy f Ldo= 01?)(-‘- bM) log(aw)
au g Opm — 108 apy

as M — oo. Therefore, s/by = £ - 24 Pk 0 as M — oo.

To prove the second part of the lemma, we choose X’¢> 0 such that
Pr(c/s < K') is sufficiently close to 1. Also, for any € > 0,

log(by) ~ log(apm/¢)

Prlay/oc <€) = 10g by —log ay —1
as M — oo. Then ay/s = 2-2u 24 0 as M — oo. |

We also need the following result. We omit the proof.

Lemma 2.2. Let U,V,Up,Vn,m > 1, be random variables defined on a
measurable space (Q, o) and P,, m >1, bea seqyence of probability
measures on (Q, o) such that Uy —= U and Vi —> V as m — co. If
{Un} and {V,} are stochastically bounded and {V,} is stochastically
bounded away from zero under {P,}, then

Un U

Vm V

Pu
-0 asm— oo.

Proof of Proposition 2.1. 1t is easy to verify that for 0 < a < b < o0,
and any constant 6,

b 1 1 s/a
vy Xp; 00,0)—do = ,80)d
/a. f(xl: :X o0 0)6 o (\/2—1“),../8/!’ gl(u ) u

(see (2.5) and (2.6)). From (2.1), (2.2), and (2.4), we have

Jiam gy (u, b A)du + [ g1 (u,1; ~A)du

Aot =
" 2]’,{;“ g1(u, t;0)du

and

f°° gi(u, t; A)du+ [3° g1(u,t; —A)du
2 foo g1(u, ;0)du
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Then

[numerator of A, — numerator of A,
s/bu 1
_<_2f u"lexp [—-2-(n - l)uz] du
Jo

+2 | ” wlexp [—%(n - l)uz] du, (2.7)

sfam

which converges to zero under Pj,u probability (j =0,1) as M — oo in
view of Lemma 2.1. The difference between the denominators of A,
and A, also has the same bound as (2.7) and hence converges to zero
under Pj,y probability.

Now note that we may choose K > 0 such that Pju(|¢| < K) can be
made sufficiently close to 1. Then by Lemma 2.1,

_ sfam
denominator of A, =2 /
S/b_u

2
21(x, £,0)du > 2 / g1(u, K;0)du
1
with Pj,s-probability sufficiently close to 1. Therefore, the denominator

of Anu is stochastically bounded away from zero. Also, both numerator
and denominator of A,y or A, are bounded by

2[ " lexp [—l(n - l)uz] du
0 2

which is finite. The resuit now follows by an application of Lemma 2.2.
0]

We now note that Assumption (A) of Theorem 2.1 holds as distribu-
tion of (42, ..., 4,) under Pj,)s does not depend on M(j = 0,1). Thus the
Wald inequalities as stated in Theorem 2.1 hold.

We now consider the case 0 < y < 1. The case y = 0 corresponds to the
test proposed by Wald'™>. In this case, 1,4 does not converge
(in probability) to A, as M — oo. In what follows, we show this only under
Ponp-probability. Here we take ap = 0 VM and A,y and A, can be written as

AnM = F(S/bM, t), An = F(O, t), (28)
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where

f:’ g‘l'(u’ L A)du + f;o gr(u; L _A)du
2 [.° gy(u, 2;0)du ’

and g,(u, 1; 6} is defined in (2.6). All the probability statements below refer
to the joint distribution of (Xj,...,X,) and o, where ¢ has density
x 1/6%, 0 < 6 < by.

F(w,t) =

>0,

Lemma 2.3. The distribution of (s/by,t) is free of M.

Proof. We write (i,r) as (£- £, ¢). Note that (s/o,?) is a function
of Yi:=Xi/a,i=1,...,n, which are iid. N(0,1) variables, given g.
Therefore, unconditional distribution of (s/o,7) is free of M and
(s/o,1) is stochastically independent of ¢/by. Also, /by has a
distribution free of M which is given by

—- vhy
Pr(a/bMSv)=ll 'P/ crl c=v"7, 0<v<l.
0

This proves the result. O

Proposition 2.2. A, does not converge in probability (under both Pyupy
and Piay) to Ay as M — oo.

Proof. In what follows, we show this only under Py, -probability.
Suppose, if possible,

A 25 Ay as M — oo (2.9)
Then by Lemma 2.3, writing s/by = n, we have from (2.8)

F(n,t) = F(0,1) with probability 1,
ie., with a slight abuse of notation,

F(n,1) = F(0,r) ae. (n,1), (2.10)

under the joint distribution of (7, 7).
One can find the joint density of (,¢) as indicated in the proof of
Lemma 2.3 and check that it is supported on the whole of R* x R.
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Therefore, using continuity of F(n,¢) as a function of (n,¢), we have
from (2.10)

F(n,t) = F(0,f), 0<p<oo, —oo<t< 00,

Le.,

jn " l86 8) + ), & —A)] du

=2 [ 500dux FO.9) ¥ (1,9
n

Differentiating both sides of this identity with respect to » and
simplifying, we have

explntAy/n] + exp{—ntA+/n] = 2F(0, £) exp[A2n/2] V¥ (n,¢).

This cannot be true as the right-hand side is free of ».
Hence, (2.9) does not hold. O

We have proved that the assumption

P,
XRM—M-M.,. asM—oo00, n22,

of Theorem 2.1 does not hold when y < 1. It is natural to ask whether
the Wald inequalities can still hold even though Theorem 2.1 cannot be
applied. Interpreting the Wald inequalities in the stronger sense of
(2.11) below, we now show the answer is no.

For 0 < y <1, let us denote the likelihood ratio (2.1) by A,,. Let P;
denote probability under H;, and Q; be the distribution of 1,, under
P,i=0,1.

Wald’s inequalities are based on the inequalities of the form

BPW(EN{B< Ay < A}) S PHEN{B < Ay < A})
SAP(EN{B< A,y <A} (2.11)

for any —0o < B< A £ o0 and n > 1, where E is an event expressible in
terms of Xi,...,X,.
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Suppose that the following weaker version of (2.11) holds: for any
B <A,
BPy(B < Any < A) S P\(B < Ay < A) S APy(B < Ayy < A).
(2.12)

We show below that (2.12) cannot hold for0 <y < 1.
First, we show that

dC, \ _
T {x) ==x.

Here Qo, Q1 are measures on (0,00). We define a martingalé sequence
{Zm) F m}m>1 o0 {0,00) as follows. Let

Q= (0,00) = O(r,r+ 1].
r=0

Let # .(m > 1) be the o-field generated by the partition of 2 into dyadic
intervals (r +k2™™,r+(k+1)27"], 0<k<2”, r>0and Z,, m 2> 1,
are & ,-measurable random variables defined as

Oi(r + k27", r + (k + 1)2°"]
Qo(r +k2-™,r + (k +1)2-7|

if x € (r+ k27", r+ (k+1)27"). (2.13)

Za(x) =

Then Z,, is the Radon-Nikodym derivative of Q; with respect to Qo on
% . and the sequence {Z,, : m > 1} is martingale relative to the o-fields
{Fn:m> 1} (see, for example, Billingsleyt¥, Sec. 35).

By Theorem 35.8 of Billingsley', with probability one

a
dQy
For each x > 0 and m > 1, we choose dyadic rationals an(x) = r + k27"

and b,,(x) = r + (k + 1)2~™ such that ap(x) < x < bu(x). Then, if (2.12)
holds, it follows from (2.13) that for each x > 0,

Zy —

am(x) € Zp(x) < bm(x)
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implying that Z,,(x) — x as m — oo. Thus

a0
dQo

Now for B < A,

(x) =X.

PI(B S 1"07 S A)

/ dp 1= dQl (x)
{B<A,y<A) {B<x<A}

- -/{BSxSA} *d0als) = {B<Any<A) nr dFo
For any b < a,
{b<|<a}={B< iy < A}
for some B, A as A, is a strictly increasing function of |¢|. This property

of Ay follows from the MLR property of non-central |z, which is a
special case of non-central F (Lechmann!'?). Therefore,

Pbsisa)=[  dan,
{b<li<a}

and hence

Pi{b< | <a}) = f Ay dPo = f An1 dPo.
{b<|t|<a} {b<|tj<a}

Then by a monotone class argument

/ Any dPy = f An,1 dPy ¥ Borel subsets S of (0, c0).
S s

This implies
dmy=Any @S (2.14)

with respect to the distribution of |¢| under Py. However, by using
property of confluent hypergeometric function it is possible to show
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the following (Hoell!!)): for 0 <y < 1,
Any(8) < An1(r), t>0. (2.15)

Hence, (2.14) cannot hold. This proves in turn that (2.12) cannot hold.

3. SIMULATIONS

For an SPRT with boundaries A > B and probabilities of errors of
first and second kind «a, §, the following inequalities hold:

B<B(l—a), Aa<(l-p)

(vide (a) and (b) of Theorem 2.1). These are referred to as Wald inequal-
ities. Wald gave an argument that in many cases these inequalities
become approximate equalities. Then given a, §, one can find the
boundaries approximately. These inequalities and approximations play
a fundamental role in Wald’s!"> book.

We investigate through simulation whether Wald’s inequalities hold
for Wald’s sequential |¢|-test, and also demonstrate validity of these
inequalities for the WAGR sequential test, theoretical support of which
has already been provided (see Theorem 2.1).

Consider i.i.d. observations X;’s from a N(u,s?) population with u
and ¢2 both unknown. The null hypothesis to be tested and the
alternative are respectively

Hy:u=0 and H:ulo==A

for some specified A. We consider the family of priors n(s) = 1/0?,
0<ao<oo(0<y<1) under both Hy and H;, =0 under Hp, and
p/c given o equals A and —A with probability half under Hj. The
expression for the “likelihood ratio’’ appears in (2.8).

We present in the table below Py (Hp is accepted), Pgy,(Ho is
accepted), B Py, (Hp is accepted), Py, (Ho is rejected), Py, (Ho is rejected),
and A Py, (H, is rejected), for varying choices of the target error probabil-
ities a*, 8* with «* = #*, and A. We denote the common value of «* and
B by 7. Also, we report our findings both for y = 1 and y = 0, the former
corresponding to the WAGR sequential test and the latter to Wald’s
sequential |z|-test. The column indices appear in the first row.
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It is easy to verify in this situation that

PHo(HO is accepted) = PO,I(J'N < B)r
Py, (Hy is rejected) = Py ;(Ax > A),

] 1
Py, (Hy is accepted) = E[PA,I (Av € B) + P_p1{Ax < B)]

(3.1)
= Pa (v < B),

N 1
Py, (Ho 18 rejectzd) = E[PA’I (ﬂ.N 2 A) + P_ay (/‘lN > A)]
= Pai(Av 2 A),

where Py ;(C) denotes the probability of the event C when X;’s are i.i.d.
observations from a N(6,1) population.

The set of equalities in (3.1) enables us to calculate easily the
quantities reported in columns 6-11 of the table. In all the calculations
below, A=(1-p*)/a* =(1-1)/1B=p*/(1 -o*)=1/(1 —1). Also,
we denote the events {Hp is accepted} and {Hj is rejected} by D and
E, respectively. Hence, Py, (E) and Py, (D) are the error probabilities.
They are reported in columns 10 and 6 of the table, respectively.

The simulations have been done by two different programmes for
calculating the integrals appearing in A,. One of these methods calculates
them by a recursive method, and the other employs numerical inte-
gration. The results match substantially. We report the results obtained
by the first method. A few words about this method are in order.

Calculation of the integrals appearing in 4, can be shown to boil
down to calculation of integrals of the form

o0 - — )2
/ x"'exp(—(xzf) )dx=:1,,., m=0,1,2,.... (3.2)
0 T

It can be proved that

Io = \/z—m(g),

2

6
Iy =t2exp ( -—51—2) + 8k,

Inyz = OIpyy + (m+ 1)7%L,, m >0,

(3.3)
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where @ is the cdf of the standard normal distribution. These, i.e., the
equalities in (3.3), can be used to evaluate 7, for every m.
Finally, the number of simulations for each entry is 25,000.

1 2 3 4 5 6 7 8 9 16 11

y A = A B Py(D) Py(D) BPy,(D) Pu(E) Py(E) APy(E)

1 05 005 19 1/19 0.0408 0.9581 0.0504 09592 0.0419 0.7957
0.01 99 1/99 0.0087 0.9924 00100 09913 0.0076 0.7488
0 0.5 005 19 1/19 0.0432 09627 0.0507 09568 0.0373 0.7091
001 99 1/99 0.0094 0.9939 00100 09906 0.0061 0.6059

For each row, we need to compare entries of columns 6 and 8, and
also of columns 9 and 11 (cf. Theorem 2.1). It is seen that Wald's
inequalities hold for all the cases we have conmsidered, for both the
WAGR sequential test and Wald’s sequential |¢]-test.

Similar studies were also made in other cases, namely, for
A =0.1,0.5,1,2 and small, moderate (=0.5) and large (close to 1) values
of B (=1/A). In all cases Wald’s inequalities hold for Wald’s |z|-test
(y = 0). So it remains open whether there are any «, 8, A for which Wald's
inequalities are violated. Incidentally, using (2.15), it can be shown that
one of the two Wald inequalities, namely, part (b) of Theorem 2.1 will
hold for Wald’s | ¢|-test.

Finally, we report a simulation indicating violation of the
strengthened version (2.12) for the above test.

In (2.12), we take n=4,y=0,B=098,4=1.02,A=0.5,
and obtain the first, second and third terms of the inequalities
as 0.0268, 0.0320 and 0.0279, respectively, based on 100,000
simulations.
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