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Abstract—Given a three-dimensional boz containing n points, we consider the problem of iden-
tifying all Mazimal Empty Isothetic Cuboids (MEC), i.e., all 3D empty parallelepiped bounded by
six isothetic rectangular faces. It is shown that the total number of MECs is bounded by O(n®)
in the worst case. An output-sensitive algorithm, based on plane-sweep paradigm, is proposed for
generating all the MECs present on the floor. The algorithm runs in O(C + n?logn) time in the
worst case. and reauires O(n) space, where C is the number of MECs present inside the box.
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1. INTRODUCTION

Recognition of all Maximal-Empty-Rectangles (MERs) is a well-studied problem in computational
geometry and was introduced in [1]. Given a set of n points on a two-dimensional rectangular floor,
the objective is to locate all isothetic MERs and/or the largest area MER.. The time complexity
of the algorithm proposed in [1] is O(min(n2, Rlogn)), where R is the number of existing MERs
which could be O(n?) in the worst case. This is further improved in [2] to O(R + nlogn). The
algorithms in [2,3] locate the largest empty rectangle among a point set without inspecting all
MERs, in time O(nlog® n) and O(n log? n), respectively. The MER problem is generalized for a
set of isothetic solid obstacles [5] and also for nonisothetic obstacles [6].

In this paper, we extend the MER problem into three dimensions. Given a set of n points
inside a box, the objective is to report all maximal empty isothetic cuboids (MECs), i.e., all
empty isothetic parallelepiped. Using the classical plane-sweep paradigm, the proposed algorithm
reports all the MECs in O(C+n? log n) time and O(n) space, where C is the total number of MECs
present inside the box. It is also shown that C is O(n3) in the worst case. The largest (volume)
MEC can be reported in O(n8/3log®n) time without generating all MECs. The problem of
locating empty cuboids finds its application in VLSI design automation, 3D graphics, operations
research, database, etc.

2. FORMULATION OF THE PROBLEM

Consider a box, i.e., a three-dimensional region bounded by six isothetic rectangular faces. The
top and bottom faces of the box will be referred to as the roof and floor of the box, respectively.
The south-west corner of the floor is treated as the origin, and the edges of the box incident on
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the origin are assumed to be the axes of reference. Let P = {p;(xi, i, 2i), i = 1,2,...n} denote
the set of points placed randomly inside the box.

A cuboid is an isothetic parallelepiped, i.e., a three-dimensional region bounded by six axis-
parallel rectangular faces. The three pairs of opposite faces of a cuboid are called (north, south),
(east, west), and (top, bottom).

DEFINITION. A cuboid A is said to be a mazimal empty cuboid (MEC) if

(i) A does not contain any point in P, and
(ii) there exists no other empty cuboid that contains A.

An MEC is represented by a six-tuple [(n, 8), (e, w), (t,b)], where n, s, e, w, t, b are the points
or the faces of the box through which the north, south, east, west, top, and bottom faces of the
cuboid pass, respectively. If the plane corresponds to a face of the bounding box, its parameter
is dropped and the face specification of the concerned face is attached.

Let p be an arbitrary point in P. The plane that passes through the point p and is parallel to
the X-Y plane, is said to be a horizontal plane and is denoted by H(p).

In order to visualize how the MECs are formed, let us consider projections of all the points
on the floor. Let P? denote the set of projections of all the points in P, where p? € P? is the
projection of p; € P.

DEFINITION. A rectangle R[(n,s),(e,w)] on the floor is said to be valid if each of the four
sides of R either coincides with a bounding side of the floor, or touches a member of P°?. The
degree §(R) of a valid rectangle is the number of sides of the rectangle that pass through some
point(s) of P°.

Now consider a valid rectangle R[(n, 3), (e,w)]. Several MECs may now exist with the rectan-
gle R as their horizontal cross-sections, as stated in the following cases.

Case 1. §(R) = 0, i.e., R becomes identical to the floor of the box. In this case, there exist
(n + 1) MECs; they are obtained by slicing the box horizontally through the plane
H{(p;) for each point p; € P.
Case 2. 6(R) # 0. In this case, the following subcases may arise.
Case 2.1. The rectangle R is empty. Correspondingly, there exists exactly one MEC
whose top (bottom) face touches the roof (floor) of the box, respectively.
Case 2.2. The rectangle R is nonempty. Let n C P? be the set of projected points
that fall inside the rectangle. Let the z coordinates of the points in P
through whose projections the north, south, east, and west sides of R
pass, be 2,, 2,, 2, and z,, respectively. If any side of R coincides with
the boundary of the floor, the corresponding z value is undefined.

Let zpmin = min{z,, 2, 2e, 2w} a0d 2max = Max{zn, 2, 2, Zy }. The undefined z values, if any,
do not contribute to the zpin Or 25, Here again two subcases may arise.

Case 2.2.1. There does not exist a point p, € 1 such that zmin < Ze < Zmax. In this
case, the aforesaid rectangle corresponds to exactly one MEC. To decide
the pair of points through which the top and bottom faces of the MEC
pass, let 1, and 7, be the two disjoint subsets of # (1 |Jn2 = 1) such that
Zo < Zminy VY Pa € 11 ald 24 > Zmax, ¥ Do € 72. Let py be the point in
7 such that 2, > 24, V p, € ;. Similarly, let p, be the point in 7e such
that z; < 24, V pa € 72. Then the top (bottom) face will pass through p,
(pp). In particular, if 91 = ¢, the bottom face of the MEC will coincide
with the floor of the box. If n, = ¢, the top face of the MEC will coincide
with the roof of the box.

Case 2.2.2. There exists at least one point p, € % such that zin < Zg < Zmax. In this
case, there does not exist any MEC whose horizontal cross section is R.
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It is easy to verify that if §(R) = 1, then znin = 2Zmax, and hence, the Case 2.2.2 will not
arise. Thus, a corresponding MEC will always exist. From the above discussions, it is now easy
to prove the following result.

THEOREM 1. Every MEC whose horizontal cross-section R is not the entire floor, must satisfy
either Cases 2.1 or 2.2.1, and every valid rectangle (other than the entire floor) with the projected
points that satisfies either Cases 2.1 or 2.2.1, must form exactly one MEC. ]

ExAMPLE. Consider a scenario as demonstrated in Figure 1. All the points inside the box are
projected on the floor of the box. The position of a point as shown in the figure reflects its 2- and
y-coordinates, and the label attached to it denotes the z-coordinate. Now, consider the following
cases:

(i) the rectangle described by R;[(p7,p2), (v, ps)] cannot form an MEC;

(ii) the rectangle described by Ra{(pr,p2), (ps,ps)] forms an MEC whose top coincides with
the roof of the box, and the bottom face passes through the point p,;

(iit) the rectangle described by R3[(p7,p2), (s, ps)] forms an MEC whose top and bottom faces
pass through the points py and p;, respectively;

(iv) the rectangle described by R4{(p7,p1), (ps,pa)] forms an MEC whose top coincides with
the roof, and the bottom coincides with the floor of the box;

(v) the rectangle described by Rsl(ps,p1),(pe,ps)] forms an MEC whose top face passes
through p4, and bottom face coincides with the floor of the box.
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Figure 1. Horizontal cross-sections of MECs.

The above discussions lead to the fact that a loose upper bound on the number of MECs is
O(n*), where n is the number of point obstacles inside the box. We will now show that the bound
can be improved to O(n3), and present an example where the bound is achieved.

Bounds on the Number of MECs

In the earlier section, we have got a trivial O(n*) upper bound on the number of MECs.
To make the bound tighter and to formulate the algorithm for generating all the MECs, let us
introduce the following classification of MECs.

DEFINITION. An MEC is said to be of type-A if its top face touches the roof of the bounding
box. An MEC which is not of type-A is called a type-B MEC.

Let us now concentrate on the type-A MECs. Let p;(z;,y:,2;) € P and P* C P be a set of
points such that z* > z;, for all p*(z*,y*, z*) € P*. Project the members of P* along with p;
on H(p;). Now each MER on H(p;) will serve as the horizontal cross-section of a unique MEC.
The top faces of all these MECs touch the roof of the box, and the bottom face of each of them
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will be determined by sweeping the corresponding MER downwards until it hits a point or the
floor of the box for the first time.

It is easy to observe that the number of MERs touching the point p; on H(p;) is O(m), where
m = |P*|. This leads to the following theorem.

THEOREM 2. The total number of type-A MECs is O(n?) in the worst case.

COROLLARY 2.1. The number of MECs whose top (bottom) faces coincide with the roof (foor)
of the box is O(n?).

THEOREM 3. The total number of type-B MECs is O(n®) in the worst case.

PROOF. Consider each point p; € P and the set of MECs whose top face pass through p;.
Consider H(p;) as the roof and find all the type-A MECs whose top face pass through H(p;),
with the points lying below p;. By Theorem 2, there are O{n?) such MECs in the worst case.
Among these set of MECs, the desired set of type-B MECs are those whose top faces contain p;.
Thus, in the worst case, the number of type-B MECs each of whose top face passes through p;
is O(n?). Accumulating the set of type-B MECs for all the points in P, we get O(n®) type-B
MECs in the worst case. (]

Figure 1 shows an instance where the total number of MECs is O(n®). Here, the given set P
of n points is divided into three subsets, say P, P, and Fs, as shown in the figure, such that
each subset contains at least |n/3| points. Draw horizontal (vertical) lines from each member of
the subset P, (P;). These lines intersect at O(n?) points. Let this set of intersection points be
denoted as U. Two consecutive points in the subset P; create a set of O(n} corner points. Let
this set be denoted as V. One can now construct O(n?) rectangles whose south-west (north-east)
corner coincides with a member of U(V'). By properly assigning the z coordinates of the points
in P, each of these rectangles can be made to correspond to the horizontal cross-section of an
MEC as shown in Figure 1.

3. LOCATION OF TYPE-A MECS

To locate the set of type-A MECs with the point p;(€ P) touching the bottom face, consider the
horizontal plane H(p;) and project all the points that lie above H(p;) (excluding p;), on H(p;}.
Let us denote the projection of the point p; by p;. Now, the following observation is immediate.

LEMMA 1. Let R denote an arbitrary maximal-empty-rectangle (MER) on H(p;) considering all
the projected points as obstacles (excepting p; itself). Then there exists a type-A MEC whose
horizontal cross-section matches with R and whose bottom face passes through p; iff R encloses
the point p;.

In order to obtain such type-A MECs, we draw two isothetic orthogonal lines through p; to
partition H(p;) into four quadrants; let them meet the four boundaries of H(p;) at p;, p;, P,
and p2, respectively as shown in Figure 2. Let Q, be the set of points in the 8*" quadrant,
6 =1,2,3,4. In each quadrant 8, we define a set of points STAIR,(p;) around the point p;. We
now give the definition for § = 1 only.

DEFINITION. The set of points STAIR,;(p;) C @1 is said to form a mazimal-closest-stair in the
first quadrant around the point p;, if
(i) the points on STAIR:(p:) = {p},p},p3,....p5, P} are linearly ordered with respect to
their increasing x coordinates;
(ii) for any two consecutive points p; and pj., on STAIR:(p:), ¥] > ¥j415
(iii) the largest area isothetic polygon bounded by the edges (p},p:), (i, p},), and the staircase
path through the points in STAIR,(p;) is empty; and
(iv) no other point from the set Q, can be added to STAIR,(p;), satisfying Conditions (i)—(iii).
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The maximal-closest-stairs in the other three quadrants, are defined similarly. Needless to
say, the maximal-closest-stairs in all the four quadrants are unique. An example with four
stairs is shown in Figure 2. The concatenation of these four staircase paths creates an isothetic
Orthoconvex Polygon (OP) [4] with a nonempty kernel.

Figure 2. Maximal-closest-stairs around p;.

THEOREM 4. Every MER inside the OP corresponds to the horizontal cross-section of a unique
type-A MEC whose bottom face touches the point p;, and conversely, the horizontal cross-section
of every type-A MEC whose bottom face touches p;, corresponds to a unique MER inside the OP.

ProoF. Follows from Lemma 1. ]

Thus, the problem of locating MECs now boils down to recognizing all MERs within an ortho-
convex polygon.

It is easy to observe that the north (respectively, south) side of every MER within an OP
touches a point of {STAIR,(p:) |USTAIR2(p;)} (respectively, {STAIR3(p;) |JSTAIR4(p;)}). In
our algorithm, we shall consider each point of {STAIR;(p;)|{JSTAIRy(p:)} individually, and
report all the MERs touching it.

Considering & MER whose north side touches p;(z;,y;) € STAIR,(p;). It is now easy to
recognize the feasible set of points in {STAIR3(p;) |JSTAIR4(p;)} that can appear on its south
side. In this context, let us define the nearest-neighbor of a point p; € P, denoted by NN(p;), in
its vertically opposite quadrant as follows.

DEFINITION. Let p; be any point in STAIRy(p;), 6 = 1,2, 3,4, such that p; # {p},,p;, 9%, 75}

If p; € STAIR,(p;) (respectively, STAIR4(p;)), its nearest-neighbor NN(p;) = pr(zx, yx), such
that, pr € STAIR4(p;) (respectively, STAIR,(p;)) and z, = min{z, | (z; — o) > 0}.

Similarly, if p; € STAIRq(p;) (respectively, STAIR3(p;)), its nearest-neighbor NN(p;) =
Pi(Tk, Yk), such that, pp € STAIR3(p;) (respectively, STAIRy(p;)) and zx = min{zg | (zg —
.‘L‘j) > 0}

Also, NN(p3) = p%; NN(p?) = ph, NN(p?), and NN(p},) are undefined.

Figure 3a shows an illustration of nearest-neighbors. It is easy to determine the nearest neigh-
bors of all the points in a stair by merging its members with those of the stair in vertically
opposite quadrant. The feasible set of points in {STATR3(p;) |JSTAIR4(p;)} for a given point p;
in STAIR,(p;) can now be easily obtained.

Let the horizontal line through p; meet the staircase paths in the first and second quadrants
at ¢; and gz, respectively. The vertical line from ¢; (p;) meets the staircase path on the fourth
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(a) Illustration of nearest neighbors. (b) Feasible set of points.

Figure 3. Illustration of nearest neighbors and their use in determining feasible set
of points.

quadrant at g, (T, ¥«) and ga(zg, yg), respectively. Now draw a vertical line from ¢2 and a
horizontal line from gg, that meet the staircase path in the third quadrant at ¢,(z,,y,) and
¢s(xs,ys), respectively. Now all the points px(ze,yx) € STAIR3(p;) that satisfy z., < zx < zs,
and also all the points py(xe,y¢) € STAIRy(p;) that satisfy zg < z¢ < z4, are the feasible set
of the point p; (see Figure 3b). In other words, each of them may lie on the south side to form
an MER whose north side touches p;. The feasible set of points can easily be obtained with the
help of nearest-neighbor pointers.

An MER is uniquely defined whenever its two opposite sides are fixed, and hence, the points
touching its east and west sides are also uniquely defined, and can easily be recognized.

Similarly, for a point p; € STAIR;(p;) defining the north side of an MER, the feasible set of
points on which the south side may lie, can easily be identified.

The type-A MECs whose top (bottom) faces touch the roof (floor) of the box are obtained by
projecting all the points on the floor, and then locating the MERs with the projected points as
obstacles.

The algorithm is based on the plane-sweep paradigm, i.e., the points are processed in decreasing
order of their z-coordinates. A dynamically managed AVL-tree T will be used in the algorithm.
The tree T contains all the points that are processed so far, ordered with respect to their  coor-
dinates. This tree is required to recognize the maximal-closest-stairs in the four quadrants while
processing p;. The point p; is inserted in T when its processing is over, and the sweep is advanced
to hit the next point. The stairs are stored as doubly-linked lists. In addition, each point of a
stair has an associated pointer pointing to its nearest neighbor.

Complexity

For each point p;, recognition of maximal-closest-stair require O(m) time, where m is the
number of points lying above H(p;). The merging time required for getting the nearest-neighbors
is O(m) in the worst case. Reporting of all MECs with p; on its bottom face, requires O(A4; +n),
where A; is the number of type-A MEC reported at this stage. Last, the time required to insert
the point p; in the data structure is O(logn). Thus, the overall complexity of recognizing all
type-A MECs whose bottom face touch a point is O(A’ + n?) in the worst case, A’ is the total
number of such type-A MECs. Location of all the type-A MECs whose bottom face touch the
floor of the box requires O(A” +nlogn) time [5], A” is the number of such type-A MECs. Thus,
the overall time complexity of the algorithm is O(A + n?), where A(= A’ + A”). The space
complexity is clearly O(n).
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4. LOCATION OF TYPE-B MECS

A type-B MEC is one whose top face touches a point in P. Here, we will assume that no two
points in P have same z coordinate. Let p;(zi,yi,2:) and p;(z;,¥;,2;) be any two points in P
such that 2; > z;.

LEMMA 2. Let ) denote the cuboid whose diagonal is the line segment (p;, p;). Then there exists
an MEC whose top (bottom) face touches p;(p;) if and only if the cuboid X is empty.

Proor. Obvious. fi

As before, we consider the points in P in the decreasing order of their 2z coordinates. While
processing a point p;, all the MECs with top face passing through it, are recognized. This
processing is referred to as primary processing of p;. For each point p; under primary processing,
we consider the points below H(p;) in decreasing order of their z coordinates. For each point
p; (2j < z;), all the MECs whose top (bottom) faces pass through p; (p;) are recognized. This
processing is called secondary processing of p; with respect to p;. To do this, we proceed as
follows. Let p; is under primary processing and p; is under secondary processing.
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(a) Staircase around p}. (b) Staircase around pj. (c) Feasible zone around (p}, pj).

Figure 4. Recognition of type-B MECs.

Consider the projections of all points lying within H(p;) and H(p;) on H(p;). Let us denote
the projection of a point px on H(p;) by p;. By Lemma 2, if the rectangle drawn on H(p;) with p}
and p; as diagonally opposite corners, contains any (projected) point, no MEC exists with p; (p;)
on its top (bottom) face, otherwise at least one MEC is possible. In order to get these MECs,
draw a pair of isothetic orthogonal lines through p} that partition H(p;) into four quadrants.
The four maximal-closest-stairs around the point p} are obtained among the projected points
(excluding p} and p}). The concatenation of these four stairs form an orthoconvex polygon (OP)
as before. All the MERs inside the orthoconvex polygon enclose the point p}. Similarly, we
construct another orthoconvex polygon around the point pj; all the MERs inside it will enclose
the point pj. It is easy to observe that the intersection of these two orthoconvex polygons is
also orthoconvex, and all the MERs inside it will enclose both the points p} and p;. We call this
region as the feasible zone around the pair (p},p}) (see Figure 4). The following theorem now
becomes immediate.

THEOREM 5. Each MER inside the feasible zone (disregarding the presence of pj, p;) cor-
responds to the horizontal cross-section of a unique type-B MEC whose top (bottom) face
passes through p; (p;), and conversely, for every type-B MEC whose top (bottom) face passes
through p; (p;), its horizontal cross-section matches with an MER inside the feasible zone. ]

In our algorithm, instead of constructing the orthoconvex polygon around pj each time, we
exploit the geometry of the maximal-closest-stairs around p} and the position of p}, to get the
feasible zone. The method is illustrated below.
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The points on the maximal-closest-stairs in the four quadrants are stored in four AVL-trees
ordered with respect to their y-coordinates. Each member (pi) of a maximal-closest-stair points
to its nearest neighbor NN(p;) in the vertically opposite quadrant to which it belongs.

The secondary processing of p; involves two situations depending on whether the point pj lies
within the OP around p}. If the point p} is outside, no MEC is possible with top (bottom) face
touching p; (p;); and hence, we ignore it and proceed. Otherwise, the MECs with top (bottom)
faces passing through p; (p;) are to be reported, which again involves two steps:

(i) finding the feasible zone around the pair (p;,p;) and subsequently, the MERs and the
corresponding MECs,

(i) updating STAIRy by inserting p; without constructing the maximal-closest-stairs around
p? afresh for the secondary processing of the subsequent points. The search proceeds with
the updated OP for the secondary processing of the next point.

(a) Location of the feasible zone.  (b) Updating maximal-stairs around pj.

Figure 5.

Location of the Feasible Zone

Let 83, 8y, and 8p represent the quadrants that are adjacent to quadrant § in the horizontal,
vertical, and diagonal directions, respectively, where p; lies in quadrant 8 and y; € [y,,ys). The
feasible zone around the pair (p],p;) is a subregion of OP and can be determined as follows.

(i) Traverse the AVL-tree corresponding to STAIRg in-order from p} towards p} to get a
point, say p?, such that its z-coordinate just crosses that of p; (Figure 5a). Then all the
points of STAIRy between p;, to p; form the stair of the feasible zone in quadrant 6.

(ii) Let p} denote NN(p;) in the quadrant fy. Proceed from p} along the STAIR of 6y to
locate the point p; such that its z-coordinate just crosses that of p;. Then all the vertices
of the STAIR in 8y between p} and p} form the stair of the feasible zone.

(iii) Let p} and p; be two points in quadrant 6y such that all the points in the STAIR of 0y
belong to the vertical interval formed by the y-coordinates of p} and p7. These points are
obtained by searching the AVL-tree corresponding to the STAIR of 6. Consider the next
point of pj, i.e., p,. The set of points in this stair between p} and pj, forms the boundary
of the feasible zone.

(iv) Finally, the portion of the stair between the two points, say p; and pj, in the quadrant 6p
which fall inside the rectangle inscribing the feasible zone, is the desired portion of the
stair in that quadrant. The point p}, is actually NN(p} ), and p; is determined by locating
the position of the y-coordinate of p} in the STAIR of the quadrant fp.

The illustration of the feasible zone at the time of (secondary) processing p; is shown in Figure 5a.
Now, all MERs inside the feasible zone is to be obtained as in the case of type-A MECs, to get
all type-B MECs whose top (bottom) faces touch p; (p;).
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Updating STAIR,

STAIRy can be updated by deleting all the points from p; to p?, both inclusive, and then
inserting pj as shown in Figure 5b. The nearest neighbor of the point p} will be the point p; in
quadrant 6y .

Complexity

Let p; be a point that is under primary processing, and the point p; is under secondary
processing, and p; falls in quadrant 6. The time complexity of the different steps of the secondary
processing of p; are as follows.

¢ The inclusion of p;] inside the current OP can be tested in O(log n) time from the AVL-tree
of STAIR,.

o If pj lies inside OP, then the feasible zone around (p},p}) can be constructed in (u; +
O(logn)) time, where p; is the number of physical points currently on the four stairs
of the feasible zone. Clearly, there exists at least y; nearest-neighbor-pointers, and if
NN(pj) = p, then there exists a distinct MER where two horizontal sides touch pj
and p;. Also, for any physical point p;, NN(p}) = p; implies NN(p;) # pj. Therefore, at
least u; type-B MECs will be reported in this step.

o The reporting of type-B MECs require B} time, where B} (> u;) is the number of type-B
MECs reported with top (bottom) face passing through p; (p;).

e The time required for updating STAIRg requires 41, time in the worst case.

So, the total time complexity of primary processing of the point p; is O(B* + nlogn), where B*
(= T}_;41B;) is the number of type-B MECs with top face passing through p;. Thus, aggregating
for all the points in P, the time complexity of our algorithm is O(B+n? log n), where B is the total
number of type-B MECs reported. Hence, the overall time complexity becomes O(C + n?logn),
where C = A+ B.

If the location of only the largest MEC is of interest, it is not necessary to inspect all the MECs
present inside the box. Authors in [7] suggested an online algorithm for finding the largest MER
among point obstacles, after any insertion or deletion of a point on the floor. The amortized
time complexity of their algorithm is O(n2/3 log® n) per update operation. In 3D scenario, each
iteration of secondary processing inserts a new point on the sweeping plane, and only the largest
MER is to be obtained. Therefore, the time complexity of locating the largest MEC can further
be reduced to O(n®/3 log® n), keeping the space complexity unaltered.

5. MECS AMONG NONOVERLAPPING BLOCKS

We now discuss the method of recognizing all the MECs among a set of nonoverlapping isothetic
solid cuboids (blocks) arbitrarily placed inside the box. The algorithm is similar to the earlier
one; the only difference lies in the fact that the shape of the isothetic polygon defining the feasible
zone around a (a pair of) solid block(s), is not orthoconvex. However, it can be easily constructed
as observed below.

Let § = {51, S52,...,5,} be the set of solid blocks placed inside the box which will be treated
as obstacles. The objective is to locate all the MECs inside the box. Let us consider a block S;,
and the horizontal cross-sections of all the solid blocks that are strictly above S;, and project
them on the horizontal plane H(S;). If the union of these projected rectangles completely covers
the top face of S;, then there exists no MEC whose top face touches the roof, and bottom face
touches the top face of 5;; otherwise at least one such MEC exists. We now discuss the method
of recognizing these MECs.

Draw four isothetic lines on H(S;) along the boundaries of the top face of S;. Let these lines
intersect at four points a, b, ¢, and d, and divide H(S;) into nine parts H;, Hs, ..., Hg, shown by
dotted lines in Figure 6. Consider an intersection point, say a, and find the maximal-closest-stairs
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Figure 6. Location of type-A MECs among solid 3D blocks.

in the three quadrants around it (see Figure 6). The quadrant containing S; is ignored. Similarly
for all other intersection points, the maximal-closest-stairs are determined. The isothetic closed
polygon bounded by these maximal-closest-stairs form the feasible zone for locating the type-A
MECs, whose bottom face pass through the top of S;. The projections that fall on the rectangle
describing the top of S;, create the holes inside the polygon. Thus, the problem reduces to
location of all the MERs inside the feasible zone which is an isothetic polygon with a number
of holes (IPH(S;)). The time complexity of locating all the MERs inside the feasible zone is
O(C; +n;), where C; is the number of MERs reported and n; is the number of solid blocks whose
top faces lie above H(S;).

To recognize the type-B MECs with top (bottom) face passing through the bottom (top) face
of S; (S;), one has to consider the projections of all the blocks that lie completely or partially
between the horizontal planes H(S;) and H(S;). The feasible zone in this case will be the isothetic
polygon formed by the intersection of IPH(S;) and IPH(S;), and can be obtained using the
neighbor pointers as before. Each MER in the feasible zone return an MEC whose top (bottom)
face touches the bottom (top) of S; (S;). The time and space complexities remain invariant.

6. CONCLUSION

In this paper, we have presented an output-sensitive algorithm of time complexity O(C +
n?logn) and space complexity O(n), for locating all maximal empty cuboids (MECs) inside a
box containing n point obstacles, where the number (C) of reported MECs, may be O(n3) in the
worst case. A minor modification in the data structure can also handle the same problem among
a set of isothetic 3D polyhedral obstacles, retaining the worst case time and space complexities
invariant. Location of MECs finds its applications in 3D graphics, operations research, database,
and 3D VLSI chips.
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